https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Supply-demand side management of a building energy system driven by solar and biomass in Stockholm: A smart integration with minimal cost and emission
Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
Mälardalens universitet, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-3485-5440
Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
2023 (engelsk)Inngår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 292, artikkel-id 117420Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

As part of the transition to a sustainable future, energy-efficient buildings are needed to secure users' comfort and lower the built environment's energy footprint and associated emissions. This article presents a novel, realistic and affordable solution to minimize the footprint of smart building energy systems and enable higher renewable energy use in the building sector. For this, an intelligent system is being developed using a rule-based automation approach that considers thermal comfort, energy prices, meteorological data, and primary energy use. In order to lower the installation cost and part of the environmental footprint, batteries are not used, and the heat pump's size is decreased via component integration. Also, different renewable resources are effectively hybridized using photovoltaic thermal panels and an innovative biomass heater to increase the share of renewable energy, enhance reliability, and shave peak load. In order to secure feasibility, the suggested framework is assessed from the techno-economic and environmental standpoints for 100 residential apartments in Stockholm, Sweden. Our results show that 70.8 MWh of renewable electricity is transferred to the local grid, and the remaining 111.5 MWh is used to supply the building's needs and power the electrically-driven components. The biomass heater meets more than 65% of the space heating demand, mainly at low solar power and high electricity prices, illustrating the value of integration strategies to reduce the system's dependability on the local grid. The results further reveal that most energy purchases during the cloudy days and nights are repaid through the sale of excess renewable production during the warmer hours, with a bidirectional connection with the grid. The monthly energy cost is less than 140 $/MWh for most of the years. The cost can be held low due to the exclusion of batteries and minimizing the heat pump size. The proposed system has a low emission index of 11.9 kgCO2/MWh and can reduce carbon dioxide emissions by 70 TCO2/year compared to using the supply from the Swedish energy mix. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2023. Vol. 292, artikkel-id 117420
Emneord [en]
Biomass, Efficient Integration, PVT, Renewable hybridization, Simultaneous demand and supply adoption, Smart building, Solar, Carbon dioxide, Costs, Electric batteries, Electric loads, Energy efficiency, Energy utilization, Global warming, Integration, Intelligent buildings, Intelligent systems, Building energy systems, Demand and supply, Heat pumps, Hybridisation, Stockholm
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-63977DOI: 10.1016/j.enconman.2023.117420ISI: 001047553600001Scopus ID: 2-s2.0-85165399604OAI: oai:DiVA.org:mdh-63977DiVA, id: diva2:1788661
Tilgjengelig fra: 2023-08-16 Laget: 2023-08-16 Sist oppdatert: 2023-08-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Thorin, Eva

Søk i DiVA

Av forfatter/redaktør
Thorin, Eva
Av organisasjonen
I samme tidsskrift
Energy Conversion and Management

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf