https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EVALUATING THE IMPACT OF UNCERTAINTY ON THE INTEGRITY OF DEEP NEURAL NETWORKS
Mälardalens högskola, Akademin för innovation, design och teknik.
2021 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Deep Neural Networks (DNNs) have proven excellent performance and are very successful in image classification and object detection. Safety critical industries such as the automotive and aerospace industry aim to develop autonomous vehicles with the help of DNNs. In order to certify the usage of DNNs in safety critical systems, it is essential to prove the correctness of data within the system. In this thesis, the research is focused on investigating the sources of uncertainty, what effects various sources of uncertainty has on NNs, and how it is possible to reduce uncertainty within an NN. Probabilistic methods are used to implement an NN with uncertainty estimation to analyze and evaluate how the integrity of the NN is affected. By analyzing and discussing the effects of uncertainty in an NN it is possible to understand the importance of including a method of estimating uncertainty. Preventing, reducing, or removing the presence of uncertainty in such a network improves the correctness of data within the system. With the implementation of the NN, results show that estimating uncertainty makes it possible to identify and classify the presence of uncertainty in the system and reduce the uncertainty to achieve an increased level of integrity, which improves the correctness of the predictions. 

sted, utgiver, år, opplag, sider
2021. , s. 23
Emneord [en]
Uncertainty, Deep Neural Network, Bayesian Neural Network, Dependability, Integrity, Probability
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-53395OAI: oai:DiVA.org:mdh-53395DiVA, id: diva2:1527138
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2021-02-10 Laget: 2021-02-10 Sist oppdatert: 2021-02-10bibliografisk kontrollert

Open Access i DiVA

fulltext(704 kB)293 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 704 kBChecksum SHA-512
d0295a74b9a300538cb44b44f0d05508604781b57ead1901b5e7f10e70e2f389e170a42956758218190a8004f6a34780d068cf3dbe8e968cdd0b23bfe33c15e9
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 293 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 773 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf