https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Customer credit scoring using a hybrid data mining approach
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Mälardalens högskola, Akademin för innovation, design och teknik, Innovation och produktrealisering.ORCID-id: 0000-0002-8524-3321
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
2016 (Engelska)Ingår i: Kybernetes, ISSN 0368-492X, E-ISSN 1758-7883, Vol. 45, nr 10, s. 1576-1588Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose: A crucial decision in financial services is how to classify credit or loan applicants into good and bad applicants. The purpose of this paper is to propose a four-stage hybrid data mining approach to support the decision-making process. Design/methodology/approach: The approach is inspired by the bagging ensemble learning method and proposes a new voting method, namely two-level majority voting in the last stage. First some training subsets are generated. Then some different base classifiers are tuned and afterward some ensemble methods are applied to strengthen tuned classifiers. Finally, two-level majority voting schemes help the approach to achieve more accuracy. Findings: A comparison of results shows the proposed model outperforms powerful single classifiers such as multilayer perceptron (MLP), support vector machine, logistic regression (LR). In addition, it is more accurate than ensemble learning methods such as bagging-LR or rotation forest (RF)-MLP. The model outperforms single classifiers in terms of type I and II errors; it is close to some ensemble approaches such as bagging-LR and RF-MLP but fails to outperform them in terms of type I and II errors. Moreover, majority voting in the final stage provides more reliable results. Practical implications: The study concludes the approach would be beneficial for banks, credit card companies and other credit provider organisations. Originality/value: A novel four stages hybrid approach inspired by bagging ensemble method proposed. Moreover the two-level majority voting in two different schemes in the last stage provides more accuracy. An integrated evaluation criterion for classification errors provides an enhanced insight for error comparisons.

Ort, förlag, år, upplaga, sidor
2016. Vol. 45, nr 10, s. 1576-1588
Nyckelord [en]
Classifier, Credit scoring, Ensemble learning, Hybrid algorithms, Voting
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-34533DOI: 10.1108/K-09-2015-0228ISI: 000530317200006Scopus ID: 2-s2.0-85002014738OAI: oai:DiVA.org:mdh-34533DiVA, id: diva2:1059199
Tillgänglig från: 2016-12-22 Skapad: 2016-12-22 Senast uppdaterad: 2021-05-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Ahmadzadeh, Farzaneh
Av organisationen
Innovation och produktrealisering
I samma tidskrift
Kybernetes
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 638 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf