mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Handling Constraints in Combinatorial Interaction Testing in the Presence of Multi Objective Particle Swarm and Multithreading
Istituto Dalle Molle di Studi sullIntelligenza Artificiale (IDSIA), Switzerland.
Istituto Dalle Molle di Studi sullIntelligenza Artificiale (IDSIA), Switzerland.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-0611-2655
University Malaysia Pahang, Gambang, Malaysia.
2017 (engelsk)Inngår i: Information and Software Technology, ISSN 0950-5849, E-ISSN 1873-6025, Vol. 86, nr 01, s. 20-36Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Combinatorial strategies have received a lot of attention lately as a result of their diverse applications in areas of research, particularly in software engineering. In its simple form, a combinatorial strategy can reduce several input parameters (configurations) of a system into a small set of these parameters based on their interaction (combination). However, in practice, the input configurations of software systems are subjected to constraints, especially highly configurable systems. To implement this feature within a strategy, many difficulties arise for construction. While there are many combinatorial interaction testing strategies nowadays, few of them support constraints. This paper presents a new strategy, called Octopus to construct a combinatorial interaction test suites with the presence of constraints. The design and algorithms are provided in the paper in detail. The strategy is inspired by the behaviour of octopus to search for the optimal solution using multi-threading mechanism. To overcome the multi judgement criteria for an optimal solution, the multi-objective particle swarm optimisation is used. The strategy and its algorithms are evaluated extensively using different benchmarks and comparisons. The evaluation results showed the efficiency of each algorithm in the strategy. The benchmarking results also showed that Octopus can generate test suites efficiently as compared to state-of-the-art strategies.

sted, utgiver, år, opplag, sider
2017. Vol. 86, nr 01, s. 20-36
Emneord [en]
Combinatorial Interaction Testing
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-35462DOI: 10.1016/j.infsof.2017.02.004Scopus ID: 2-s2.0-85015394020OAI: oai:DiVA.org:mdh-35462DiVA, id: diva2:1107572
Prosjekter
TOCSYC - Testing of Critical System Characteristics (KKS)TESTMINE - Mining Test Evolution for Improved Software Regression Test Selection (KKS)Tilgjengelig fra: 2017-06-09 Laget: 2017-06-09 Sist oppdatert: 2017-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Afzal, Wasif

Søk i DiVA

Av forfatter/redaktør
Afzal, Wasif
Av organisasjonen
I samme tidsskrift
Information and Software Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 162 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf