mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exponential asymptotics for nonlinearly perturbed renewal equation with non-polynomial perturbations
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0002-0835-7536
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0002-2626-5598
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0002-0139-0747
2008 (engelsk)Inngår i: Journal of Numerical and Applied Mathematics, ISSN 0868-6912, Vol. 96, nr 1, s. 173-197Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The model of nonlinearly perturbedcontinuous-time renewal equation is studied in this paper.The perturbation conditions considered involve asymptoticalexpansions with respect to asymptotic scale$\{\varphi_{n,m}(\varepsilon) = \varepsilon^{n +m\omega}\}$,with $n, m$ being non-negative integers and $\omega >1$ beingirrational number. Such asymptotical scale results in non-polynomialtype of asymptotic expansions for solutions for perturbed renewalequations. An example of risk processes with perturbations describedabove and asymptotic expansions in diffusion approximation for ruinprobabilities in this model are given.

sted, utgiver, år, opplag, sider
Kiev: TBiMC , 2008. Vol. 96, nr 1, s. 173-197
Emneord [en]
Renewal equation, nonlinear perturbation, non-polynomial perturbation, exponential asymptotic expansion, risk process, ruin probability
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-5285OAI: oai:DiVA.org:mdh-5285DiVA, id: diva2:160339
Tilgjengelig fra: 2009-02-13 Laget: 2009-02-13 Sist oppdatert: 2015-06-29bibliografisk kontrollert
Inngår i avhandling
1. Perturbed Renewal Equations with Non-Polynomial Perturbations
Åpne denne publikasjonen i ny fane eller vindu >>Perturbed Renewal Equations with Non-Polynomial Perturbations
2010 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis deals with a model of nonlinearly perturbed continuous-time renewal equation with nonpolynomial perturbations. The characteristics, namely the defect and moments, of the distribution function generating the renewal equation are assumed to have expansions with respect to a non-polynomial asymptotic scale: $\{\varphi_{\nn} (\varepsilon) =\varepsilon^{\nn \cdot \w}, \nn \in \mathbf{N}_0^k\}$  as $\varepsilon \to 0$, where $\mathbf{N}_0$ is the set of non-negative integers, $\mathbf{N}_0^k \equiv \mathbf{N}_0 \times \cdots \times \mathbf{N}_0, 1\leq k <\infty$ with the product being taken $k$ times and $\w$ is a $k$ dimensional parameter vector that satisfies certain properties. For the one-dimensional case, i.e., $k=1$, this model reduces to the model of nonlinearly perturbed renewal equation with polynomial perturbations which is well studied in the literature.  The goal of the present study is to obtain the exponential asymptotics for the solution to the perturbed renewal equation in the form of exponential asymptotic expansions and present possible applications.

The thesis is based on three papers which study successively the model stated above. Paper A investigates the two-dimensional case, i.e. where $k=2$. The corresponding asymptotic exponential expansion for the solution to the perturbed renewal equation is given. The asymptotic results are applied to an example of the perturbed risk process, which leads to diffusion approximation type asymptotics for the ruin probability.  Numerical experimental studies on this example of perturbed risk process are conducted in paper B, where Monte Carlo simulation are used to study the accuracy and properties of the asymptotic formulas. Paper C presents the asymptotic results for the more general case where the dimension $k$ satisfies $1\leq k <\infty$, which are applied to the asymptotic analysis of the ruin probability in an example of perturbed risk processes with this general type of non-polynomial perturbations.  All the proofs of the theorems stated in paper C are collected in its supplement: paper D.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2010. s. 98
Serie
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 116
Emneord
Renewal equation, perturbed renewal equation, non-polynomial perturbation, exponential asymptotic expansion, risk process, ruin probability
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-9354 (URN)978-91-86135-58-4 (ISBN)
Presentation
2010-05-07, Kappa, Hus U, Högskoleplan 1, Mälardalen University, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-03-04 Laget: 2010-03-04 Sist oppdatert: 2015-06-29bibliografisk kontrollert
2. Nonlinearly Perturbed Renewal Equations: asymptotic Results and Applications
Åpne denne publikasjonen i ny fane eller vindu >>Nonlinearly Perturbed Renewal Equations: asymptotic Results and Applications
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis we investigate a model of nonlinearly perturbed continuous-time renewal equation. Some characteristics of the renewal equation are assumed to have non-polynomial perturbations, more specifically they can be expanded with respect to a non-polynomial asymptotic scale. The main result of the present study is exponential asymptotic expansions for the solution of the perturbed renewal equation. These asymptotic results are also applied to various applied probability models like perturbed risk processes, perturbed M/G/1 queues and perturbed dam/storage processes.

The thesis is based on five papers where the model described above is successively studied.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2011. s. 33
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 106
Emneord
Nonlinearly perturbed renewal equation, perturbed renewal equation, nonlinear perturbation, non-polynomial perturbation, perturbed risk process, perturbed storage process
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-12953 (URN)978-91-7485-032-1 (ISBN)
Disputas
2011-10-28, Gamma, Högskoleplan 1, Mälardalens Högskola, Västerås, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2011-09-05 Laget: 2011-09-02 Sist oppdatert: 2015-06-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Ni, YingSilvestrov, DmitriiMalyarenko, Anatoliy

Søk i DiVA

Av forfatter/redaktør
Ni, YingSilvestrov, DmitriiMalyarenko, Anatoliy
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 279 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf