mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Intelligent automated eeg artifacts handling using wavelet transform, independent component analysis and hierarchal clustering
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-7305-7169
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1212-7637
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
2017 (engelsk)Inngår i: Lect. Notes Inst. Comput. Sci. Soc. Informatics Telecommun. Eng., Springer Verlag , 2017, s. 144-148Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Billions of interconnected neurons are the building block of the human brain. For each brain activity these neurons produce electrical signals or brain waves that can be obtained by the Electroencephalogram (EEG) recording. Due to the characteristics of EEG signals, recorded signals often contaminate with undesired physiological signals other than the cerebral signal that is referred to as the EEG artifacts such as the ocular or the muscle artifacts. Therefore, identification and handling of artifacts in the EEG signals in a proper way is becoming an important research area. This paper presents an automated EEG artifacts handling approach, combining Wavelet transform, Independent Component Analysis (ICA), and Hierarchical clustering. The effectiveness of the proposed approach has been examined and observed on real EEG recording. According to the result, the proposed approach identified artifacts in the EEG signals effectively and after handling artifacts EEG signals showed acceptable considering visual inspection. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017.

sted, utgiver, år, opplag, sider
Springer Verlag , 2017. s. 144-148
Emneord [en]
Electroencephalogram (EEG), Hierarchical clustering, Muscle artifacts, Ocular artifacts, Brain, Health care, Independent component analysis, Mobile telecommunication systems, Muscle, Wavelet transforms, Electrical signal, Electro-encephalogram (EEG), Hier-archical clustering, Independent component analysis(ICA), Physiological signals, Recorded signals, Visual inspection, Electroencephalography
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-36063DOI: 10.1007/978-3-319-58877-3_19Scopus ID: 2-s2.0-85020877843ISBN: 9783319588766 (tryckt)OAI: oai:DiVA.org:mdh-36063DiVA, id: diva2:1120642
Konferanse
14 November 2016 through 16 November 2016
Tilgjengelig fra: 2017-07-06 Laget: 2017-07-06 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Barua, ShaibalBegum, ShahinaAhmed, Mobyen Uddin

Søk i DiVA

Av forfatter/redaktør
Barua, ShaibalBegum, ShahinaAhmed, Mobyen Uddin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf