vente ... |

Link to record
http://mdh.diva-portal.org/smash/person.jsf?pid=authority-person:78616 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt142_recordDirectLink",{id:"formSmash:upper:j_idt142:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt142_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt142_j_idt144",{id:"formSmash:upper:j_idt142:j_idt144",widgetVar:"widget_formSmash_upper_j_idt142_j_idt144",target:"formSmash:upper:j_idt142:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Wang, Siyang

Åpne denne publikasjonen i ny fane eller vindu >>Bridging physics-based and equivalent circuit models for lithium-ion batteries### Geng, Zeyang

### Wang, Siyang

### Lacey, Matthew J.

### Brandell, Daniel

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_0_j_idt208_some",{id:"formSmash:j_idt204:0:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_some",multiple:true}); ### Thiringer, Torbjorn

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_0_j_idt208_otherAuthors",{id:"formSmash:j_idt204:0:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_otherAuthors",multiple:true}); Vise andre…PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt204_0_j_idt208_j_idt222",{id:"formSmash:j_idt204:0:j_idt208:j_idt222",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_j_idt222",onLabel:"Skjul andre\u2026",offLabel:"Vise andre\u2026"}); 2021 (engelsk)Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 372, artikkel-id 137829Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

PERGAMON-ELSEVIER SCIENCE LTD, 2021
##### Emneord

Lithium-ion battery, Pseudo-two-dimensional model, Transmission line model, Overpotential
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-53612 (URN)10.1016/j.electacta.2021.137829 (DOI)000619728100010 ()2-s2.0-85100403454 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_0_j_idt208_j_idt379",{id:"formSmash:j_idt204:0:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_0_j_idt208_j_idt385",{id:"formSmash:j_idt204:0:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_0_j_idt208_j_idt391",{id:"formSmash:j_idt204:0:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_0_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2021-03-11 Laget: 2021-03-11 Sist oppdatert: 2021-03-26bibliografisk kontrollert

Chalmers Univ Technol, Div Elect Power Engn, Dept Elect Engn, S-41296 Gothenburg, Sweden..

Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden.;Malardalen Univ, UKK, Div Math & Phys, S-72123 Vasteras, Sweden..

Scania CV AB, S-15187 Sodertalje, Sweden..

Uppsala Univ, Angstrom Lab, Dept Chem, Box 538, S-75121 Uppsala, Sweden..

Chalmers Univ Technol, Div Elect Power Engn, Dept Elect Engn, S-41296 Gothenburg, Sweden..

In this article, a novel implementation of a widely used pseudo-two-dimensional (P2D) model for lithium-ion battery simulation is presented with a transmission line circuit structure. This implementation represents an interplay between physical and equivalent circuit models. The discharge processes of an LiNi0.33Mn0.33Co0.33O2-graphite lithium-ion battery under different currents are simulated, and it is seen the results from the circuit model agree well with the results obtained from a physical simulation carried out in COMSOL Multiphysics, including both terminal voltage and concentration distributions. Finally we demonstrated how the circuit model can contribute to the understanding of the cell electrochemistry, exemplified by an analysis of the overpotential contributions by various processes.

Åpne denne publikasjonen i ny fane eller vindu >>Elastic wave propagation in curvilinear coordinates with mesh refinement interfaces by a fourth order finite difference method### ZHANG, L.

### Wang, Siyang

### ANDERS PETERSSON, N.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_1_j_idt208_some",{id:"formSmash:j_idt204:1:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_1_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_1_j_idt208_otherAuthors",{id:"formSmash:j_idt204:1:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_1_j_idt208_otherAuthors",multiple:true}); 2021 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 43, nr 2, s. A1472-A1496Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Society for Industrial and Applied Mathematics Publications, 2021
##### Emneord

Elastic wave equations, Finite difference methods, Nonconforming mesh refinement, Summationby- parts, Three space dimensions, Computational efficiency, Elastic waves, Energy conservation, Mesh generation, Wave propagation, Curvilinear coordinate, Finite difference operators, Fourth order convergence, Fourth-order finite difference method, Fully discrete scheme, Governing equations, Numerical experiments, Predictor corrector, Finite difference method
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-54279 (URN)10.1137/20M1339702 (DOI)000646026400036 ()2-s2.0-85105889394 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_1_j_idt208_j_idt379",{id:"formSmash:j_idt204:1:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_1_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_1_j_idt208_j_idt385",{id:"formSmash:j_idt204:1:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_1_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_1_j_idt208_j_idt391",{id:"formSmash:j_idt204:1:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_1_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2021-05-27 Laget: 2021-05-27 Sist oppdatert: 2021-06-03bibliografisk kontrollert

Department of Applied Physics and Applied Mathematics, Columbia University, New York, United States.

Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, United States.

We develop a fourth order accurate finite difference method for the three dimensional elastic wave equation in isotropic media with the piecewise smooth material property. In our model, the material property can be discontinuous at curved interfaces. The governing equations are discretized in second order form on curvilinear meshes by using a fourth order finite difference operator satisfying a summation-by-parts property. The method is energy stable and high order accurate. The highlight is that mesh sizes can be chosen according to the velocity structure of the material so that computational efficiency is improved. At the mesh refinement interfaces with hanging nodes, physical interface conditions are imposed by using ghost points and interpolation. With a fourth order predictor-corrector time integrator, the fully discrete scheme is energy conserving. Numerical experiments are presented to verify the fourth order convergence rate and the energy conserving property.

Åpne denne publikasjonen i ny fane eller vindu >>Numerical upscaling for heterogeneous materials in fractured domains### Hellman, Fredrik

### Malqvist, Axel

### Wang, Siyang

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_2_j_idt208_some",{id:"formSmash:j_idt204:2:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_2_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_2_j_idt208_otherAuthors",{id:"formSmash:j_idt204:2:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_2_j_idt208_otherAuthors",multiple:true}); 2021 (engelsk)Inngår i: Mathematical Modelling and Numerical Analysis, ISSN 0764-583X, E-ISSN 1290-3841, Vol. 55, s. S761-S784Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

EDP SCIENCES S A, 2021
##### Emneord

Generalized finite element method, localized orthogonal decomposition, porous media, fracture, Darcy flow
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-53653 (URN)10.1051/m2an/2020061 (DOI)000622089000026 ()2-s2.0-85101767926 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_2_j_idt208_j_idt379",{id:"formSmash:j_idt204:2:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_2_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_2_j_idt208_j_idt385",{id:"formSmash:j_idt204:2:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_2_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_2_j_idt208_j_idt391",{id:"formSmash:j_idt204:2:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_2_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2021-03-18 Laget: 2021-03-18 Sist oppdatert: 2021-03-26bibliografisk kontrollert

Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden.;Univ Gothenburg, S-41296 Gothenburg, Sweden..

Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden.;Univ Gothenburg, S-41296 Gothenburg, Sweden..

Mälardalens högskola, Akademin för utbildning, kultur och kommunikation.

We consider numerical solution of elliptic problems with heterogeneous diffusion coefficients containing thin highly conductive structures. Such problems arise e.g. in fractured porous media, reinforced materials, and electric circuits. The main computational challenge is the high resolution needed to resolve the data variation. We propose a multiscale method that models the thin structures as interfaces and incorporate heterogeneities in corrected shape functions. The construction results in an accurate upscaled representation of the system that can be used to solve for several forcing functions or to simulate evolution problems in an efficient way. By introducing a novel interpolation operator, defining the fine scale of the problem, we prove exponential decay of the shape functions which allows for a sparse approximation of the upscaled representation. An a priori error bound is also derived for the proposed method together with numerical examples that verify the theoretical findings. Finally we present a numerical example to show how the technique can be applied to evolution problems.

Åpne denne publikasjonen i ny fane eller vindu >>SUMMATION-BY-PARTS APPROXIMATIONS OF THE SECOND DERIVATIVE: PSEUDOINVERSE AND REVISITATION OF A HIGH ORDER ACCURATE OPERATOR### Eriksson, Sofia

### Wang, Siyang

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_3_j_idt208_some",{id:"formSmash:j_idt204:3:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_3_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_3_j_idt208_otherAuthors",{id:"formSmash:j_idt204:3:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_3_j_idt208_otherAuthors",multiple:true}); 2021 (engelsk)Inngår i: SIAM Journal on Numerical Analysis, ISSN 0036-1429, E-ISSN 1095-7170, Vol. 59, nr 5, s. 2669-2697Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

SIAM PUBLICATIONS, 2021
##### Emneord

finite difference methods, summation-by-parts, singular operators, pseudoinverses, free parameter
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-57527 (URN)10.1137/20M1379083 (DOI)000752750400012 ()2-s2.0-851182973972 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_3_j_idt208_j_idt379",{id:"formSmash:j_idt204:3:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_3_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_3_j_idt208_j_idt385",{id:"formSmash:j_idt204:3:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_3_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_3_j_idt208_j_idt391",{id:"formSmash:j_idt204:3:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_3_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2022-03-02 Laget: 2022-03-02 Sist oppdatert: 2022-03-18bibliografisk kontrollert

Linnaeus Univ, Dept Math, Vaxjo, Sweden..

Mälardalens universitet, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. Umea Univ, Dept Math & Math Stat, Umea, Sweden..

We consider finite difference approximations of the second derivative, exemplified in Poisson's equation, the heat equation, and the wave equation. The finite difference operators satisfy a summation-by-parts (SBP) property, which mimics the integration-by-parts principle. Since the operators approximate the second derivative, they are singular by construction. When imposing boundary conditions weakly, these operators are modified using simultaneous approximation terms. The modification makes the discretization matrix nonsingular for most choices of boundary conditions. Recently, inverses of such matrices were derived. However, for problems with only Neumann boundary conditions, the modified matrices are still singular. For such matrices, we have derived an explicit expression for the Moore-Penrose inverse, which can be used for solving elliptic problems and some time-dependent problems. For this explicit expression to be valid, it is required that the modified matrix does not have more than one zero eigenvalue. This condition holds for the SBP operators with second and fourth order accurate interior stencil. For the sixth order accurate case, we have reconstructed the operator with a free parameter and show that there can be more than one zero eigenvalue. We have performed a detailed analysis on the free parameter to improve the properties of the second derivative SBP operator. We complement the derivations by numerical experiments to demonstrate the improvements.

Åpne denne publikasjonen i ny fane eller vindu >>An energy-based discontinuous Galerkin method for coupled elasto-acoustic wave equations in second-order form### Appelö, D.

### Wang, Siyang

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_4_j_idt208_some",{id:"formSmash:j_idt204:4:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_4_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_4_j_idt208_otherAuthors",{id:"formSmash:j_idt204:4:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_4_j_idt208_otherAuthors",multiple:true}); 2019 (engelsk)Inngår i: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 119, nr 7, s. 618-638Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

John Wiley and Sons Ltd, 2019
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50762 (URN)10.1002/nme.6065 (DOI)000475387900003 ()2-s2.0-85064526087 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_4_j_idt208_j_idt379",{id:"formSmash:j_idt204:4:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_4_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_4_j_idt208_j_idt385",{id:"formSmash:j_idt204:4:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_4_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_4_j_idt208_j_idt391",{id:"formSmash:j_idt204:4:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_4_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

University of Colorado, Boulder, United States.

Chalmers University of Technology, Sweden; University of Gothenburg, Sweden.

We consider wave propagation in a coupled fluid-solid region separated by a static but possibly curved interface. The wave propagation is modeled by the acoustic wave equation in terms of a velocity potential in the fluid, and the elastic wave equation for the displacement in the solid. At the fluid solid interface, we impose suitable interface conditions to couple the two equations. We use a recently developed energy-based discontinuous Galerkin method to discretize the governing equations in space. Both energy conserving and upwind numerical fluxes are derived to impose the interface conditions. The highlights of the developed scheme include provable energy stability and high order accuracy. We present numerical experiments to illustrate the accuracy property and robustness of the developed scheme.

Åpne denne publikasjonen i ny fane eller vindu >>Fourth order finite difference methods for the wave equation with mesh refinement interfaces### Wang, Siyang

### Petersson, N. A.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_5_j_idt208_some",{id:"formSmash:j_idt204:5:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_5_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_5_j_idt208_otherAuthors",{id:"formSmash:j_idt204:5:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_5_j_idt208_otherAuthors",multiple:true}); 2019 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 41, nr 5, s. A3246-A3275Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Society for Industrial and Applied Mathematics Publications, 2019
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50763 (URN)10.1137/18M1211465 (DOI)000493897100022 ()2-s2.0-85074730842 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_5_j_idt208_j_idt379",{id:"formSmash:j_idt204:5:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_5_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_5_j_idt208_j_idt385",{id:"formSmash:j_idt204:5:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_5_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_5_j_idt208_j_idt391",{id:"formSmash:j_idt204:5:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_5_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik.

Lawrence Livermore National Laboratory, Livermore, US.

We analyze two types of summation-by-parts finite difference operators for approximating the second derivative with variable coefficient. The first type uses ghost points, while the second type does not use any ghost points. A previously unexplored relation between the two types of summation-by-parts operators is investigated. By combining them we develop a new fourth order accurate finite difference discretization with hanging nodes on the mesh refinement interface. We take the model problem as the two-dimensional acoustic wave equation in second order form in terms of acoustic pressure, and we prove energy stability for the proposed method. Compared to previous approaches using ghost points, the proposed method leads to a smaller system of linear equations that needs to be solved for the ghost point values. Another attractive feature of the proposed method is that the explicit time step does not need to be reduced relative to the corresponding periodic problem. Numerical experiments, both for smoothly varying and discontinuous material properties, demonstrate that the proposed method converges to fourth order accuracy. A detailed comparison of the accuracy and the time-step restriction with the simultaneous-approximation-term penalty method is also presented.

Åpne denne publikasjonen i ny fane eller vindu >>Order-preserving interpolation for summation-by-parts operators a t nonconforming grid interfaces### Almquist, M.

### Wang, Siyang

### Werpers, J.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_6_j_idt208_some",{id:"formSmash:j_idt204:6:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_6_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_6_j_idt208_otherAuthors",{id:"formSmash:j_idt204:6:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_6_j_idt208_otherAuthors",multiple:true}); 2019 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 41, nr 2, s. A1201-A1227Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Society for Industrial and Applied Mathematics Publications, 2019
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50764 (URN)10.1137/18M1191609 (DOI)000469225300021 ()2-s2.0-85065575243 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_6_j_idt208_j_idt379",{id:"formSmash:j_idt204:6:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_6_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_6_j_idt208_j_idt385",{id:"formSmash:j_idt204:6:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_6_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_6_j_idt208_j_idt391",{id:"formSmash:j_idt204:6:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_6_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

Stanford University, US.

Chalmers University of Technology, Sweden.

Uppsala universitet, Sweden.

We study nonconforming grid interfaces for summation-by-parts finite difference methods applied to partial differential equations with second derivatives in space. To maintain energy stability, previous efforts have been forced to accept a reduction of the global convergence rate by one order, due to large truncation errors at the nonconforming interface. We avoid the order reduction by generalizing the interface treatment and introducing order-preserving interpolation operators. We prove that, given two diagonal-norm summation-by-parts schemes, order-preserving interpolation operators with the necessary properties are guaranteed to exist, regardless of the grid-point distributions along the interface. The new methods retain the stability and global accuracy properties of the underlying schemes for conforming interfaces.

Åpne denne publikasjonen i ny fane eller vindu >>An Improved High Order Finite Difference Method for Non-conforming Grid Interfaces for the Wave Equation### Wang, Siyang

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_7_j_idt208_some",{id:"formSmash:j_idt204:7:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_7_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_7_j_idt208_otherAuthors",{id:"formSmash:j_idt204:7:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_7_j_idt208_otherAuthors",multiple:true}); 2018 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 77, nr 2, s. 775-792Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Springer New York LLC, 2018
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50765 (URN)10.1007/s10915-018-0723-9 (DOI)000446594600004 ()2-s2.0-85046631933 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_7_j_idt208_j_idt379",{id:"formSmash:j_idt204:7:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_7_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_7_j_idt208_j_idt385",{id:"formSmash:j_idt204:7:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_7_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_7_j_idt208_j_idt391",{id:"formSmash:j_idt204:7:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_7_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

Uppsala universitet, Sweden.

This paper presents an extension of a recently developed high order finite difference method for the wave equation on a grid with non-conforming interfaces. The stability proof of the existing methods relies on the interpolation operators being norm-contracting, which is satisfied by the second and fourth order operators, but not by the sixth order operator. We construct new penalty terms to impose interface conditions such that the stability proof does not require the norm-contracting condition. As a consequence, the sixth order accurate scheme is also provably stable. Numerical experiments demonstrate the improved stability and accuracy property.

Åpne denne publikasjonen i ny fane eller vindu >>Convergence of finite difference methods for the wave equation in two space dimensions### Wang, Siyang

### Nissen, A.

### Kreiss, G.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_8_j_idt208_some",{id:"formSmash:j_idt204:8:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_8_j_idt208_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_8_j_idt208_otherAuthors",{id:"formSmash:j_idt204:8:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_8_j_idt208_otherAuthors",multiple:true}); 2018 (engelsk)Inngår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 87, nr 314, s. 2737-2763Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

American Mathematical Society, 2018
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50767 (URN)10.1090/mcom/3319 (DOI)000440340300006 ()2-s2.0-85051019859 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_8_j_idt208_j_idt379",{id:"formSmash:j_idt204:8:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_8_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_8_j_idt208_j_idt385",{id:"formSmash:j_idt204:8:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_8_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_8_j_idt208_j_idt391",{id:"formSmash:j_idt204:8:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_8_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

Chalmers University of Technology, Sweden; Uppsala universitet, Sweden.

University of Bergen, Norway.

Uppsala universitet, Sweden.

When using a finite difference method to solve an initial-boundaryvalue problem, the truncation error is often of lower order at a few grid points near boundaries than in the interior. Normal mode analysis is a powerful tool to analyze the effect of the large truncation error near boundaries on the overall convergence rate, and has been used in many research works for different equations. However, existing work only concerns problems in one space dimension. In this paper, we extend the analysis to problems in two space dimensions. The two dimensional analysis is based on a diagonalization procedure that decomposes a two dimensional problem to many one dimensional problems of the same type. We present a general framework of analyzing convergence for such one dimensional problems, and explain how to obtain the result for the corresponding two dimensional problem. In particular, we consider two kinds of truncation errors in two space dimensions: the truncation error along an entire boundary, and the truncation error localized at a few grid points close to a corner of the computational domain. The accuracy analysis is in a general framework, here applied to the second order wave equation. Numerical experiments corroborate our accuracy analysis.

Åpne denne publikasjonen i ny fane eller vindu >>High-Order Numerical Methods for 2D Parabolic Problems in Single and Composite Domains### Ludvigsson, G.

### Steffen, K. R.

### Sticko, S.

### Wang, Siyang

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_9_j_idt208_some",{id:"formSmash:j_idt204:9:j_idt208:some",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_some",multiple:true}); ### Xia, Q.

### Epshteyn, Y.

### Kreiss, G.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_9_j_idt208_otherAuthors",{id:"formSmash:j_idt204:9:j_idt208:otherAuthors",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_otherAuthors",multiple:true}); Vise andre…PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt204_9_j_idt208_j_idt222",{id:"formSmash:j_idt204:9:j_idt208:j_idt222",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_j_idt222",onLabel:"Skjul andre\u2026",offLabel:"Vise andre\u2026"}); 2018 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 76, nr 2, s. 812-847Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Springer New York LLC, 2018
##### HSV kategori

##### Identifikatorer

urn:nbn:se:mdh:diva-50766 (URN)10.1007/s10915-017-0637-y (DOI)000436253800006 ()2-s2.0-85040359686 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_9_j_idt208_j_idt379",{id:"formSmash:j_idt204:9:j_idt208:j_idt379",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_j_idt379",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_9_j_idt208_j_idt385",{id:"formSmash:j_idt204:9:j_idt208:j_idt385",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_j_idt385",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt204_9_j_idt208_j_idt391",{id:"formSmash:j_idt204:9:j_idt208:j_idt391",widgetVar:"widget_formSmash_j_idt204_9_j_idt208_j_idt391",multiple:true});
#####

Tilgjengelig fra: 2020-09-22 Laget: 2020-09-22 Sist oppdatert: 2020-09-22bibliografisk kontrollert

Uppsala universitet, Sweden.

The University of Utah, US.

Uppsala universitet, Sweden.

Chalmers University of Technology, Sweden; University of Gothenburg, Sweden.

The University of Utah, US.

The University of Utah, US.

Uppsala universitet, Sweden.

In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests—with respect to accuracy and convergence—for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.