https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Expert System for Managing the Render Farms in Cloud Data Centers
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-3548-2973
Gilgamesh Studio, Jordan.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0001-6132-7945
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system. (CORE)
2024 (engelsk)Inngår i: 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 220-225Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The users of cloud services prioritize cost andperformance, but they increasingly demand sustainable practices.Sustainability is no longer a choice for businesses but a strategicimperative that shapes global industries. This paper presents anew system for utilizing the render farms in cloud data centers.The system aims to reduce energy consumption and costs in clouddata centers while maintaining a specific level of performance,particularly when rendering images and videos. The system canbe described as a cloud-based expert system that offers renderingas a service, while considering user preferences for performance,cost, and energy efficiency. The system reads different scenerendering parameters and accordingly chooses the most suitableGPUs that fit the user’s requirements. In other words, thesystem inputs are the scene complexity and user preferences.The output is the optimal GPU for rendering. Scene complexityis determined based on several parameters, such as the numberof frames and polygons, resulting in one scene-related value.The user preferences are also normalized to a preferences-relatedvalue. Then, these values are aggregated to determine the optimalavailable GPU to render the scene at the lowest cost, minimumpossible energy consumption, and highest performance.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2024. s. 220-225
Emneord [en]
Cloud computing, data centers, Render farms, Rendering-as-a-Service, Performance, Cost, Energy efficiency
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-69629DOI: 10.1109/rtsi61910.2024.10761659ISBN: 9798350362138 (digital)ISBN: 9798350362145 (tryckt)OAI: oai:DiVA.org:mdh-69629DiVA, id: diva2:1922068
Konferanse
2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI), Milano, Italy, 18-20 September, 2024
Tilgjengelig fra: 2024-12-17 Laget: 2024-12-17 Sist oppdatert: 2024-12-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Al-Dulaimy, AudayNolte, ThomasPapadopoulos, Alessandro V.

Søk i DiVA

Av forfatter/redaktør
Al-Dulaimy, AudayNolte, ThomasPapadopoulos, Alessandro V.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf