mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows
Delft University of Technology, Netherlands.
Umeå University, Sweden.
University of Würzburg, Germany.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
Vise andre og tillknytning
2017 (engelsk)Inngår i: ICPE '17 Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, 2017, s. 75-86Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Simplifying the task of resource management and scheduling for customers, while still delivering complex Quality-of-Service (QoS), is key to cloud computing. Many autoscaling policies have been proposed in the past decade to decide on behalf of cloud customers when and how to provision resources to a cloud application utilizing cloud elasticity features. However, in prior work, when a new policy is proposed, it is seldom compared to the state-of-the-art, and is often compared only to static provisioning using a predefined QoS target. This reduces the ability of cloud customers and of cloud operators to choose and deploy an autoscaling policy. In our work, we conduct an experimentalperformance evaluation of autoscaling policies, using as application model workflows, a commonly used formalism for automating resource management for applications with well-defined yet complex structure. We present a detailed comparative study of general state-of-the-art autoscaling policies, along with two new workflow-specific policies. To understand the performance differences between the 7 policies, we conduct various forms of pairwise and group comparisons. We report both individual and aggregated metrics. Our results highlight the trade-offs between the suggested policies, and thus enable a better understanding of the current state-of-the-art.

sted, utgiver, år, opplag, sider
2017. s. 75-86
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-35688DOI: 10.1145/3030207.3030214Scopus ID: 2-s2.0-85019018662ISBN: 978-1-4503-4404-3 (tryckt)OAI: oai:DiVA.org:mdh-35688DiVA, id: diva2:1108306
Konferanse
ICPE '17 Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L'Aquila, Italy — April 22-26, 2017
Prosjekter
Future factories in the CloudTilgjengelig fra: 2017-06-12 Laget: 2017-06-12 Sist oppdatert: 2018-01-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Papadopoulos, Alessandro

Søk i DiVA

Av forfatter/redaktør
Papadopoulos, Alessandro
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 10 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf