https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Accurate detection of paroxysmal atrial fibrillation with certified-GAN and neural architecture search
Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran.
Shiraz University of Medical Science, Shiraz, Iran.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Vise andre og tillknytning
2023 (engelsk)Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents a novel machine learning framework for detecting PxAF, a pathological characteristic of electrocardiogram (ECG) that can lead to fatal conditions such as heart attack. To enhance the learning process, the framework involves a generative adversarial network (GAN) along with a neural architecture search (NAS) in the data preparation and classifier optimization phases. The GAN is innovatively invoked to overcome the class imbalance of the training data by producing the synthetic ECG for PxAF class in a certified manner. The effect of the certified GAN is statistically validated. Instead of using a general-purpose classifier, the NAS automatically designs a highly accurate convolutional neural network architecture customized for the PxAF classification task. Experimental results show that the accuracy of the proposed framework exhibits a high value of 99.0% which not only enhances state-of-the-art by up to 5.1%, but also improves the classification performance of the two widely-accepted baseline methods, ResNet-18, and Auto-Sklearn, by [Formula: see text] and [Formula: see text].

sted, utgiver, år, opplag, sider
NLM (Medline) , 2023. Vol. 13, nr 1
Emneord [en]
Atrial Fibrillation, Electrocardiography, Humans, Machine Learning, Neural Networks, Computer, artificial neural network, human
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-63915DOI: 10.1038/s41598-023-38541-8ISI: 001030642400009PubMedID: 37452165Scopus ID: 2-s2.0-85164756079OAI: oai:DiVA.org:mdh-63915DiVA, id: diva2:1784492
Tilgjengelig fra: 2023-07-26 Laget: 2023-07-26 Sist oppdatert: 2023-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Loni, MohammadDaneshtalab, MasoudSjödin, Mikael

Søk i DiVA

Av forfatter/redaktør
Loni, MohammadDaneshtalab, MasoudSjödin, Mikael
Av organisasjonen
I samme tidsskrift
Scientific Reports

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf