https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Induced Ternary Hom-Nambu-Lie algebras
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. University of Nairobi; Kenya. (MAM)ORCID-id: 0000-0003-3468-5282
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)
University of Nairobi, Kenya.
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0003-4554-6528
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

This study is concerned with induced ternary Hom-Lie-Nambu Lie algebras from Hom-Lie algebras and their classification. The induced algebras are constructed from a class of Hom-Lie algebra with nilpotent linear map. The families of ternary Hom-Nambu-Lie arising in this way of construction are classified for a given  class of  nilpotent linear maps. In addition, some results giving conditions on when morphisms of Hom-Lie algebras can still remain morphisms for the induced ternary Hom-Nambu-Lie algebras are given.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-55882OAI: oai:DiVA.org:mdh-55882DiVA, id: diva2:1594255
Tilgjengelig fra: 2021-09-15 Laget: 2021-09-15 Sist oppdatert: 2022-01-04bibliografisk kontrollert
Inngår i avhandling
1. Classification and Construction of Low-dimensional Hom-Lie Algebras and Ternary Hom-Nambu-Lie Algebras
Åpne denne publikasjonen i ny fane eller vindu >>Classification and Construction of Low-dimensional Hom-Lie Algebras and Ternary Hom-Nambu-Lie Algebras
2021 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis concerns the construction and classification of low-dimensional Hom-Lie algebras and ternary Hom-Nambu-Lie algebras. A classification of 3-dimensional Hom-Lie algebras is given for nilpotent linear endomorphism, as a twisting map, and a construction of 4-dimensional Hom-Lie algebras is done. Results on the dimension of the space of endomorphisms that turn a skew-symmetric algebra into a Hom-Lie algebra are also given in this thesis. A class of 3-dimensional ternary Hom-Nambu-Lie algebras with nilpotent linear maps are constructed and classified.

In Chapter 2, we derive conditions for an arbitrary n-dimensional algebra to be a Hom-Lie algebra, in the form of a system of polynomial equations, containing both structure constants of the skew-symmetric bilinear map and constants describing the twisting linear endomorphism. When the algebra is 3 or 4-dimensional, we describe the realisation of Hom-Lie algebras when the dimension of the space of such linear endomorphisms, as vector spaces, is minimum. For the 3-dimensional case we give all possible families of 3-dimensional Hom-Lie algebras arising from a general nilpotent linear endomorphism constructed up to isomorphism together with non-isomorphic canonical representatives for all the families in that case. We further give a list of 4-dimensional Hom-Lie algebras arising from general nilpotent linear endomorphisms.

In Chapter 3, we describe the dimension of the space of possible linear endomorphisms that turn skew-symmetric three-dimensional algebras into Hom-Lie algebras. We find a correspondence between the rank of a matrix containing the structure constants of the bilinear product and the dimension of the space of Hom-Lie structures. Examples from classical complex Lie algebras are given to demonstrate this correspondence.

In Chapter 4, the space of possible Hom-Lie structures on complex 4-dimensional Lie algebras is considered in terms of linear maps that turn the Lie algebras into Hom-Lie algebras. Hom-Lie structures and automorphism groups on the representatives of isomorphism classes of complex 4-dimensional Lie algebras are described.

In Chapter 5, we construct ternary Hom-Nambu-Lie algebras from Hom-Lie algebras through a process known as induction. The induced algebras are constructed from a class of Hom-Lie algebra with nilpotent linear map. The families of ternary Hom-Nambu-Lie arising in this way of construction are classified for a given class of nilpotent linear maps. In addition, some results giving conditions on when morphisms of Hom-Lie algebras can still remain morphisms for the induced ternary Hom-Nambu-Lie algebras are given. 

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2021
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 345
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-55920 (URN)978-91-7485-523-4 (ISBN)
Disputas
2021-10-29, Delta & zoom, Mälardalens högskola, Västerås, 15:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2021-09-17 Laget: 2021-09-16 Sist oppdatert: 2021-10-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Ongong'A, ElviceKitouni, AbdennourSilvestrov, Sergei

Søk i DiVA

Av forfatter/redaktør
Ongong'A, ElviceKitouni, AbdennourSilvestrov, Sergei
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 226 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf