https://www.mdu.se/

mdu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 13) Visa alla publikationer
Ashyraliyev, M. & Ashyralyyeva, M. A. (2024). A stable difference scheme for the solution of a source identification problem for telegraph-parabolic equations. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 115(3), 46-54
Öppna denna publikation i ny flik eller fönster >>A stable difference scheme for the solution of a source identification problem for telegraph-parabolic equations
2024 (Engelska)Ingår i: BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, ISSN 2518-7929, Vol. 115, nr 3, s. 46-54Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the present paper, we construct a first order of accuracy difference scheme for the approximate solution of the inverse problem for telegraph-parabolic equations with an unknown spacewise dependent source term. The unique solvability of constructed difference scheme and the stability estimates for its solution were obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator in a Hilbert space.

Ort, förlag, år, upplaga, sidor
KARAGANDA STATE UNIV, 2024
Nyckelord
Difference scheme, source identification problem, telegraph-parabolic equation, stability estimates
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:mdh:diva-69426 (URN)10.31489/2024M3/46-54 (DOI)001330178000006 ()2-s2.0-85206336885 (Scopus ID)
Tillgänglig från: 2024-12-11 Skapad: 2024-12-11 Senast uppdaterad: 2024-12-20Bibliografiskt granskad
Arjmand, D. & Ashyraliyev, M. (2024). Efficient low rank approximations for parabolic control problems with unknown heat source. Journal of Computational and Applied Mathematics, 450, Article ID 115959.
Öppna denna publikation i ny flik eller fönster >>Efficient low rank approximations for parabolic control problems with unknown heat source
2024 (Engelska)Ingår i: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 450, artikel-id 115959Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An inverse problem of finding an unknown heat source for a class of linear parabolic equations is considered. Such problems can typically be converted to a direct problem with non-local conditions in time instead of an initial value problem. Standard ways of solving these non-local problems include direct temporal and spatial discretization as well as the shooting method, which may be computationally expensive in higher dimensions. In the present article, we present approaches based on low-rank approximation via Arnoldi algorithm to bypass the computational limitations of the mentioned classical methods. Regardless of the dimension of the problem, we prove that the Arnoldi approach can be effectively used to turn the inverse problem into a simple initial value problem at the cost of only computing one-dimensional matrix functions while still retaining the same accuracy as the classical approaches. Numerical results in dimensions d=1,2,3 are provided to validate the theoretical findings and to demonstrate the efficiency of the method for growing dimensions.

Ort, förlag, år, upplaga, sidor
Elsevier B.V., 2024
Nyckelord
Arnoldi algorithm, Control problems, Heat equation, Inverse problems, Low rank approximations, Parabolic PDEs, Approximation algorithms, Approximation theory, Initial value problems, Numerical methods, Partial differential equations, Direct problems, Heat sources, Initial-value problem, Linear parabolic equation, Parabolics
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:mdh:diva-66731 (URN)10.1016/j.cam.2024.115959 (DOI)001266419100001 ()2-s2.0-85193820326 (Scopus ID)
Tillgänglig från: 2024-05-29 Skapad: 2024-05-29 Senast uppdaterad: 2024-12-20Bibliografiskt granskad
Ashyraliyev, M. & Ashyralyyeva, M. (2024). Stable difference schemes for hyperbolic–parabolic equations with unknown parameter. Boletín de la Sociedad Matematica Mexicana, 30(1), Article ID 14.
Öppna denna publikation i ny flik eller fönster >>Stable difference schemes for hyperbolic–parabolic equations with unknown parameter
2024 (Engelska)Ingår i: Boletín de la Sociedad Matematica Mexicana, ISSN 1405-213X, Vol. 30, nr 1, artikel-id 14Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the present paper, we study the first and second order of accuracy difference schemes for the approximate solution of the inverse problem for hyperbolic–parabolic equations with unknown time-independent source term. The unique solvability of constructed difference schemes and the stability estimates for their solutions are obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator in a Hilbert space.

Ort, förlag, år, upplaga, sidor
Birkhauser, 2024
Nyckelord
Difference schemes, Hyperbolic–parabolic equation, Source identification problem, Stability estimates
Nationell ämneskategori
Matematisk analys
Identifikatorer
urn:nbn:se:mdh:diva-65362 (URN)10.1007/s40590-023-00585-1 (DOI)001137943400001 ()2-s2.0-85181692212 (Scopus ID)
Tillgänglig från: 2024-01-17 Skapad: 2024-01-17 Senast uppdaterad: 2024-12-20Bibliografiskt granskad
Ashyraliyev, M. & Ashyralyyeva, M. (2021). A Note on a Hyperbolic-Parabolic Problem with Involution. In: Springer Proceedings in Mathematics and Statistics, Volume 351: . Paper presented at 4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018 (pp. 213-221). , 351, Article ID 262329.
Öppna denna publikation i ny flik eller fönster >>A Note on a Hyperbolic-Parabolic Problem with Involution
2021 (Engelska)Ingår i: Springer Proceedings in Mathematics and Statistics, Volume 351, 2021, Vol. 351, s. 213-221, artikel-id 262329Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In the present paper, a boundary value problem for a one-dimensional hyperbolic-parabolic equation with involution and the Dirichlet condition is studied. The stability estimates for the solution of the hyperbolic-parabolic problem are established. The first order of accuracy stable difference scheme for the approximate solution of the problem under consideration is constructed. Numerical algorithm for implementation of this scheme is presented. Numerical results are provided for a simple test problem.

Nationell ämneskategori
Beräkningsmatematik Matematisk analys
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56223 (URN)10.1007/978-3-030-69292-6_16 (DOI)2-s2.0-85112221635 (Scopus ID)
Konferens
4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2021-10-28Bibliografiskt granskad
Ashyraliyev, M. & Ashyralyyeva, M. (2021). A note on the hyperbolic-parabolic identification problem with nonlocal conditions. Paper presented at 4th International Conference of Mathematical Sciences ICMS 2020, Istanbul, Turkey, June 17-21, 2020. AIP Conference Proceedings, 2334, Article ID 060001.
Öppna denna publikation i ny flik eller fönster >>A note on the hyperbolic-parabolic identification problem with nonlocal conditions
2021 (Engelska)Ingår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 2334, artikel-id 060001Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the present paper, we study a source identification problem for hyperbolic-parabolic equation with nonlocal conditions. The stability estimates for the solution of this source identification problem are established. Furthermore, we construct the second order of accuracy difference scheme for the approximate solution of the problem under consideration. The stability estimates for the solution of this difference scheme are presented.

Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56226 (URN)10.1063/5.0042271 (DOI)000664201400042 ()2-s2.0-85102297253 (Scopus ID)
Konferens
4th International Conference of Mathematical Sciences ICMS 2020, Istanbul, Turkey, June 17-21, 2020
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2021-10-28Bibliografiskt granskad
Ashyraliyev, M., Ashyralyev, A. & Zvyagin, V. (2021). A Space-Dependent Source Identification Problem for Hyperbolic-Parabolic Equations. In: Springer Proceedings in Mathematics and Statistics, Volume 351: . Paper presented at 4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018 (pp. 183-198). , 351
Öppna denna publikation i ny flik eller fönster >>A Space-Dependent Source Identification Problem for Hyperbolic-Parabolic Equations
2021 (Engelska)Ingår i: Springer Proceedings in Mathematics and Statistics, Volume 351, 2021, Vol. 351, s. 183-198Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In the present paper, a space-dependent source identification problem for the hyperbolic-parabolic equation with unknown parameter p $$ \left\{ \begin{array}{l} \displaystyle u''(t) + Au(t) = p + f(t), ~ 0<t<1, \\ \displaystyle u'(t) + Au(t) = p + g(t), ~ -1<t<0, \\ \displaystyle u(0^{+})=u(0^{-}), ~ u'(0^{+})=u'(0^{-}), \\ \displaystyle u(-1)=\varphi, ~ \int \limits _{0}^{1} u(z)dz=\psi \end{array} \right. $${u′′(t)+Au(t)=p+f(t),0<t<1,u′(t)+Au(t)=p+g(t),-1<t<0,u(0+)=u(0-),u′(0+)=u′(0-),u(-1)=φ,∫01u(z)dz=ψ in a Hilbert space H with self-adjoint positive definite operator A is investigated. The stability estimates for the solution of this identification problem are established. In applications, the stability estimates for the solutions of four space-dependent source identification hyperbolic-parabolic problems are obtained.

Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56225 (URN)10.1007/978-3-030-69292-6_14 (DOI)2-s2.0-85112190160 (Scopus ID)
Konferens
4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2021-10-28Bibliografiskt granskad
Ashyraliyev, M. (2021). On hyperbolic-parabolic problems with involution and neumann boundary condition. International Journal of Applied Mathematics, 34(2), 363-376
Öppna denna publikation i ny flik eller fönster >>On hyperbolic-parabolic problems with involution and neumann boundary condition
2021 (Engelska)Ingår i: International Journal of Applied Mathematics, ISSN 1311-1728, E-ISSN 1314-8060, Vol. 34, nr 2, s. 363-376Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We study a nonlocal boundary value problem and a space-wise dependent source identification problem for one-dimensional hyperbolic-parabolic equation with involution and Neumann boundary condition. The stability estimates for the solutions of these two problems are established. The first order of accuracy stable difference schemes are constructed for the approximate solutions of the problems under consideration. Numerical results for two test problems are provided.

Nyckelord
Computational Theory and Mathematics, General Mathematics
Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56216 (URN)10.12732/ijam.v34i2.12 (DOI)2-s2.0-85106586263 (Scopus ID)
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2023-05-17Bibliografiskt granskad
Ashyraliyev, M., Ashyralyev, A. & Zvyagin, V. (2021). On the source identification problem for hyperbolic-parabolic equation with nonlocal conditions. Paper presented at 5th International Conference on Analysis and Applied Mathematics ICAAM 2020, Mersin, Turkey, September 23-30, 2020. AIP Conference Proceedings, 2325, Article ID 020016.
Öppna denna publikation i ny flik eller fönster >>On the source identification problem for hyperbolic-parabolic equation with nonlocal conditions
2021 (Engelska)Ingår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 2325, artikel-id 020016Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the present paper, we establish the well-posedness of an identification problem for determining the unknown space-dependent source term in the hyperbolic-parabolic equation with nonlocal conditions. The difference scheme is constructed for the approximate solution of this source identification problem. The stability estimates for the solution of the difference scheme are presented.

Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56227 (URN)10.1063/5.0040269 (DOI)000653734600005 ()2-s2.0-85101657949 (Scopus ID)
Konferens
5th International Conference on Analysis and Applied Mathematics ICAAM 2020, Mersin, Turkey, September 23-30, 2020
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2021-10-28Bibliografiskt granskad
Ashyraliyev, M., Ashyralyyeva, M. & Ashyralyev, A. (2020). A note on the hyperbolic-parabolic identification problem with involution and Dirichlet boundary condition. Paper presented at 5th International Conference on Analysis and Applied Mathematics (ICAAM), Mersin, Turkey, September 23-30, 2020. Bulletin of the Karaganda University - Mathematics, 99(3), 120-129
Öppna denna publikation i ny flik eller fönster >>A note on the hyperbolic-parabolic identification problem with involution and Dirichlet boundary condition
2020 (Engelska)Ingår i: Bulletin of the Karaganda University - Mathematics, ISSN 2518-7929, Vol. 99, nr 3, s. 120-129Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the present paper, a source identification problem for hyperbolic-parabolic equation with involution and Dirichlet condition is studied. The stability estimates for the solution of the source identification hyperbolic-parabolic problem are established. The first order of accuracy stable difference scheme is constructed for the approximate solution of the problem under consideration. Numerical results are given for a simple test problem.

Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56221 (URN)10.31489/2020m3/120-129 (DOI)000580591000012 ()2-s2.0-85106600167 (Scopus ID)
Konferens
5th International Conference on Analysis and Applied Mathematics (ICAAM), Mersin, Turkey, September 23-30, 2020
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2023-05-10Bibliografiskt granskad
Ashyralyev, A., Ashyraliyev, M. & Ashyralyyeva, M. A. (2020). Identification Problem for Telegraph-Parabolic Equations. Computational Mathematics and Mathematical Physics, 60(8), 1294-1305
Öppna denna publikation i ny flik eller fönster >>Identification Problem for Telegraph-Parabolic Equations
2020 (Engelska)Ingår i: Computational Mathematics and Mathematical Physics, ISSN 0965-5425, E-ISSN 1555-6662, Vol. 60, nr 8, s. 1294-1305Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An identification problem for an equation of mixed telegraph-parabolic type with an unknown parameter depending on spatial variables is considered. The unique solvability of this problem is proved, and stability inequalities for its solution are established. As applications, stability estimates are obtained for the solutions of four identification problems for telegraph-parabolic equations with an unknown source depending on spatial variables.

Nyckelord
Computational Mathematics
Nationell ämneskategori
Matematisk analys Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56214 (URN)10.1134/s0965542520080035 (DOI)000575902400005 ()2-s2.0-85092332413 (Scopus ID)
Tillgänglig från: 2021-10-15 Skapad: 2021-10-15 Senast uppdaterad: 2021-10-28Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6708-3160

Sök vidare i DiVA

Visa alla publikationer