https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Driven Anomaly Control Detection for Railway Propulsion Control Systems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
2020 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

The popularity of railway transportation has been on the rise over the past decades, as it has been able to provide safe, reliable, and highly available service. The main challenge within this domain is to reduce the costs of preventive maintenance and improve operational efficiency. To tackle these challenges, one needs to investigate and provide new approaches to enable quick and timely data collection, transfer, and storage aiming at easier and faster analysis whenever needed.

In this thesis, we aim at enabling the monitoring and analysis of collected signal data from a train propulsion system. The main idea is to monitor and analyze collected signal data gathered during the regular operation of the propulsion control unit or data recorded during the regular train tests in the real-time simulator. To do so, we have implemented a solution to enable train signal data collection and its storage into a .txt and .CSV file to be further analyzed in the edge node and in the future connected to the cloud for further analysis purposes. In our analysis, we focus on identifying signal anomalies and predicting potential failures using MathWorks tools. Two machine learning techniques, unsupervised and supervised learning, are implemented. Additionally, in this thesis, we have investigated ways of how data can be efficiently managed. We have also reviewed existing edge computing solutions and anomaly detection approaches using a survey as a suitable method to identify relevant works within the state of the art.

sted, utgiver, år, opplag, sider
2020. , s. 44
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-48520OAI: oai:DiVA.org:mdh-48520DiVA, id: diva2:1437916
Eksternt samarbeid
Bombardier Transportation
Fag / kurs
Computer Science
Presentation
2020-06-05, Zoom, track 5, Västerås, 10:45 (engelsk)
Veileder
Examiner
Prosjekter
RELIANCETilgjengelig fra: 2020-06-16 Laget: 2020-06-09 Sist oppdatert: 2020-06-16bibliografisk kontrollert

Open Access i DiVA

Data Driven Anomaly Control Detection for Railway Propulsion Control Systems(2638 kB)365 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2638 kBChecksum SHA-512
0117a92a4773c0b2adc20b3eb3c39d198db9fe412a0db0cc6b645d131a1c6e3c07ef4a52486b5e27a7e2e4c52bade47260241e9f80cb76c8aaf3e19a78157a34
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 365 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 729 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf