mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Rapid start-up of one-stage deammonification MBBR without addition of external inoculum
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Industriell ekonomi och organisation. Purac AB, Lund, Sweden.ORCID-id: 0000-0001-8869-6513
Purac AB, Lund, Sweden..
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0003-3311-9465
2016 (engelsk)Inngår i: WATER SCIENCE AND TECHNOLOGY, ISSN 0273-1223, Vol. 74, nr 11, s. 2541-2550Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In recent years, the anammox process has emerged as a useful method for robust and efficient nitrogen removal in wastewater treatment plants (WWTPs). This paper evaluates a one-stage deammonification (nitritation and anammox) start-up using carrier material without using anammox inoculum. A continuous laboratory-scale process was followed by full-scale operation with reject water from the digesters at Bekkelaget WWTP in Oslo, Norway. A third laboratory reactor was run in operational mode to verify the suitability of reject water from thermophilic digestion for the deammonification process. The two start-ups presented were run with indigenous bacterial populations, intermittent aeration and dilution, to favour growth of the anammox bacterial branches. Evaluation was done by chemical and fluorescence in situ hybridization analyses. The results demonstrate that anammox culture can be set up in a one-stage process only using indigenous anammox bacteria and that a full-scale start-up process can be completed in less than 120 days.

sted, utgiver, år, opplag, sider
2016. Vol. 74, nr 11, s. 2541-2550
Emneord [en]
anammox, deammonification, full scale, start-up, thermophilic digestion
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-34762DOI: 10.2166/wst.2016.406ISI: 000391264900004PubMedID: 27973359Scopus ID: 2-s2.0-85021857681OAI: oai:DiVA.org:mdh-34762DiVA, id: diva2:1074823
Tilgjengelig fra: 2017-02-16 Laget: 2017-02-16 Sist oppdatert: 2020-03-19bibliografisk kontrollert
Inngår i avhandling
1. Start-up and operational strategies for deammonification plants: - a study with one-stage moving bed biofilm reactors treating reject water
Åpne denne publikasjonen i ny fane eller vindu >>Start-up and operational strategies for deammonification plants: - a study with one-stage moving bed biofilm reactors treating reject water
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

To limit eutrophication, wastewater treatment plants use biological methods to convert degraded nitrogen to nitrogen gas. Deammonification, or partial nitritation in combination with anammox, has been shown to be an energy efficient process. This process is currently implemented in approximately 150 full-scale plants, and mainly on reject waters, the liquid fraction after dewatering of anaerobic digestion at municipal wastewater treatment plants. Implementation has been impeded by the slow growth of anammox bacteria, and 99% of the full-scale plants using the process have been using different methods to inoculate the process with anammox bacteria from elsewhere. Separate reject water installations, however, have shown high nitrous oxide emissions, which could increase the total carbon footprint.

The objective of this thesis was to develop and validate a start-up concept using the moving bed biofilm reactor (MBBR) technique applied to reject water, and to investigate how the operational strategies could be optimized to limit potential nitrous oxide emissions. The results show that a one-stage deammonification process based on the MBBR technology with indigenous anammox bacteria originating from the reject water can be set up within a applicable time frame (<100 days). This was validated in two laboratory reactors and in two full-scale studies. Reject water originating from both mesophilic and thermophilic digested sludge was used. Anammox growth and nitrogen reduction were detected with fluorescence in situ hybridization (FISH) and chemical analysis, respectively. The start-up time was 72 days in the laboratory and 120 days in full-scale. In laboratory scale, there was no improvement in start-up time when adding external anammox inoculum. Results from a screening study of seven reject waters and their content of anammox bacteria using qPCR indicated the presence of 104–105 genome units anammox per mL in reject water, which could be sufficient for starting up deammonification plants within an applicable time frame.

A final case study shows the potential of decreasing nitrous oxide emissions when a full-scale plant treating reject water was modified from nitrification/denitrification using a Sequencing Batch Reactor (SBR) to a deammonification process using the MBBR technique. The nitrous oxide emissions decreased from 10% to 0.1–0.7% of total nitrogen load with the change of operation mode. Further optimization by pH set point led to lower emission values. This effect is thought to be linked to the lower aeration ratio and increase in complete denitrification of dissolved nitrous oxide at higher pH.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2019
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 290
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-43258 (URN)978-91-7485-427-5 (ISBN)
Disputas
2019-06-10, Delta, Mälardalens högskola, Västerås, 13:15 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Vinnova, 2015-02422
Tilgjengelig fra: 2019-04-26 Laget: 2019-04-26 Sist oppdatert: 2019-05-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Nehrenheim, Emma

Søk i DiVA

Av forfatter/redaktør
Kanders, LindaNehrenheim, Emma
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf