https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integrating AI and DTs: challenges and opportunities in railway maintenance application and beyond
Linnaeus Univ, Dept Comp Sci & Media Technol, Växjö, Sweden..
Univ Naples Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy..
Univ Naples Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy..
Linnaeus Univ, Dept Comp Sci & Media Technol, Växjö, Sweden..
Vise andre og tillknytning
2024 (engelsk)Inngår i: Simulation (San Diego, Calif.), ISSN 0037-5497, E-ISSN 1741-3133Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

In the last years, there has been a growing interest in the emerging concept of digital twin (DT) as it represents a promising paradigm to continuously monitor cyber-physical systems, as well as to test and validate predictability, safety, and reliability aspects. At the same time, artificial intelligence (AI) is exponentially affirming as an extremely powerful tool when it comes to modeling the behavior of physical assets allowing, de facto, the possibility of making predictions on their potential evolution. However, despite the fact that DTs and AI (and their combination) can act as game-changing technologies in different domains (including the railways), several challenges have to be faced to ensure their effectiveness, especially when dealing with safety-critical systems. This paper provides a narrative review of the scientific literature on DTs for railway maintenance applications, with a special focus on their relationship with AI. The aim is to discuss the opportunities the integration of these two technologies could open in railway maintenance applications (and beyond), while highlighting the main challenges that should be overcome for its effective implementation.

sted, utgiver, år, opplag, sider
SAGE PUBLICATIONS LTD , 2024.
Emneord [en]
Digital twin, railway, artificial intelligence, machine learning, cyber-physical system, Internet of things
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-66178DOI: 10.1177/00375497241229756ISI: 001163924700001Scopus ID: 2-s2.0-85185910530OAI: oai:DiVA.org:mdh-66178DiVA, id: diva2:1842855
Tilgjengelig fra: 2024-03-06 Laget: 2024-03-06 Sist oppdatert: 2024-03-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Flammini, Francesco

Søk i DiVA

Av forfatter/redaktør
Flammini, Francesco
Av organisasjonen
I samme tidsskrift
Simulation (San Diego, Calif.)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 44 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf