mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parallel Execution Optimization of GPU-aware Components in Embedded Systems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0001-9794-5497
2017 (engelsk)Inngår i: Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE2017, 2017, s. 135-141Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Many embedded systems process huge amount of data that comes from the interaction with the environment. The Graphics Processing Unit (GPU) is a modern embedded solution that tackles the efficiency challenge when processing a lot of data. GPU may improve even more the system performance by allowing multiple activities to be executed in a parallel manner. In a complex component-based application, the challenge is to decide the components to be parallel executed (onto GPU) when considering different system factors (e.g., GPU memory, GPU computation power). In the context of component-based CPU-GPU embedded systems, we propose an automatic method that provides parallel execution schemes of components with GPU capabilities. The introduced method considers hardware (e.g., available GPU memory) and software properties (e.g., required GPU memory) and communication pattern. Moreover, the method optimizes the overall system performance based on component execution times and system architecture (i.e., communication pattern). The validation uses an underwater robot example to describe the feasibility of our proposed method.

sted, utgiver, år, opplag, sider
2017. s. 135-141
Emneord [en]
CBD, component-based development, CPU-GPU, embedded systems, GPU-aware component, GPU component, parallel component execution, optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-35504DOI: 10.18293/SEKE2017-137Scopus ID: 2-s2.0-85029538940ISBN: 1891706411 OAI: oai:DiVA.org:mdh-35504DiVA, id: diva2:1107549
Konferanse
The 29th International Conference on Software Engineering & Knowledge Engineering SEKE 2017, 5-7 Jul 2017, Pittsburgh, United States
Prosjekter
RALF3 - Software for Embedded High Performance ArchitecturesTilgjengelig fra: 2017-06-09 Laget: 2017-06-09 Sist oppdatert: 2017-10-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Campeanu, Gabriel

Søk i DiVA

Av forfatter/redaktør
Campeanu, Gabriel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf