https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computational Natural Philosophy: A Thread from Presocratics Through Turing to ChatGPT
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system. Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden.ORCID-id: 0000-0001-9881-400X
2024 (engelsk)Inngår i: Studies in Applied Philosophy, Epistemology and Rational Ethics, Springer Science+Business Media B.V., 2024, Vol. 70, s. 119-137Kapittel i bok, del av antologi (Annet vitenskapelig)
Abstract [en]

This article examines the evolution of computational natural philosophy, tracing its origins from the mathematical foundations of ancient natural philosophy, through Leibniz's concept of a “Calculus Ratiocinator,” to Turing's fundamental contributions in computational models of learning and the Turing Test for artificial intelligence. The discussion extends to the contemporary emergence of ChatGPT. Modern computational natural philosophy conceptualizes the universe in terms of information and computation, establishing a framework for the study of cognition and intelligence. Despite some critiques, this computational perspective has significantly influenced our understanding of the natural world, leading to the development of AI systems like ChatGPT based on deep neural networks. Advancements in this domain have been facilitated by interdisciplinary research, integrating knowledge from multiple fields to simulate complex systems. Large Language Models (LLMs), such as ChatGPT, represent this approach's capabilities, utilizing reinforcement learning with human feedback (RLHF). Current research initiatives aim to integrate neural networks with symbolic computing, introducing a new generation of hybrid computational models. While there remain gaps in AI's replication of human cognitive processes, the achievements of advanced LLMs, like GPT4, support the computational philosophy of nature—where all nature, including the human mind, can be described, on some level of description, as a result of natural computational processes.

sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2024. Vol. 70, s. 119-137
Serie
Studies in Applied Philosophy, Epistemology and Rational Ethics, ISSN 2192-6255, E-ISSN 2192-6263 ; 70
Emneord [en]
AI, ChatGPT, Computationalism, Computing nature, Info-computationalism, Leibniz, Natural philosophy, Turing test
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-69648DOI: 10.1007/978-3-031-69300-7_8Scopus ID: 2-s2.0-85211174328OAI: oai:DiVA.org:mdh-69648DiVA, id: diva2:1922327
Tilgjengelig fra: 2024-12-18 Laget: 2024-12-18 Sist oppdatert: 2024-12-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Dodig-Crnkovic, Gordana

Søk i DiVA

Av forfatter/redaktør
Dodig-Crnkovic, Gordana
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 25 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf