mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Opinion-based entity ranking using learning to rank
Mohammad Ali Jinnah University, Islamabad, Pakistan.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-0611-2655
Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
2016 (engelsk)Inngår i: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 38, nr 1, s. 151-163Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

As social media and e-commerce on the Internet continue to grow, opinions have become one of the most important sources of information for users to base their future decisions on. Unfortunately, the large quantities of opinions make it difficult for an individual to comprehend and evaluate them all in a reasonable amount of time. The users have to read a large number of opinions of different entities before making any decision. Recently a new retrieval task in information retrieval known as Opinion-Based Entity Ranking (OpER) has emerged. OpER directly ranks relevantentities based on how well opinions on them are matched with a user's preferences that are given in the form of queries. With such a capability, users do not need to read a large number of opinions available for the entities. Previous research on OpER does not take into account the importance and subjectivity of query keywords in individual opinions of an entity. Entity relevance scores are computed primarily on the basis of occurrences of query keywords match, by assuming all opinions of an entity as a single field of text. Intuitively, entities that have positive judgments and strong relevance with query keywords should be ranked higher than those entities that have poor relevance and negative judgments. This paper outlines several ranking features and develops an intuitive framework for OpER in which entities are ranked according to how well individual opinions of entities are matched with the user's query keywords. As a useful ranking model may be constructed from many rankingfeatures, we apply learning to rank approach based on genetic programming (GP) to combine features in order to develop an effective retrieval model for OpER task. The proposed approach is evaluated on two collections and is found to be significantly more effective than the standard OpER approach.

sted, utgiver, år, opplag, sider
2016. Vol. 38, nr 1, s. 151-163
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-29661DOI: 10.1016/j.asoc.2015.10.001Scopus ID: 2-s2.0-84946422844OAI: oai:DiVA.org:mdh-29661DiVA, id: diva2:876198
Tilgjengelig fra: 2015-12-02 Laget: 2015-11-26 Sist oppdatert: 2019-09-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Afzal, Wasif

Søk i DiVA

Av forfatter/redaktør
Afzal, Wasif
Av organisasjonen
I samme tidsskrift
Applied Soft Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 110 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf