https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synergizing Transfer Learning and Multi-Agent Systems for Thermal Parametrization in Induction Traction Motors
Mälardalens universitet, Akademin för innovation, design och teknik, Innovation och produktrealisering.
Mälardalens universitet, Akademin för innovation, design och teknik, Innovation och produktrealisering.ORCID-id: 0000-0001-5488-2799
Alstom, S-72136 Vasteras, Sweden..
2024 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 14, nr 11, artikkel-id 4455Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Maintaining optimal temperatures in the critical parts of an induction traction motor is crucial for railway propulsion systems. A reduced-order lumped-parameter thermal network (LPTN) model enables computably inexpensive, accurate temperature estimation; however, it requires empirically based parameter estimation exercises. The calibration process is typically performed in labs in a controlled experimental setting, which is associated with a lot of supervised human efforts. However, the exploration of machine learning (ML) techniques in varied domains has enabled the model parameterization in the drive system outside the laboratory settings. This paper presents an innovative use of a multi-agent reinforcement learning (MARL) approach for the parametrization of an LPTN model. First, a set of reinforcement learning agents are trained to estimate the optimized thermal parameters using the simulated data in several driving cycles (DCs). The selection of a reinforcement learning agent and the level of neurons in the RL model is made based on variability of the driving cycle data. Furthermore, transfer learning is performed on a new driving cycle data collected on the measurement setup. Statistical analysis and clustering techniques are proposed for the selection of an RL agent that has been pre-trained on the historical data. It is established that by synergizing within reinforcement learning techniques, it is possible to refine and adjust the RL learning models to effectively capture the complexities of thermal dynamics. The proposed MARL framework shows its capability to accurately reflect the motor's thermal behavior under various driving conditions. The transfer learning usage in the proposed approach could yield significant improvement in the accuracy of temperature prediction in the new driving cycles data. This approach is proposed with the aim of developing more adaptive and efficient thermal management strategies for railway propulsion systems.

sted, utgiver, år, opplag, sider
MDPI , 2024. Vol. 14, nr 11, artikkel-id 4455
Emneord [en]
reinforcement learning, transfer learning, railway propulsion system, induction motor, thermal model, optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-67893DOI: 10.3390/app14114455ISI: 001245421500001Scopus ID: 2-s2.0-85195859369OAI: oai:DiVA.org:mdh-67893DiVA, id: diva2:1877925
Tilgjengelig fra: 2024-06-26 Laget: 2024-06-26 Sist oppdatert: 2024-06-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mehboob, FoziaFattouh, Anas

Søk i DiVA

Av forfatter/redaktør
Mehboob, FoziaFattouh, Anas
Av organisasjonen
I samme tidsskrift
Applied Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 60 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf