mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Empirical studies of multiobjective evolutionary algorithm in classifying neural oscillations to motor imagery
Mälardalens högskola, Akademin för innovation, design och teknik.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Brain-computer interfaces (BCIs) enables direct communication between a brain and a computer by recording and analyzing a subject’s neural activity in real-time. Research in BCI that classifies motor imagery (MI) activities are common in the literature due to its importance and applicability, e.g., stroke rehabilitation. Electroencephalography (EEG) is often used as the recording technique because its non-invasive, portable and have a relatively low cost. However, an EEG recording returns a vast number of features which must be reduced to decrease the computational time and complexity of the classifier. For this purpose, feature selection is often applied. In this study, a multiobjective evolutionary algorithm (MOEA) was used as feature selection in a high spatial and temporal feature set to (1) compare pairwise combinations of different objectives, (2) evaluate the relationship between the specific objective pair and their relation to model prediction accuracy, (3) compare multiobjective optimization versus a linear combination of the individual objectives. The results show that correlation feature selection (CFS) obtained the best performance between the evaluated objectives which were also more optimized than a linear combination of the individual objectives when classified with support vector machine (SVM).

sted, utgiver, år, opplag, sider
2019. , s. 53
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-44826OAI: oai:DiVA.org:mdh-44826DiVA, id: diva2:1336611
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-09-30 Laget: 2019-07-09 Sist oppdatert: 2019-09-30bibliografisk kontrollert

Open Access i DiVA

fulltext(4587 kB)30 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4587 kBChecksum SHA-512
cde23dd96d11ba50a6cac634693cbd2203dc9e7cb1a51bae43cb8795af789cf38bce46494c6977e07e148053a7761916712079f8bb3b142b7a248d7df3775c22
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Parkkila, Christoffer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 30 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 100 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf