https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 13) Visa alla publikasjoner
Ashyraliyev, M. & Ashyralyyeva, M. A. (2024). A stable difference scheme for the solution of a source identification problem for telegraph-parabolic equations. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 115(3), 46-54
Åpne denne publikasjonen i ny fane eller vindu >>A stable difference scheme for the solution of a source identification problem for telegraph-parabolic equations
2024 (engelsk)Inngår i: BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, ISSN 2518-7929, Vol. 115, nr 3, s. 46-54Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present paper, we construct a first order of accuracy difference scheme for the approximate solution of the inverse problem for telegraph-parabolic equations with an unknown spacewise dependent source term. The unique solvability of constructed difference scheme and the stability estimates for its solution were obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator in a Hilbert space.

sted, utgiver, år, opplag, sider
KARAGANDA STATE UNIV, 2024
Emneord
Difference scheme, source identification problem, telegraph-parabolic equation, stability estimates
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-69426 (URN)10.31489/2024M3/46-54 (DOI)001330178000006 ()2-s2.0-85206336885 (Scopus ID)
Tilgjengelig fra: 2024-12-11 Laget: 2024-12-11 Sist oppdatert: 2024-12-20bibliografisk kontrollert
Arjmand, D. & Ashyraliyev, M. (2024). Efficient low rank approximations for parabolic control problems with unknown heat source. Journal of Computational and Applied Mathematics, 450, Article ID 115959.
Åpne denne publikasjonen i ny fane eller vindu >>Efficient low rank approximations for parabolic control problems with unknown heat source
2024 (engelsk)Inngår i: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 450, artikkel-id 115959Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An inverse problem of finding an unknown heat source for a class of linear parabolic equations is considered. Such problems can typically be converted to a direct problem with non-local conditions in time instead of an initial value problem. Standard ways of solving these non-local problems include direct temporal and spatial discretization as well as the shooting method, which may be computationally expensive in higher dimensions. In the present article, we present approaches based on low-rank approximation via Arnoldi algorithm to bypass the computational limitations of the mentioned classical methods. Regardless of the dimension of the problem, we prove that the Arnoldi approach can be effectively used to turn the inverse problem into a simple initial value problem at the cost of only computing one-dimensional matrix functions while still retaining the same accuracy as the classical approaches. Numerical results in dimensions d=1,2,3 are provided to validate the theoretical findings and to demonstrate the efficiency of the method for growing dimensions.

sted, utgiver, år, opplag, sider
Elsevier B.V., 2024
Emneord
Arnoldi algorithm, Control problems, Heat equation, Inverse problems, Low rank approximations, Parabolic PDEs, Approximation algorithms, Approximation theory, Initial value problems, Numerical methods, Partial differential equations, Direct problems, Heat sources, Initial-value problem, Linear parabolic equation, Parabolics
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-66731 (URN)10.1016/j.cam.2024.115959 (DOI)001266419100001 ()2-s2.0-85193820326 (Scopus ID)
Tilgjengelig fra: 2024-05-29 Laget: 2024-05-29 Sist oppdatert: 2024-12-20bibliografisk kontrollert
Ashyraliyev, M. & Ashyralyyeva, M. (2024). Stable difference schemes for hyperbolic–parabolic equations with unknown parameter. Boletín de la Sociedad Matematica Mexicana, 30(1), Article ID 14.
Åpne denne publikasjonen i ny fane eller vindu >>Stable difference schemes for hyperbolic–parabolic equations with unknown parameter
2024 (engelsk)Inngår i: Boletín de la Sociedad Matematica Mexicana, ISSN 1405-213X, Vol. 30, nr 1, artikkel-id 14Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present paper, we study the first and second order of accuracy difference schemes for the approximate solution of the inverse problem for hyperbolic–parabolic equations with unknown time-independent source term. The unique solvability of constructed difference schemes and the stability estimates for their solutions are obtained. The proofs are based on the spectral representation of the self-adjoint positive definite operator in a Hilbert space.

sted, utgiver, år, opplag, sider
Birkhauser, 2024
Emneord
Difference schemes, Hyperbolic–parabolic equation, Source identification problem, Stability estimates
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-65362 (URN)10.1007/s40590-023-00585-1 (DOI)001137943400001 ()2-s2.0-85181692212 (Scopus ID)
Tilgjengelig fra: 2024-01-17 Laget: 2024-01-17 Sist oppdatert: 2024-12-20bibliografisk kontrollert
Ashyraliyev, M. & Ashyralyyeva, M. (2021). A Note on a Hyperbolic-Parabolic Problem with Involution. In: Springer Proceedings in Mathematics and Statistics, Volume 351: . Paper presented at 4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018 (pp. 213-221). , 351, Article ID 262329.
Åpne denne publikasjonen i ny fane eller vindu >>A Note on a Hyperbolic-Parabolic Problem with Involution
2021 (engelsk)Inngår i: Springer Proceedings in Mathematics and Statistics, Volume 351, 2021, Vol. 351, s. 213-221, artikkel-id 262329Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the present paper, a boundary value problem for a one-dimensional hyperbolic-parabolic equation with involution and the Dirichlet condition is studied. The stability estimates for the solution of the hyperbolic-parabolic problem are established. The first order of accuracy stable difference scheme for the approximate solution of the problem under consideration is constructed. Numerical algorithm for implementation of this scheme is presented. Numerical results are provided for a simple test problem.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56223 (URN)10.1007/978-3-030-69292-6_16 (DOI)2-s2.0-85112221635 (Scopus ID)
Konferanse
4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2021-10-28bibliografisk kontrollert
Ashyraliyev, M. & Ashyralyyeva, M. (2021). A note on the hyperbolic-parabolic identification problem with nonlocal conditions. Paper presented at 4th International Conference of Mathematical Sciences ICMS 2020, Istanbul, Turkey, June 17-21, 2020. AIP Conference Proceedings, 2334, Article ID 060001.
Åpne denne publikasjonen i ny fane eller vindu >>A note on the hyperbolic-parabolic identification problem with nonlocal conditions
2021 (engelsk)Inngår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 2334, artikkel-id 060001Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present paper, we study a source identification problem for hyperbolic-parabolic equation with nonlocal conditions. The stability estimates for the solution of this source identification problem are established. Furthermore, we construct the second order of accuracy difference scheme for the approximate solution of the problem under consideration. The stability estimates for the solution of this difference scheme are presented.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56226 (URN)10.1063/5.0042271 (DOI)000664201400042 ()2-s2.0-85102297253 (Scopus ID)
Konferanse
4th International Conference of Mathematical Sciences ICMS 2020, Istanbul, Turkey, June 17-21, 2020
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2021-10-28bibliografisk kontrollert
Ashyraliyev, M., Ashyralyev, A. & Zvyagin, V. (2021). A Space-Dependent Source Identification Problem for Hyperbolic-Parabolic Equations. In: Springer Proceedings in Mathematics and Statistics, Volume 351: . Paper presented at 4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018 (pp. 183-198). , 351
Åpne denne publikasjonen i ny fane eller vindu >>A Space-Dependent Source Identification Problem for Hyperbolic-Parabolic Equations
2021 (engelsk)Inngår i: Springer Proceedings in Mathematics and Statistics, Volume 351, 2021, Vol. 351, s. 183-198Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the present paper, a space-dependent source identification problem for the hyperbolic-parabolic equation with unknown parameter p $$ \left\{ \begin{array}{l} \displaystyle u''(t) + Au(t) = p + f(t), ~ 0<t<1, \\ \displaystyle u'(t) + Au(t) = p + g(t), ~ -1<t<0, \\ \displaystyle u(0^{+})=u(0^{-}), ~ u'(0^{+})=u'(0^{-}), \\ \displaystyle u(-1)=\varphi, ~ \int \limits _{0}^{1} u(z)dz=\psi \end{array} \right. $${u′′(t)+Au(t)=p+f(t),0<t<1,u′(t)+Au(t)=p+g(t),-1<t<0,u(0+)=u(0-),u′(0+)=u′(0-),u(-1)=φ,∫01u(z)dz=ψ in a Hilbert space H with self-adjoint positive definite operator A is investigated. The stability estimates for the solution of this identification problem are established. In applications, the stability estimates for the solutions of four space-dependent source identification hyperbolic-parabolic problems are obtained.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56225 (URN)10.1007/978-3-030-69292-6_14 (DOI)2-s2.0-85112190160 (Scopus ID)
Konferanse
4th International Conference on Analysis and Applied Mathematics ICAAM 2018, Mersin, Turkey, September 6-9, 2018
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2021-10-28bibliografisk kontrollert
Ashyraliyev, M. (2021). On hyperbolic-parabolic problems with involution and neumann boundary condition. International Journal of Applied Mathematics, 34(2), 363-376
Åpne denne publikasjonen i ny fane eller vindu >>On hyperbolic-parabolic problems with involution and neumann boundary condition
2021 (engelsk)Inngår i: International Journal of Applied Mathematics, ISSN 1311-1728, E-ISSN 1314-8060, Vol. 34, nr 2, s. 363-376Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study a nonlocal boundary value problem and a space-wise dependent source identification problem for one-dimensional hyperbolic-parabolic equation with involution and Neumann boundary condition. The stability estimates for the solutions of these two problems are established. The first order of accuracy stable difference schemes are constructed for the approximate solutions of the problems under consideration. Numerical results for two test problems are provided.

Emneord
Computational Theory and Mathematics, General Mathematics
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56216 (URN)10.12732/ijam.v34i2.12 (DOI)2-s2.0-85106586263 (Scopus ID)
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2023-05-17bibliografisk kontrollert
Ashyraliyev, M., Ashyralyev, A. & Zvyagin, V. (2021). On the source identification problem for hyperbolic-parabolic equation with nonlocal conditions. Paper presented at 5th International Conference on Analysis and Applied Mathematics ICAAM 2020, Mersin, Turkey, September 23-30, 2020. AIP Conference Proceedings, 2325, Article ID 020016.
Åpne denne publikasjonen i ny fane eller vindu >>On the source identification problem for hyperbolic-parabolic equation with nonlocal conditions
2021 (engelsk)Inngår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 2325, artikkel-id 020016Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present paper, we establish the well-posedness of an identification problem for determining the unknown space-dependent source term in the hyperbolic-parabolic equation with nonlocal conditions. The difference scheme is constructed for the approximate solution of this source identification problem. The stability estimates for the solution of the difference scheme are presented.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56227 (URN)10.1063/5.0040269 (DOI)000653734600005 ()2-s2.0-85101657949 (Scopus ID)
Konferanse
5th International Conference on Analysis and Applied Mathematics ICAAM 2020, Mersin, Turkey, September 23-30, 2020
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2021-10-28bibliografisk kontrollert
Ashyraliyev, M., Ashyralyyeva, M. & Ashyralyev, A. (2020). A note on the hyperbolic-parabolic identification problem with involution and Dirichlet boundary condition. Paper presented at 5th International Conference on Analysis and Applied Mathematics (ICAAM), Mersin, Turkey, September 23-30, 2020. Bulletin of the Karaganda University - Mathematics, 99(3), 120-129
Åpne denne publikasjonen i ny fane eller vindu >>A note on the hyperbolic-parabolic identification problem with involution and Dirichlet boundary condition
2020 (engelsk)Inngår i: Bulletin of the Karaganda University - Mathematics, ISSN 2518-7929, Vol. 99, nr 3, s. 120-129Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present paper, a source identification problem for hyperbolic-parabolic equation with involution and Dirichlet condition is studied. The stability estimates for the solution of the source identification hyperbolic-parabolic problem are established. The first order of accuracy stable difference scheme is constructed for the approximate solution of the problem under consideration. Numerical results are given for a simple test problem.

HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56221 (URN)10.31489/2020m3/120-129 (DOI)000580591000012 ()2-s2.0-85106600167 (Scopus ID)
Konferanse
5th International Conference on Analysis and Applied Mathematics (ICAAM), Mersin, Turkey, September 23-30, 2020
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2023-05-10bibliografisk kontrollert
Ashyralyev, A., Ashyraliyev, M. & Ashyralyyeva, M. A. (2020). Identification Problem for Telegraph-Parabolic Equations. Computational Mathematics and Mathematical Physics, 60(8), 1294-1305
Åpne denne publikasjonen i ny fane eller vindu >>Identification Problem for Telegraph-Parabolic Equations
2020 (engelsk)Inngår i: Computational Mathematics and Mathematical Physics, ISSN 0965-5425, E-ISSN 1555-6662, Vol. 60, nr 8, s. 1294-1305Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An identification problem for an equation of mixed telegraph-parabolic type with an unknown parameter depending on spatial variables is considered. The unique solvability of this problem is proved, and stability inequalities for its solution are established. As applications, stability estimates are obtained for the solutions of four identification problems for telegraph-parabolic equations with an unknown source depending on spatial variables.

Emneord
Computational Mathematics
HSV kategori
Forskningsprogram
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-56214 (URN)10.1134/s0965542520080035 (DOI)000575902400005 ()2-s2.0-85092332413 (Scopus ID)
Tilgjengelig fra: 2021-10-15 Laget: 2021-10-15 Sist oppdatert: 2021-10-28bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6708-3160