https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EFFECTIVENESS OF FAULT PREDICTION
Mälardalens högskola, Akademin för innovation, design och teknik.
2018 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The research community in software engineering is trying to find a way on how to achieve the goal of having a fault-free software. The industry that will use a near fault-free software will have it easier to lower the costs of maintenance and the versions of delivered software will be more qualitative. In this case, fault prediction can be used in order to achieve the above objectives. Fully applied fault prediction is not yet achieved on an industrial scale. There is some progress attained in the field during recent years. But knowing and understanding what available tools and algorithms regarding fault prediction can give is yet a goal to be achieved by the industry. In this thesis, two fault prediction algorithms and several metrics combinations are tested in an industrial and open source project. The main goal is to understand how much fault prediction is integrated and effective in a continuous delivery environment using real case scenarios. The manually collected data, from several versions and in different time periods were applied using two already present algorithms: Naive Bayes and Clustering. As a result, while the usage of this prediction depends on the company needs, further research in the field can be extended.

sted, utgiver, år, opplag, sider
2018. , s. 41
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-39671OAI: oai:DiVA.org:mdh-39671DiVA, id: diva2:1215451
Eksternt samarbeid
Accedo Broadband AB
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2018-06-11 Laget: 2018-06-08 Sist oppdatert: 2018-06-11bibliografisk kontrollert

Open Access i DiVA

fulltext(1061 kB)510 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1061 kBChecksum SHA-512
05cc588520d573273c0818376431bf3c2a6d8626f044943618bfbe7256a236a46a05fced9431e08b51054c91fce9f7b74b16c27ce016f14e2612916dd7803e8c
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 510 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2652 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf