https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
What is Smart Maintenance in Manufacturing Industry?
Mälardalens universitet, Akademin för innovation, design och teknik, Innovation och produktrealisering.ORCID-id: 0000-0002-7494-1474
2023 (engelsk)Inngår i: Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH , 2023, s. 366-374Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The ongoing transformation of manufacturing industry into digitalized production, Industry 4.0, has put new perspectives on the maintenance of production systems. The technologies offer an array of new possibilities in optimization of maintenance and data driven decision making. On the other hand, these new technologies offer a lot of challenges in form of investment costs, need for new competences, and how to handle the equipment legacy, i.e. upgrading old equipment. Many researchers associate data driven decision making with intelligent sensors, cloud computing and cyber physical systems, but are these technologies the most cost-effective way of achieving data driven maintenance? The aim of this paper is to discuss how manufacturing industry should approach smart maintenance in order to improve the industry’s competitiveness, rather than spending money on technology that doesn’t contribute. The basis for the discussion will mainly be a literature study but additional empirical data may be included.

sted, utgiver, år, opplag, sider
Springer Science and Business Media Deutschland GmbH , 2023. s. 366-374
Emneord [en]
Competition, Cost effectiveness, Embedded systems, Maintenance, Cloud-computing, Data driven decision, Decisions makings, Intelligent sensors, Investment costs, Manufacturing industries, Old equipment, Optimisations, Production industries, Production system, Decision making
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-62210DOI: 10.1007/978-3-031-25448-2_35Scopus ID: 2-s2.0-85151145822ISBN: 9783031254475 (tryckt)OAI: oai:DiVA.org:mdh-62210DiVA, id: diva2:1750089
Konferanse
6th World Congress on Engineering Asset Management, WCEAM 2022Seville5 October 2022 through 7 October 2022 Code 291789
Tilgjengelig fra: 2023-04-12 Laget: 2023-04-12 Sist oppdatert: 2023-04-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Salonen, Antti

Søk i DiVA

Av forfatter/redaktør
Salonen, Antti
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf