mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Use of combined physical and statistical models for online applications in the pulp and paper industry
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. (MERO)ORCID-id: 0000-0001-8191-4901
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. (MERO)ORCID-id: 0000-0001-9230-1596
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik. (MERO)ORCID-id: 0000-0002-7233-6916
2009 (engelsk)Inngår i: Mathematical and Computer Modelling of Dynamical Systems, Vol. 15, nr 5, s. 425-434Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper discusses the accuracy of different types of models. Statistical models are based on process data and/or observations from lab measurements. This class of models are called black box models. Physical models use physical relationships to describe a process. These are called white box models or first principle models. The third group is sometimes called grey box models, being a combination of black box and white box models. Here we discuss two examples of model types. One is a statistical model where an artificial neural network is used to predict NOx in the exhaust gases from a boiler at Mlarenergi AB in Vsters, Sweden. The second example is a grey box model of a continuous digester. The digester model includes mass balances, energy balances, chemical reactions and physical geometrical constraints to simulate the real digester. We also propose that a more sophisticated model is not required to increase the accuracy of the predicted measurements.

sted, utgiver, år, opplag, sider
2009. Vol. 15, nr 5, s. 425-434
Emneord [en]
statistical models; physical models; pulp digester
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-7590DOI: 10.1080/13873950903375403ISI: 000274741800003Scopus ID: 2-s2.0-75349089565OAI: oai:DiVA.org:mdh-7590DiVA, id: diva2:278727
Tilgjengelig fra: 2009-11-29 Laget: 2009-11-29 Sist oppdatert: 2015-11-12bibliografisk kontrollert
Inngår i avhandling
1. Process Modeling of Combustion and Digesters for On-line Applications
Åpne denne publikasjonen i ny fane eller vindu >>Process Modeling of Combustion and Digesters for On-line Applications
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The use of biomass has increased in recent years due to the efforts to reduce the high emissions of greenhouse gases, primarily carbon dioxide from combustion of fossil fuels. At the same time industrial processes have become more complex because of increased production rates and profitability requirements. A higher degree of automation is needed when the processes are too complex to be handled manually. There is a need to find modeling strategies that can automatically handle the challenges that the conversion of biomass in an industrial process entails, such as operational changes, decreasing component and overall system efficiency, drifting sensors, etc. The objective of this thesis is to develop a methodology for on-line applications in industrial processes. Dynamic process models have been developed for continuous digesters and boilers. Process models have been evaluated for their use in continuous industrial process. Applications that have been studied are monitoring and diagnostics, advanced control and decision support. The process models are designed for on-line simulations. The results shows that the use of mathematical simulation models can improve the use of both process data and process understanding, to achieve improved diagnostics, advanced control and process optimization. In the two examples of industrial processes covered in this thesis, we can see that similar types of models can be used for completely different types of processes, such as pulp digesters and boilers. It also demonstrates the ability to combine soft sensors and hard sensors with physical models to take the information to a higher level of utilization.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University, 2015
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 194
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-29462 (URN)978-91-7485-244-8 (ISBN)
Disputas
2015-12-15, R2-025, Mälardalens högskola, Västerås, 08:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-11-12 Laget: 2015-11-11 Sist oppdatert: 2015-11-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://www.informaworld.com/smpp/content~content=a916837127~db=all~jumptype=rss

Personposter BETA

Avelin, AndersDotzauer, ErikDahlquist, Erik

Søk i DiVA

Av forfatter/redaktør
Avelin, AndersDotzauer, ErikDahlquist, Erik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 138 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf