https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning based Predictive Data Analytics for Embedded Test Systems
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Organizations gather enormous amounts of data and analyze these data to extract insights that can be useful for them and help them to make better decisions. Predictive data analytics is a crucial subfield within data analytics that make accurate predictions. Predictive data analytics extracts insights from data by using machine learning algorithms. This thesis presents the supervised learning algorithm to perform predicative data analytics in Embedded Test System at the Nordic Engineering Partner company. Predictive Maintenance is a concept that is often used in manufacturing industries which refers to predicting asset failures before they occur. The machine learning algorithms used in this thesis are support vector machines, multi-layer perceptrons, random forests, and gradient boosting. Both binary and multi-class classifier have been provided to fit the models, and cross-validation, sampling techniques, and a confusion matrix have been provided to accurately measure their performance. In addition to accuracy, recall, precision, f1, kappa, mcc, and roc auc measurements are used as well. The prediction models that are fitted achieve high accuracy.

sted, utgiver, år, opplag, sider
2023. , s. 56
Emneord [en]
Machine learning, Artificial Intelligence, Predictive data analytics, Embedded test systems, Confusion matrix, Predictive maintenance, Support vector machines, Random forest, Gradient Boosting, Multi-layer perceptron, Binary classification, Multi-class classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-64455OAI: oai:DiVA.org:mdh-64455DiVA, id: diva2:1802482
Eksternt samarbeid
Nordic Engineering Partner
Fag / kurs
Computer Science
Presentation
2023-09-14, Rum R2-132, Universitetsplan 1, Västerås, 11:15 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2023-10-06 Laget: 2023-10-04 Sist oppdatert: 2023-10-06bibliografisk kontrollert

Open Access i DiVA

fulltext(3077 kB)600 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3077 kBChecksum SHA-512
3a12a97ac9971b627ab9bd4d591121a1916e5f924195a7f31a1ebd5648501cf3490b07d8298264780682f49d1d9a6e3e1375ca3dc38f70f3be7784aada3920f5
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Al Hanash, Fayad
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 601 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1023 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf