mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive Collision Culling for Massive Simulations by a Parallel and Context-Aware Sweep and Prune Algorithm
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1550-0994
2018 (engelsk)Inngår i: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 4, nr 7, s. 2064-2077Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present an improved parallel Sweep and Prune algorithm that solves the dynamic box intersection problem in three dimensions. It scales up to very large datasets, which makes it suitable for broad phase collision detection in complex moving body simulations. Our algorithm gracefully handles high-density scenarios, including challenging clustering behavior, by using a double-axis sweeping approach and a cache-friendly succinct data structure. The algorithm is realized by three parallel stages for sorting, candidate generation, and object pairing. By the use of temporal coherence, our sorting stage runs with close to optimal load balancing. Furthermore, our approach is characterized by a work-division strategy that relies on adaptive partitioning, which leads to almost ideal scalability. In addition, for scenarios that involves intense clustering along several axes simultaneously, we propose an enhancement that increases the context-awareness of the algorithm. By exploiting information gathered along three orthogonal axes, an efficient choice of what range query to perform can be made per object during run-time. Experimental results show high performance for up to millions of objects on modern multi-core CPUs.

sted, utgiver, år, opplag, sider
2018. Vol. 4, nr 7, s. 2064-2077
Emneord [en]
Collision detection, Simulation, Parallel algorithms, Multicore processing, Multithreading, Tree data structures, Sorting
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-38938DOI: 10.1109/TVCG.2017.2709313ISI: 000433321900001Scopus ID: 2-s2.0-85047737311OAI: oai:DiVA.org:mdh-38938DiVA, id: diva2:1196684
Prosjekter
RALF3 - Software for Embedded High Performance ArchitecturesTilgjengelig fra: 2018-04-10 Laget: 2018-04-10 Sist oppdatert: 2018-06-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Larsson, Thomas B

Søk i DiVA

Av forfatter/redaktør
Capannini, GabrieleLarsson, Thomas B
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Visualization and Computer Graphics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf