mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finding the optimal location for public charging stations - A GIS-based MILP approach
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, China.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-6279-4446
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0003-4589-7045
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0001-8191-4901
Vise andre og tillknytning
2019 (engelsk)Inngår i: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, s. 6582-6588Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Electric Vehicles (EVs) have achieved a significant development because of the continuous technology revolution and policy supports in recent years, which leads to a larger demand of charging stations. Strategies about how to find the optimal location for charging facilities are urgently needed in order to further assist the development of EVs. This paper focus on the return of investments on EV charging stations and proposes a Mixed Integer Linear Programming (MILP) model based on Geographic Information System (GIS) to identify the optimal location of charging stations in cities. Traffic flow data and land-use classifications are used as important inputs, and six important constraints are included in the MILP model with the objective function of maximizing the total profits of new charging stations. The effectiveness of the proposed method is then demonstrated by implementing a case study in Västerås, Sweden.

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2019. Vol. 158, s. 6582-6588
Emneord [en]
EV, GIS, MILP, Optimal location, Public charging startions, Charging (batteries), Economics, Integer programming, Investments, Land use, Location, Electric Vehicles (EVs), Landuse classifications, Mixed integer linear programming model, Optimal locations, Return of investments, Technology revolution, Geographic information systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-43192DOI: 10.1016/j.egypro.2019.01.071ISI: 000471031706145Scopus ID: 2-s2.0-85063879695OAI: oai:DiVA.org:mdh-43192DiVA, id: diva2:1306903
Konferanse
10th International Conference on Applied Energy, ICAE 2018, 22 August 2018 through 25 August 2018
Tilgjengelig fra: 2019-04-25 Laget: 2019-04-25 Sist oppdatert: 2019-07-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Li, HailongWallin, FredrikAvelin, Anders

Søk i DiVA

Av forfatter/redaktør
Bian, CaiyunLi, HailongWallin, FredrikAvelin, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf