This thesis work was executed at Swift Engineering Incorporated located in San Clemente, California during spring in 2009. Placement supervisor from Swift was Mark Page and advisor and examiner from the Division of future products at Mälardalen University, Sweden was Gustaf Enebog.
The objective with this thesis work was to examine the effects of fitness ratio, lift over drag, lift coefficient at cruise, winglet span, wing sweep angle, wing aspect ratio, wing area and weights with respect to Mach number for a conventional business jet capable of 18 passengers. The cruise speed study range from Mach 0.88 to 0.99.
The Excel based conceptual design tool Jetsizer 2008c was used to make four models with similar configuration and mission but with different cruise Mach numbers.
A new Jetsizer module was then created to handle a modification process where the models are optimized for their speed and configuration. The result in this report gives guidelines for the needed values when creating an initial CFD model for this type of airplane.