mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
TAMER: Task Allocation in Multi-robot Systems Through an Entity-Relationship Model
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7852-4582
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-5224-8302
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-5832-5452
Show others and affiliations
2019 (English)In: PRIMA 2019: Principles and Practice of Multi-Agent Systems, 2019, p. 478-486Conference paper, Published paper (Refereed)
Abstract [en]

Multi-robot task allocation (MRTA) problems have been studied extensively in the past decades. As a result, several classifications have been proposed in the literature targeting different aspects of MRTA, with often a few commonalities between them. The goal of this paper is twofold. First, a comprehensive overview of early work on existing MRTA taxonomies is provided, focusing on their differences and similarities. Second, the MRTA problem is modelled using an Entity-Relationship (ER) conceptual formalism to provide a structured representation of the most relevant aspects, including the ones proposed within previous taxonomies. Such representation has the advantage of (i) representing MRTA problems in a systematic way, (ii) providing a formalism that can be easily transformed into a software infrastructure, and (iii) setting the baseline for the definition of knowledge bases, that can be used for automated reasoning in MRTA problems.

Place, publisher, year, edition, pages
2019. p. 478-486
National Category
Engineering and Technology Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-46316DOI: 10.1007/978-3-030-33792-6_32Scopus ID: 2-s2.0-85076411190ISBN: 978-3-030-33791-9 (print)OAI: oai:DiVA.org:mdh-46316DiVA, id: diva2:1377836
Conference
The 22nd International Conference on Principles and Practice of Multi-Agent Systems PRIMA'19, 28 Oct 2019, Turin, Italy
Projects
DPAC - Dependable Platforms for Autonomous systems and ControlUnicorn -Sustainable, peaceful and efficient robotic refuse handlingAggregate Farming in the CloudAvailable from: 2019-12-12 Created: 2019-12-12 Last updated: 2020-01-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Miloradović, BrankoFrasheri, MirgitaCuruklu, BaranEkström, MikaelPapadopoulos, Alessandro

Search in DiVA

By author/editor
Miloradović, BrankoFrasheri, MirgitaCuruklu, BaranEkström, MikaelPapadopoulos, Alessandro
By organisation
Embedded Systems
Engineering and TechnologyComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf