https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PERFORMANCE ASSURANCE FOR CLOUD-NATIVE APPLICATIONS
Mälardalens högskola, Akademin för innovation, design och teknik.
2021 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Preserving the performance of cloud services according to service level agreements (SLAs) is one of the most important challenges in cloud infrastructure. Since the workload is always changing incrementally or decremental, managing the cloud resources efficiently is considered an important challenge to satisfy non-functional requirements like high availability and cost. Although many common approaches like predictive autoscaling could solve this problem, it is still not so efficient because of its constraints like requiring a workload pattern as training data. Reinforcement machine learning (RL) can be considered a significant solution for this problem. Even though reinforcement learning needs some time to be stable and needs many trials to decide the value of factors like discount rate, this approach can adapt with the dynamic workload. In this  thesis, through a controlled experiment research method, we show how a model-free reinforcement algorithm like Q-learning can adapt to the dynamic workload by applying horizontal autoscaling to keep the performance of cloud services at the required level. Furthermore, the Amazon web services (AWS) platform is used to demonstrate the efficiency of the Q-learning algorithm in dealing with dynamic workload and achieving high availability.  

sted, utgiver, år, opplag, sider
2021. , s. 36
Emneord [en]
Performance of cloud services, dynamic workload, cloud infrastructure, reinforcement learning (RL), machine learning, service level agreements (SLAs), Amazon web services (AWS)
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-56089OAI: oai:DiVA.org:mdh-56089DiVA, id: diva2:1599851
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2021-10-13 Laget: 2021-10-02 Sist oppdatert: 2021-10-14bibliografisk kontrollert

Open Access i DiVA

fulltext(1543 kB)183 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1543 kBChecksum SHA-512
1fec69b13dafe83e2ca8636c5fb648096d69d7fafdd255f63117b49171ea5fd142475f4ab0020ab8b0dd3c3cbb8d8777c2bc4c53a07daa204f6c6faba0c9b208
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 183 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 348 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf