Detecting Koszulness and related homological properties from the algebra structure of Koszul homologyVise andre og tillknytning
2018 (engelsk)Inngår i: Nagoya mathematical journal, ISSN 0027-7630, E-ISSN 2152-6842, Vol. 238, s. 47-85Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]
Let k be a field and R a standard graded k-algebra. We denote by H^R the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of H^R and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched Cohen-Macaulay local ring are rational, sharing a common denominator.
sted, utgiver, år, opplag, sider
2018. Vol. 238, s. 47-85
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-64389DOI: 10.1017/nmj.2018.20ISI: 000529209500003Scopus ID: 2-s2.0-85084306405OAI: oai:DiVA.org:mdh-64389DiVA, id: diva2:1801337
2023-09-292023-09-292023-11-15bibliografisk kontrollert