https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Limit shapes of stable and recurrent configurations of a generalized bulgarian solitaire
Mälardalens universitet, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik.ORCID-id: 0000-0002-7164-0924
Stockholm University, Centre for Cultural Evolution, Stockholm, Sweden.
2020 (engelsk)Inngår i: Online Journal of Analytic Combinatorics, E-ISSN 1931-3365, nr 15, artikkel-id 10Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bulgarian solitaire is played on n cards divided into several piles; a move consists of picking one card from each pile to form a new pile. This can be seen as a process on the set of integer partitions of n: If sorted configurations are represented by Young diagrams, a move in the solitaire consists of picking all cards in the bottom layer of the diagram and inserting the picked cards as a new column. Here we consider a generalization, L-solitaire, wherein a fixed set of layers L (that includes the bottom layer) are picked to form a new column. L-solitaire has the property that if a stable configuration of n cards exists it is unique. Moreover, the Young diagram of a configuration is convex if and only if it is a stable (fixpoint) configuration of some L-solitaire. If the Young diagrams representing card configurations are scaled down to have unit area, the stable configurations corresponding to an infinite sequence of pick-layer sets (L1, L2, . . .) may tend to a limit shape φ. We show that every convex φ with certain properties can arise as the limit shape of some sequence of Ln. We conjecture that recurrent configurations have the same limit shapes as stable configurations. For the special case Ln = {1, 1 + ⌊1/qn⌋, 1 + ⌊2/qn⌋, . . . }, where the pick layers are approximately equidistant with average distance 1/qn for some qn ∈ (0, 1], these limit shapes are linear (in case nq2n → 0), exponential (in case nq2n → ∞), or interpolating between these shapes (in case nq2n → C > 0).

sted, utgiver, år, opplag, sider
Department of Computer Science , 2020. nr 15, artikkel-id 10
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-62521Scopus ID: 2-s2.0-85147910246OAI: oai:DiVA.org:mdh-62521DiVA, id: diva2:1761054
Tilgjengelig fra: 2023-05-31 Laget: 2023-05-31 Sist oppdatert: 2023-10-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Person

Eriksson, KimmoSjöstrand, Jonas

Søk i DiVA

Av forfatter/redaktør
Eriksson, KimmoSjöstrand, Jonas
Av organisasjonen
I samme tidsskrift
Online Journal of Analytic Combinatorics

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 57 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf