mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using faults-slip-through metric as a predictor of fault-proneness
Blekinge Institute of Technology. (IS (Embedded Systems))ORCID-id: 0000-0003-0611-2655
2010 (engelsk)Inngår i: Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 2010, s. 412-422Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Background: The majority of software faults are present in small number of modules, therefore accurate prediction of fault-prone modules helps improve software quality by focusing testing efforts on a subset of modules. Aims: This paper evaluates the use of the faults-slip-through (FST) metric as a potential predictor of fault-prone modules. Rather than predicting the fault-prone modules for the complete test phase, the prediction is done at the speci?c test levels of integration and system test. Method: We applied eight classi?cation techniques, to the task of identifying faultprone modules, representing a variety of approaches, including a standard statistical technique for classi?cation (logistic regression), tree-structured classi?ers (C4.5 and random forests), a Bayesian technique (Naïve Bayes), machine-learning techniques (support vector machines and back-propagation arti?cial neural networks) and search-based techniques (genetic programming and arti?cial immune recognition systems) on FST data collected from two large industrial projects from the telecommunication domain. Results: Using area under the receiver operating characteristic (ROC) curve and the location of (PF, PD) pairs in the ROC space, the faults-slip-through metric showed impressive results with the majority of the techniques for predicting fault-prone modules at both integration and system test levels. There were, however, no statistically signi?cant differences between the performance of different techniques based on AUC, even though certain techniques were more consistent in the classi?cation performance at the two test levels. Conclusions: We can conclude that the faults-slip-through metric is a potentially strong predictor of fault-proneness at integration and system test levels. The faults-slip-through measurements interact in ways that is conveniently accounted for by majority of the data mining techniques.

sted, utgiver, år, opplag, sider
2010. s. 412-422
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-22284DOI: 10.1109/APSEC.2010.54Scopus ID: 2-s2.0-79951765157ISBN: 9780769542669 (tryckt)OAI: oai:DiVA.org:mdh-22284DiVA, id: diva2:661352
Konferanse
17th Asia Pacific Software Engineering Conference: Software for Improving Quality of Life, APSEC 2010; Sydney, NSW; Australia; 30 November 2010 through 3 December 2010
Tilgjengelig fra: 2013-11-03 Laget: 2013-10-31 Sist oppdatert: 2013-12-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Afzal, Wasif

Søk i DiVA

Av forfatter/redaktør
Afzal, Wasif

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 81 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf