https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (4 of 4) Visa alla publikationer
Ongong'a, E. (2021). Classification and Construction of Low-dimensional Hom-Lie Algebras and Ternary Hom-Nambu-Lie Algebras. (Doctoral dissertation). Västerås: Mälardalen University
Öppna denna publikation i ny flik eller fönster >>Classification and Construction of Low-dimensional Hom-Lie Algebras and Ternary Hom-Nambu-Lie Algebras
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis concerns the construction and classification of low-dimensional Hom-Lie algebras and ternary Hom-Nambu-Lie algebras. A classification of 3-dimensional Hom-Lie algebras is given for nilpotent linear endomorphism, as a twisting map, and a construction of 4-dimensional Hom-Lie algebras is done. Results on the dimension of the space of endomorphisms that turn a skew-symmetric algebra into a Hom-Lie algebra are also given in this thesis. A class of 3-dimensional ternary Hom-Nambu-Lie algebras with nilpotent linear maps are constructed and classified.

In Chapter 2, we derive conditions for an arbitrary n-dimensional algebra to be a Hom-Lie algebra, in the form of a system of polynomial equations, containing both structure constants of the skew-symmetric bilinear map and constants describing the twisting linear endomorphism. When the algebra is 3 or 4-dimensional, we describe the realisation of Hom-Lie algebras when the dimension of the space of such linear endomorphisms, as vector spaces, is minimum. For the 3-dimensional case we give all possible families of 3-dimensional Hom-Lie algebras arising from a general nilpotent linear endomorphism constructed up to isomorphism together with non-isomorphic canonical representatives for all the families in that case. We further give a list of 4-dimensional Hom-Lie algebras arising from general nilpotent linear endomorphisms.

In Chapter 3, we describe the dimension of the space of possible linear endomorphisms that turn skew-symmetric three-dimensional algebras into Hom-Lie algebras. We find a correspondence between the rank of a matrix containing the structure constants of the bilinear product and the dimension of the space of Hom-Lie structures. Examples from classical complex Lie algebras are given to demonstrate this correspondence.

In Chapter 4, the space of possible Hom-Lie structures on complex 4-dimensional Lie algebras is considered in terms of linear maps that turn the Lie algebras into Hom-Lie algebras. Hom-Lie structures and automorphism groups on the representatives of isomorphism classes of complex 4-dimensional Lie algebras are described.

In Chapter 5, we construct ternary Hom-Nambu-Lie algebras from Hom-Lie algebras through a process known as induction. The induced algebras are constructed from a class of Hom-Lie algebra with nilpotent linear map. The families of ternary Hom-Nambu-Lie arising in this way of construction are classified for a given class of nilpotent linear maps. In addition, some results giving conditions on when morphisms of Hom-Lie algebras can still remain morphisms for the induced ternary Hom-Nambu-Lie algebras are given. 

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2021
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 345
Nationell ämneskategori
Naturvetenskap
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-55920 (URN)978-91-7485-523-4 (ISBN)
Disputation
2021-10-29, Delta & zoom, Mälardalens högskola, Västerås, 15:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-09-17 Skapad: 2021-09-16 Senast uppdaterad: 2021-10-08Bibliografiskt granskad
Ongong'a, E., Richter, J. & Silvestrov, S. (2020). Classification of low-dimensional hom-Lie algebras. In: Sergei Silvestrov, Anatoliy Malyarenko, Milica Rancic (Ed.), Algebraic Structures and Applications: . Paper presented at International Conference on Stochastic Processes and Algebraic Structures, SPAS 2017, 4 October 2017 through 6 October 2017 (pp. 223-256). Paper presented at International Conference on Stochastic Processes and Algebraic Structures, SPAS 2017, 4 October 2017 through 6 October 2017. Springer Nature, 317
Öppna denna publikation i ny flik eller fönster >>Classification of low-dimensional hom-Lie algebras
2020 (Engelska)Ingår i: Algebraic Structures and Applications / [ed] Sergei Silvestrov, Anatoliy Malyarenko, Milica Rancic, Springer Nature, 2020, Vol. 317, s. 223-256Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

We derive conditions for an arbitrary n-dimensional algebra to be a Hom-Lie algebra, in the form of a system of polynomial equations, containing both structure constants of the skew-symmetric bilinear map and constants describing the twisting linear endomorphism. The equations are linear in the constants representing the endomorphism and non-linear in the structure constants. When the algebra is 3 or 4-dimensional we describe the space of possible endomorphisms with minimum dimension. For the 3-dimensional case we give families of 3-dimensional Hom-Lie algebras arising from a general nilpotent linear endomorphism constructed upto isomorphism together with non-isomorphic canonical representatives for all the families in that case. We further give a list of 4-dimensional Hom-Lie algebras arising from a general nilpotent linear endomorphisms.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2020
Serie
Springer Proceedings in Mathematics and Statistics, ISSN 2194-1009, E-ISSN 2194-1017 ; 317
Nyckelord
Hom-Lie algebras, classification, isomorphism, structure constants, nilpotent linear endomorphisms
Nationell ämneskategori
Algebra och logik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-49441 (URN)10.1007/978-3-030-41850-2_9 (DOI)2-s2.0-85087530968 (Scopus ID)9783030418496 (ISBN)
Konferens
International Conference on Stochastic Processes and Algebraic Structures, SPAS 2017, 4 October 2017 through 6 October 2017
Forskningsfinansiär
Sida - Styrelsen för internationellt utvecklingssamarbete
Tillgänglig från: 2020-07-15 Skapad: 2020-07-15 Senast uppdaterad: 2021-09-30Bibliografiskt granskad
Ongong'a, E., Richter, J. & Silvestrov, S. (2019). Classification of 3-dimensional Hom-Lie algebras. In: Journal of Physics Conference Series: . Paper presented at 32nd International Colloquium on Group Theoretical Methods in Physics, ICGTMP 2018, 9-13 July 2018, Prague, Czech Republic. Institute of Physics Publishing, 1194(1), Article ID 012084.
Öppna denna publikation i ny flik eller fönster >>Classification of 3-dimensional Hom-Lie algebras
2019 (Engelska)Ingår i: Journal of Physics Conference Series, Institute of Physics Publishing , 2019, Vol. 1194, nr 1, artikel-id 012084Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

For any n-dimensional Hom-Lie algebra, a system of polynomial equations is obtained from the Hom-Jacobi identity, containing both structure constants of the skew-symmetric bilinear map and constants describing the twisting linear endomorphism. The equations are linear in the constants representing the endomorphism and non-linear in the structure constants. The space of possible endomorphisms has minimum dimension 6, and we describe the possible endomorphisms in that case. We further give families of 3-dimensional Hom-Lie algebras arising from a general nilpotent linear endomorphism constructed upto isomorphism.

Ort, förlag, år, upplaga, sidor
Institute of Physics Publishing, 2019
Nyckelord
Polynomials, 3-dimensional, Bilinear map, Lie Algebra, Nilpotent, Non linear, Skew-symmetric, Structure constants, System of polynomial equations
Nationell ämneskategori
Algebra och logik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-43500 (URN)10.1088/1742-6596/1194/1/012084 (DOI)000537619600083 ()2-s2.0-85065590036 (Scopus ID)
Konferens
32nd International Colloquium on Group Theoretical Methods in Physics, ICGTMP 2018, 9-13 July 2018, Prague, Czech Republic
Forskningsfinansiär
Sida - Styrelsen för internationellt utvecklingssamarbete
Anmärkning

Conference code: 147785; Export Date: 24 May 2019; Conference Paper

Tillgänglig från: 2019-06-11 Skapad: 2019-06-11 Senast uppdaterad: 2022-09-05Bibliografiskt granskad
Ongong'A, E., Kitouni, A., Ongaro, J. & Silvestrov, S.Induced Ternary Hom-Nambu-Lie algebras.
Öppna denna publikation i ny flik eller fönster >>Induced Ternary Hom-Nambu-Lie algebras
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

This study is concerned with induced ternary Hom-Lie-Nambu Lie algebras from Hom-Lie algebras and their classification. The induced algebras are constructed from a class of Hom-Lie algebra with nilpotent linear map. The families of ternary Hom-Nambu-Lie arising in this way of construction are classified for a given  class of  nilpotent linear maps. In addition, some results giving conditions on when morphisms of Hom-Lie algebras can still remain morphisms for the induced ternary Hom-Nambu-Lie algebras are given.

Nationell ämneskategori
Algebra och logik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-55882 (URN)
Tillgänglig från: 2021-09-15 Skapad: 2021-09-15 Senast uppdaterad: 2022-01-04Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3468-5282

Sök vidare i DiVA

Visa alla publikationer