Open this publication in new window or tab >>2022 (English)Manuscript (preprint) (Other academic)
Abstract [en]
Automation is gaining importance in many domains, such as vehicle platoons, smart manufacturing, smart cities, and defense applications. However, the automated system must guarantee safe operation in any critical situation without humans in the loop as a fall-back solution. Additionally, autonomy can cause new types of hazards that need to be identified and analyzed.This paper studies cases from the transportation domain where autonomous vehicles are integrated into workflows in an open-surface mine for efficient material transportation. In this application many individual systems collaborate to form a system-of-system (SoS) to achieve the mission goals. The complexity of such an SoSand the dependencies between the constituent systems complicate the safety analysis. In an SoS there exist several causes leading to new emergent hazards, failure of identification of which could lead to catastrophes.
In this paper, we describe an SoS-centric process called 'SafeSoS', capable of identifying emergent hazards, through structuring the complex characteristics of an SoS on three hierarchical levels to enable better comprehension and analysis. We describe the process in detail and apply the process to an industrial transportation system from the earth-moving machinery domain.As part of the SafeSoS process, we utilize model-based formalisms to describe the characteristics of the application and the constituent systems, which form the input for analyzing the safety of the resulting SoS.We apply the safety analysis methods HiSoS, SMM, FTA, FMEA and Hazop to the industrial SoS with the purpose to identify emergent hazards. As a result of our work, we show how to identify and analyze emergent hazards by the help of our SafeSoS approach.
National Category
Computer Systems
Identifiers
urn:nbn:se:mdh:diva-56682 (URN)
Conference
IEEE ACCESS
2021-12-042021-12-042023-11-22Bibliographically approved