mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Commutants in crossed products for algebras of piecewise constant functions on the real line
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. Makerere University. (MAM)
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0003-3931-7358
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0003-4554-6528
(engelsk)Manuskript (preprint) (Annet (populærvitenskap, debatt, mm))
sted, utgiver, år, opplag, sider
, s. 140
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-38997OAI: oai:DiVA.org:mdh-38997DiVA, id: diva2:1197755
Tilgjengelig fra: 2018-04-13 Laget: 2018-04-13 Sist oppdatert: 2018-09-30bibliografisk kontrollert
Inngår i avhandling
1. Dynamical Systems and Commutants in Non-Commutative Algebras
Åpne denne publikasjonen i ny fane eller vindu >>Dynamical Systems and Commutants in Non-Commutative Algebras
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis work is about commutativity which is a very important topic in Mathematics, Physics, Engineering and many other fields. In Mathematics, it is well known that matrix multiplication (or composition of linear operators on a finite dimensional vector space) is not always commutative. Commuting matrices or more general linear or non-linear operators play an essential role in Mathematics and its applications in Physics and Engineering. Many important relations in Mathematics, Physics and Engineering are represented by operators satisfying a number of commutation relations. Such commutation relations are key in areas such as representation theory, dynamical systems, spectral theory, quantum mechanics, wavelet analysis and many others.

In Chapter 2 of this thesis we treat commutativity of monomials of operators satisfying certain commutation relations in relation to one-dimensional dynamical systems. We derive explicit conditions for commutativity of the said monomials in relation to the existence of periodic points of certain onedimensional dynamical systems.

In Chapter 3, we treat the crossed product algebra for the algebra of piecewise constant functions on given set and describe the commutant of this algebra of functions which happens to be the maximal commutative subalgebra of the crossed product containing this algebra.

In Chapters 4 and 5, we give a characterization of the commutant for the algebra of piecewise constant functions on the real line, by comparing commutants for a non-decreasing sequence of algebras.

In Chapter 6 we give a description of the centralizer of the coefficient algebra in the Ore extension of the algebra of functions on a countable set with finite support.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2018. s. 140
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 258
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-39000 (URN)978-91-7485-381-0 (ISBN)
Disputas
2018-05-29, Kappa, Mälardalens högskola, Västerås, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Sida - Swedish International Development Cooperation Agency
Tilgjengelig fra: 2018-04-17 Laget: 2018-04-13 Sist oppdatert: 2018-05-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Tumwesigye, AlexRichter, JohanSilvestrov, Sergei
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf