mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1547-4386
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1212-7637
2020 (engelsk)Inngår i: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531, Vol. 67, nr 1, s. 88-98, artikkel-id 8715455Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Objective: In this paper, four physiological parameters, i.e., heart rate (HR), inter-beat-interval (IBI), heart rate variability (HRV), and oxygen saturation (SpO2), are extracted from facial video recordings. Methods: Facial videos were recorded for 10 min each in 30 test subjects while driving a simulator. Four regions of interest (ROIs) are automatically selected in each facial image frame based on 66 facial landmarks. Red-green-blue color signals are extracted from the ROIs and four physiological parameters are extracted from the color signals. For the evaluation, physiological parameters are also recorded simultaneously using a traditional sensor 'cStress,' which is attached to hands and fingers of test subjects. Results: The Bland Altman plots show 95% agreement between the camera system and 'cStress' with the highest correlation coefficient R = 0.96 for both HR and SpO2. The quality index is estimated for IBI considering 100 ms R-peak error; the accumulated percentage achieved is 97.5%. HRV features in both time and frequency domains are compared and the highest correlation coefficient achieved is 0.93. One-way analysis of variance test shows that there are no statistically significant differences between the measurements by camera and reference sensors. Conclusion: These results present high degrees of accuracy of HR, IBI, HRV, and SpO2 extraction from facial image sequences. Significance: The proposed non-contact approach could broaden the dimensionality of physiological parameters extraction using cameras. This proposed method could be applied for driver monitoring application under realistic conditions, i.e., illumination, motion, movement, and vibration.

sted, utgiver, år, opplag, sider
IEEE Computer Society , 2020. Vol. 67, nr 1, s. 88-98, artikkel-id 8715455
Emneord [en]
Ambient illumination, driver monitoring, motion, movement, non-contact, physiological parameters, vibration, Cameras, Extraction, Heart, Video recording, Physiological models
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-46689DOI: 10.1109/TBME.2019.2908349ISI: 000505526300009Scopus ID: 2-s2.0-85077175941OAI: oai:DiVA.org:mdh-46689DiVA, id: diva2:1384236
Tilgjengelig fra: 2020-01-09 Laget: 2020-01-09 Sist oppdatert: 2020-01-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rahman, HamidurAhmed, Mobyen UddinBegum, Shahina

Søk i DiVA

Av forfatter/redaktør
Rahman, HamidurAhmed, Mobyen UddinBegum, Shahina
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Biomedical Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 6 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf