https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0001-8096-3891
2019 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis investigates the efficacy of heterogeneous computing architectures in real-time systems.The goals of the thesis are twofold. First, to investigate various characteristics of the Heterogeneous System Architectures (HSA) compliant reference platforms focusing on computing performance and power consumption. The investigation is focused on the new technologies that could boost on-board data processing systems in satellites and spacecraft. Second, to enhance the usage of the heterogeneous processing units by introducing a technique for static allocation of parallel segments of tasks.

The investigation and experimental evaluation show that our method of GPU allocation for the parallel segments of tasks is more energy efficient compared to any other studied allocation. The investigation is conducted under different types of environments, such as process-level isolated environment, different software stacks, including kernels, and various task set scenarios. The evaluation results indicate that a balanced use of heterogeneous processing units (CPU and GPU) could improve schedulability of task sets up to 90% with the proposed allocation technique.

Abstract [sv]

Denna avhandling undersöker effektiviteten hos heterogena datorarkitekturer i realtidssystem. Målet med avhandlingen är tvåfaldigt. Till att börja med, att undersöka olika egenskaper hos plattformar baserade på Heterogeneous System Architecture, med fokus på datorprestanda och strömförbrukning. Undersökningen är inriktad på tekniker som kan öka datorbehandlingssystemen ombord i satelliter och rymdskepp. För det andra förbättra användningen av heterogena arkitekturer genom att införa en teknik för statisk allokering av parallella programsegment.

Undersökningen och den experimentella utvärderingen visar att vår metod för effektiv användning av GPU-allokering för parallella programsegment är den mest energieffektiva jämfört med någon annan studerad allokering. Undersökningarna har genomförts i olika typer av miljöer, såsom processisolerad miljö, olika mjukvarustackar, inklusive kernel, och olika uppsättningsscenarier. Utvärderingsresultaten indikerar dessutom att en balanserad användning av heterogena beräkningsenheter (CPU och GPU) kan förbättra schemaläggningen för vissa program upp till 90% jämfört med de tidigare föreslagna allokeringsteknikerna.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University , 2019.
Serie
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 286
Emneord [en]
on-board data processing, CPU-GPU, heterogeneous architectures, real-time systems
HSV kategori
Forskningsprogram
datavetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-45940ISBN: 978-91-7485-450-3 (tryckt)OAI: oai:DiVA.org:mdh-45940DiVA, id: diva2:1369171
Presentation
2019-12-18, Kappa, Mälardalens högskola, Västerås, 09:15 (engelsk)
Opponent
Veileder
Prosjekter
DPAC - Dependable Platforms for Autonomous systems and ControlTilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-11-19bibliografisk kontrollert
Delarbeid
1. Intelligent Data Processing using In-Orbit Advanced Algorithms on Heterogeneous System Architecture
Åpne denne publikasjonen i ny fane eller vindu >>Intelligent Data Processing using In-Orbit Advanced Algorithms on Heterogeneous System Architecture
2018 (engelsk)Inngår i: IEEE Aerospace Conference 2018 IEEEAC2018, 2018, s. 1-8Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In recent years, commercial exploitation of small satellites and CubeSats has rapidly increased. Time to market of processed customer data products is becoming an important differentiator between solution providers and satellite constellation operators. Timely and accurate data dissemination is the key to success in the commercial usage of small satellite constellations which is ultimately dependent on a high degree of autonomous fleet management and automated decision support. The traditional way for disseminating data is limited by on the communication capability of the satellite and the ground terminal availability. Even though cloud computing solutions on the ground offer high analytical performance, getting the data from the space infrastructure to the ground servers poses a bottleneck of data analysis and distribution. On the other hand, adopting advanced and intelligent algorithms onboard offers the ability of autonomy, tasking of operations, and fast customer generation of low latency conclusions, or even real-time communication with assets on the ground or other sensors in a multi-sensor configuration. In this paper, the advantages of intelligent onboard processing using advanced algorithms for Heterogeneous System Architecture (HSA) compliant onboard data processing systems are explored. The onboard data processing architecture is designed to handle a large amount of high-speed streaming data and provides hardware redundancy to be qualified for the space mission application domain. We conduct an experimental study to evaluate the performance analysis by using image recognition algorithms based on an open source intelligent machine library 'MIOpen' and an open standard 'OpenVX'. OpenVX is a cross-platform computer vision library.

Serie
IEEE Aerospace Conference Proceedings, ISSN 1095-323X
Emneord
Heterogeneous System Architecture (HSA)Intelligent Data ProcessingMIOpenOpenVXCubeSatCPU-GPUEnergy consumption
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-38628 (URN)10.1109/AERO.2018.8396536 (DOI)000474397401066 ()2-s2.0-85049840022 (Scopus ID)
Konferanse
IEEE Aerospace Conference 2018 IEEEAC2018, 03 Mar 2018, Big Sky, United States
Prosjekter
DPAC - Dependable Platforms for Autonomous systems and Control
Tilgjengelig fra: 2018-03-06 Laget: 2018-03-06 Sist oppdatert: 2021-10-01bibliografisk kontrollert
2. Static Allocation of Parallel Tasks to Improve Schedulability in CPU-GPU Heterogeneous Real-Time Systems
Åpne denne publikasjonen i ny fane eller vindu >>Static Allocation of Parallel Tasks to Improve Schedulability in CPU-GPU Heterogeneous Real-Time Systems
Vise andre…
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Autonomous driving is one of the main challenges of modern cars. Computer visions and intelligent on-board decision making are crucial in autonomous driving and require heterogeneous processors with high computing capability under low power consumption constraints. The progress of parallel computing using heterogeneous processing units is further supported by software frameworks like OpenCL, OpenMP, CUDA, and C++AMP. These frameworks allow the allocation of parallel computation on different compute resources. This, however, creates a difficulty in allocating the right computation segments to the right processing units in such a way that the complete system meets all its timing requirements. In this paper, we consider pre-runtime static allocations of parallel tasks to perform their execution either sequentially on CPU or in parallel using a GPU. This allows for improving any unbalanced use of GPU accelerators in a heterogeneous environment. By performing several heuristic algorithms, we show that the overuse of accelerators results in a bottle-neck of the entire system execution. The experimental results show that our allocation schemes that target a balanced use of GPU improve the system schedulability up to 90%.

Emneord
Parallel task, Parallel segment, Alternative execution, CPU-GPU, Heterogeneous processors, Real-time systems
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-45934 (URN)10.1109/IECON.2019.8926767 (DOI)000522050604083 ()2-s2.0-85084110257 (Scopus ID)9781728148786 (ISBN)
Konferanse
IEEE 45th Annual Conference of the Industrial Electronics Society, IECON2019
Prosjekter
DPAC - Dependable Platforms for Autonomous systems and Control
Tilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2021-10-01bibliografisk kontrollert
3. Using Docker in Process Level Isolation for Heterogeneous Computing on GPU Accelerated On-Board Data Processing Systems
Åpne denne publikasjonen i ny fane eller vindu >>Using Docker in Process Level Isolation for Heterogeneous Computing on GPU Accelerated On-Board Data Processing Systems
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The technological advancements make the intelligent on-board data processing possible on a small scale of satellites and deep-space exploration spacecraft such as CubeSats. However, the operation of satellites may fall into critical conditions when the on-board data processing interferes strongly to the basic operation functionalities of satellites. In order to avoid these issues, there exist techniques such as isolation, partitioning, and virtualization. In this paper, we present an experimental study of isolation of on-board payload data processing from the basic operations of satellites using Docker. Docker is a leading technology in process level isolation as well as continuous integration and continuous deployment (CI/CD) method. This study continues with the prior study on heterogeneous computing method, which improves the schedulability of the entire system up to 90%. Based on this heterogeneous computing method, the comparison study has been conducted between the non-isolated and isolated environments.

Emneord
Process level isolation, Docker, On-board data processing, Heterogeneous computing, cgroups, Linux
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-45939 (URN)
Konferanse
12th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany
Prosjekter
DPAC - Dependable Platforms for Autonomous systems and Control
Tilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-12-13bibliografisk kontrollert
4. A Trade-Off between Computing Power and Energy Consumption of On-Board Data Processing in GPU Accelerated Real-Time Systems
Åpne denne publikasjonen i ny fane eller vindu >>A Trade-Off between Computing Power and Energy Consumption of On-Board Data Processing in GPU Accelerated Real-Time Systems
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

On-board data processing is one of the prior on-orbit activities that it improves the performance capability of in-orbit space systems such as deep-space exploration, earth and atmospheric observation satellites, and CubeSat constellations. However, on-board data processing encounters with higher energy consumption compared to traditional space systems. Because traditional space systems employ simple processing units such as micro-controllers or a single-core processor as the systems require no heavy data processing on orbit. Moreover, solving the radiation hardness problem is crucial in space and adopting a new processing unit is challenging.

In this paper, we consider a GPU accelerated real-time system for on-board data processing. According to prior works, there exist radiation-tolerant GPU, and the computing capability of systems is improved by using heterogeneous computing method. We conduct experimental observations of power consumption and computing potential using this heterogeneous computing method in our GPU accelerated real-time system.The results show that the proper use of GPU increases computing potential with 10-140 times and consumes between 8-130 times less energy. Furthermore, the entire task system consumes 10-65% of less energy compared to the traditional use of processing units.

Emneord
Trade-off, Computing power, Energy consumption, on-board data processing, GPU acceleration, Real-time systems
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-45938 (URN)
Konferanse
The 32nd International Symposium on Space Technology and Science, Fukui, Japan
Prosjekter
DPAC - Dependable Platforms for Autonomous systems and Control
Tilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-11-22bibliografisk kontrollert

Open Access i DiVA

fulltext(668 kB)457 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 668 kBChecksum SHA-512
954c0c00e135e1eef0b6f42244c3465b086ba64a03897f97de995c699c7e462f4864c8e1932a4b5ec88f60681ea2896f2dd4b131f7fb310e9c7b930e87da8059
Type fulltextMimetype application/pdf

Person

Tsog, Nandinbaatar

Søk i DiVA

Av forfatter/redaktør
Tsog, Nandinbaatar
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 460 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 478 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf