https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Road Condition Analysis For Autonomous Haulers
Mälardalens universitet, Akademin för innovation, design och teknik.
Mälardalens universitet, Akademin för innovation, design och teknik.
2023 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

With autonomous vehicles becoming more common and established, there are some problems to overcome before their full potential can be reached. One of these problems is the lack of information about the condition of the road, which traditionally would be acquired from the driver operating the vehicle. Volvo Autonomous Solutions are developing an autonomous hauler, made for operating in off-road workplaces, such as quarries and mines. In these off-road workplaces, road maintenance is limited and often performed only when deemed necessary by a driver. This thesis investigates the issue of detecting irregularities in the road on an autonomous vehicle. To achieve this data from an Inertial Measurement Unit (IMU) and a Global Navigation Satellite System (GNSS) unit mounted on the vehicle is collected, analysed, and classified to find any irregularities in the road. In order to improve confidence in the classification of the irregularities, false positives are reduced by using an occupancy grid solution. The results show that the use of IMU data can be used to detect irregularities and that the use of an occupancy grid increases the confidence of detected irregularities.

sted, utgiver, år, opplag, sider
2023. , s. 37
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-63627OAI: oai:DiVA.org:mdh-63627DiVA, id: diva2:1775931
Eksternt samarbeid
Volvo Autonomous Solutions
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2023-06-28 Laget: 2023-06-27 Sist oppdatert: 2023-06-28bibliografisk kontrollert

Open Access i DiVA

fulltext(3194 kB)278 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3194 kBChecksum SHA-512
8b4d41f5971a2e23b8641ff197d67273e40102d1fdfab62362e806a75cc760c44c9e608b5317f75c50233d1e0cca140d5187ed59fd45e455754aa9ca0304bb00
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 278 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 352 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf