mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Approach for Feedforward Model Predictive Control of Continuous Pulp Digesters
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. (SOFIA)ORCID-id: 0000-0003-3610-4680
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0001-8191-4901
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-8466-356X
2019 (engelsk)Inngår i: Processes, ISSN 2227 9717, Vol. 7, nr 9, s. 602-622Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Kappa number variability at the continuous digester outlet is a major concern for pulp and paper mills. It is evident that the aforementioned variability is strongly linked to the feedstock wood properties, particularly lignin content. Online measurement of lignin content utilizing near-infrared spectroscopy at the inlet of the digester is paving the way for tighter control of the blow-line Kappa number. In this paper, an innovative approach of feedforwarding the lignin content to a model predictive controller was investigated with the help of modeling and simulation studies. For this purpose, a physics-based modeling library for continuous pulp digesters was developed and validated. Finally, model predictive control approaches with and without feedforwarding the lignin measurement were evaluated against current industrial control and proportional-integral-derivative (PID) schemes. 

sted, utgiver, år, opplag, sider
2019. Vol. 7, nr 9, s. 602-622
Emneord [en]
pulp and paper; Kappa number; pulp digester; modeling; feedforward; predictive control
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-45217DOI: 10.3390/pr7090602ISI: 000489121800055Scopus ID: 2-s2.0-85072222936OAI: oai:DiVA.org:mdh-45217DiVA, id: diva2:1351405
Prosjekter
FUDIPOTilgjengelig fra: 2019-09-16 Laget: 2019-09-16 Sist oppdatert: 2019-10-24bibliografisk kontrollert
Inngår i avhandling
1. Towards a learning system for process and energy industry: Enabling optimal control, diagnostics and decision support
Åpne denne publikasjonen i ny fane eller vindu >>Towards a learning system for process and energy industry: Enabling optimal control, diagnostics and decision support
2019 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Driven by intense competition, increasing operational cost and strict environmental regulations, the modern process and energy industry needs to find the best possible way to adapt to maintain profitability. Optimization of control and operation of the industrial systems is essential to satisfy the contradicting objectives of improving product quality and process efficiency while reducing production cost and plant downtime. Use of optimization not only improves the control and monitoring of assets but also offers better coordination among different assets. Thus, it can lead to considerable savings in energy and resource consumption, and consequently offer a reduction in operational costs, by offering better control, diagnostics and decision support. This is one of the main driving forces behind developing new methods, tools and frameworks that can be integrated with the existing industrial automation platforms to benefit from optimal control and operation. The main focus of this dissertation is the use of different process models, soft sensors and optimization techniques to improve the control, diagnostics and decision support for the process and energy industry. A generic architecture for an optimal control, diagnostics and decision support system, referred to here as a learning system, is proposed. The research is centred around an investigation of different components of the proposed learning system. Two very different case studies within the energy-intensive pulp and paper industry and the promising micro-combined heat and power (CHP) industry are selected to demonstrate the learning system. One of the main challenges in this research arises from the marked differences between the case studies in terms of size, functions, quantity and structure of the existing automation systems. Typically, only a few pulp digesters are found in a Kraft pulping mill, but there may be hundreds of units in a micro-CHP fleet. The main argument behind the selection of these two case studies is that if the proposed learning system architecture can be adapted for these significantly different cases, it can be adapted for many other energy and process industrial cases. Within the scope of this thesis, mathematical modelling, model adaptation, model predictive control and diagnostics methods are studied for continuous pulp digesters, whereas mathematical modelling, model adaptation and diagnostics techniques are explored for the micro-CHP fleet.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2019. s. 178
Serie
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 282
Emneord
Learning system, Supervisory system, Pulp and paper, Micro gas turbine, Process modelling, Model-based control, Diagnostics, Decision support, Anomaly detection, Fault detection
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-45219 (URN)978-91-7485-438-1 (ISBN)
Presentation
2019-10-30, Pi, Mälardalen University, Västerås, 13:00 (engelsk)
Opponent
Veileder
Prosjekter
FUDIPO – FUture DIrections for Process industry Optimization
Forskningsfinansiär
EU, Horizon 2020, 723523
Tilgjengelig fra: 2019-09-16 Laget: 2019-09-16 Sist oppdatert: 2019-09-24bibliografisk kontrollert

Open Access i DiVA

fulltext(4279 kB)84 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4279 kBChecksum SHA-512
0ec3e6b6dacc51f8a1f15f9f14deb5628112307216ddb6a09b8529cdc87163d69e5ad40d47ff2cf293d077989a1360de00df2462f337bdd5d54923fd3637bd76
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rahman, MoksadurAvelin, AndersKyprianidis, Konstantinos

Søk i DiVA

Av forfatter/redaktør
Rahman, MoksadurAvelin, AndersKyprianidis, Konstantinos
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 84 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 121 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf