https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
Link to record
Permanent link

Direct link
Stridh, Bengt, UniversitetslektorORCID iD iconorcid.org/0000-0003-3168-1569
Publikasjoner (10 av 26) Visa alla publikasjoner
Elkadeem, M. R., Zainali, S., Ma Lu, S., Younes, A., Abido, M. A., Amaducci, S., . . . Campana, P. E. (2024). Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis. Applied Energy, 356, Article ID 122108.
Åpne denne publikasjonen i ny fane eller vindu >>Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis
Vise andre…
2024 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 356, artikkel-id 122108Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Agrivoltaic systems represent an intelligent solution combining electricity production from solar photovoltaic technology with agricultural production to avoid land use conflicts. Geographic Information System technologies can support the implementation and spread of agrivoltaic systems by identifying the most suitable areas using useful spatially explicit information concerning techno-agro-socio-economic criteria. In this study, we have developed a procedure to identify and classify suitable areas for agrivoltaic systems in Sweden. An Ordinal Priority Approach based multi-criteria decision-making algorithm is established to calculate the weights of the selected evaluation criteria through expert interviews. The land use data refers to the Corine Land Cover 2018 product. The results show that about 8.6% of the Swedish territory, approximately 38,485 km2, is suitable for installing agrivoltaic systems. Among this area, about 0.2% is classified as “excellent”, about 15% as “very good”, about 72% as “good”, about 13% as “moderate”, and about 0.1% as “poor”. Most “excellent”-classified areas are in Kalmar, Skåne, and Gotland. In contrast, most “very good” sites are in Skåne, Kalmar, and Östergötland. By deploying vertically mounted agrivoltaic systems with bifacial photovoltaic modules, the total potential installed capacity for “excellent” areas is about 2.5 GWp, while for areas classified “excellent” and “very good” is about 221 GWp. The total “excellent” areas can potentially supply about 2.4 TWh of electricity against the electricity consumption in 2021 of about 143 TWh. On the other hand, the land classified as “excellent” and “very good” could potentially provide about 207 TWh. The County of Västra Götaland shows the greatest potentials in terms of total potential electricity supply from agrivoltaic systems with about 227 TWh, followed by Skåne with a total potential of 206 TWh. 

sted, utgiver, år, opplag, sider
Elsevier Ltd, 2024
Emneord
Agrivoltaic, Geographic Information System, Shading, Sustainability, Water-food-energy nexus
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-65014 (URN)10.1016/j.apenergy.2023.122108 (DOI)001127715700001 ()2-s2.0-85178426007 (Scopus ID)
Tilgjengelig fra: 2023-12-13 Laget: 2023-12-13 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Campana, P. E., Stridh, B., Hörndahl, T., Svensson, S.-E. -., Zainali, S., Ma Lu, S., . . . Colauzzi, M. (2024). Experimental results, integrated model validation, and economic aspects of agrivoltaic systems at northern latitudes. Journal of Cleaner Production, 437, Article ID 140235.
Åpne denne publikasjonen i ny fane eller vindu >>Experimental results, integrated model validation, and economic aspects of agrivoltaic systems at northern latitudes
Vise andre…
2024 (engelsk)Inngår i: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 437, artikkel-id 140235Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Agrivoltaic systems, which allow the coexistence of crop and electricity production on the same land, are an integrated water–energy–food nexus solution that allows the simultaneous attainment of conflicting Sustainable Development Goals. This study aims to analyse experimental results on the responses of ley grass yield and quality to shadings in the first agrivoltaic system in Sweden. It also aims to validate an integrated modelling platform for assessing agrivoltaic systems' performances before installation. An economic analysis is carried out to compare the profitability of agrivoltaic versus conventional ground-mounted photovoltaic systems and, using a Monte Carlo Analysis, to identify the parameters that most affect the profitability. Despite the agrivoltaic systems’ supporting structures and photovoltaic modules producing an average ∼25% reduction in photosynthetically active radiation at ground level, no statistically significant difference was observed between the yield of the samples under the agrivoltaic system compared to the yield of the samples in the reference area. The agrivoltaic system attained land equivalent ratios of 1.27 and 1.39 in 2021 and 2022, respectively. The validation results of the integrated modelling platform show that the sub-model concerning the crop yield response to shading conditions tends to underestimate ∼7% the actual average crop yield under the agrivoltaic system. The results of the economic analysis show that, from a net present value perspective, agrivoltaic systems have a profitability that is ∼30 times higher than a conventional crop rotation in Sweden.

sted, utgiver, år, opplag, sider
Elsevier Ltd, 2024
Emneord
Agrivoltaic, Integrated modelling, Leaf area index, Profitability, Shading, Soil moisture, Validation, Crop rotation, Economic analysis, Crop yield, Economic aspects, Economics analysis, Integrated modeling, Model validation, Modeling platforms
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-66092 (URN)10.1016/j.jclepro.2023.140235 (DOI)001164475200001 ()2-s2.0-85184738863 (Scopus ID)
Tilgjengelig fra: 2024-02-20 Laget: 2024-02-20 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Lu, S. M., Yang, D., Anderson, M. C., Zainali, S., Stridh, B., Avelin, A. & Campana, P. E. (2024). Photosynthetically active radiation separation model for high-latitude regions in agrivoltaic systems modeling. Journal of Renewable and Sustainable Energy, 16(1), Article ID 013503.
Åpne denne publikasjonen i ny fane eller vindu >>Photosynthetically active radiation separation model for high-latitude regions in agrivoltaic systems modeling
Vise andre…
2024 (engelsk)Inngår i: Journal of Renewable and Sustainable Energy, E-ISSN 1941-7012, Vol. 16, nr 1, artikkel-id 013503Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photosynthetically active radiation is a key parameter for determining crop yield. Separating photosynthetically active radiation into direct and diffuse components is significant to agrivoltaic systems. The varying shading conditions caused by the solar panels produce a higher contribution of diffuse irradiance reaching the crops. This study introduces a new separation model capable of accurately estimating the diffuse component from the global photosynthetically active radiation and conveniently retrievable meteorological parameters. The model modifies one of the highest-performing separation models for broadband irradiance, namely, the Yang2 model. Four new predictors are added: atmospheric optical thickness, vapor pressure deficit, aerosol optical depth, and surface albedo. The proposed model has been calibrated, tested, and validated at three sites in Sweden with latitudes above 58 °N, outperforming four other models in all examined locations, with R2 values greater than 0.90. The applicability of the developed model is demonstrated using data retrieved from Sweden's first agrivoltaic system. A variety of data availability cases representative of current and future agrivoltaic systems is tested. If on-site measurements of diffuse photosynthetically active radiation are not available, the model calibrated based on nearby stations can be a suitable first approximation, obtaining an R2 of 0.89. Utilizing predictor values derived from satellite data is an alternative method, but the spatial resolution must be considered cautiously as the R2 dropped to 0.73.

HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-66129 (URN)10.1063/5.0181311 (DOI)001163102700001 ()2-s2.0-85185347410 (Scopus ID)
Forskningsfinansiär
Swedish Energy Agency, 52693-1Swedish Research Council Formas, FR-2021/0005Swedish Energy Agency, 51000-1Swedish Energy Agency, P2022-00809
Tilgjengelig fra: 2024-02-26 Laget: 2024-02-26 Sist oppdatert: 2024-04-10bibliografisk kontrollert
Zainali, S., Qadir, O., Parlak, S. C., Lu, S. M., Avelin, A., Stridh, B. & Campana, P. E. (2023). Computational fluid dynamics modelling of microclimate for a vertical agrivoltaic system. Energy Nexus, 9, Article ID 100173.
Åpne denne publikasjonen i ny fane eller vindu >>Computational fluid dynamics modelling of microclimate for a vertical agrivoltaic system
Vise andre…
2023 (engelsk)Inngår i: Energy Nexus, ISSN 2772-4271, Vol. 9, artikkel-id 100173Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The increasing worldwide population is leading to a continuous increase in energy and food demand. These increasing demands have led to fierce land-use conflicts as we need agricultural land for food production while striving towards renewable energy systems such as large-scale solar photovoltaic (PV) systems, which also require in most of the cases agricultural flat land for implementation. It is therefore essential to identify the interrelationships between the food, and energy sectors and develop sustainable solutions to achieve global goals such as food and energy security. A technology that has shown promising potential in supporting food and energy security, as well as supporting water security, is agrivoltaic (AV) systems. This technology combines conventional farm activities with PV systems on the same land. Understanding the microclimatic conditions in an AV system is essential for an accurate assessment of crop yield potential as well as for the energy performance of the PV systems. Nevertheless, the complex mechanisms governing the microclimatic conditions under agrivoltaic systems represent an underdeveloped research area. In this study, a computational fluid dynamics (CFD) model for a vertical AV system is developed and validated. The CFD model showed PV module temperature estimation errors in the order of 0–2 °C and ground temperature errors in the order of 0–1 °C. The shading caused by the vertical PV system resulted in a reduction of solar irradiance by 38%. CFD modelling can be seen as a robust approach to analysing microclimatic parameters and assessing AV system performance.

HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-61951 (URN)10.1016/j.nexus.2023.100173 (DOI)001133749800001 ()2-s2.0-85151588794 (Scopus ID)
Forskningsfinansiär
SOLVE, 52693-1Swedish Research Council Formas, FR-2021/0005Swedish Energy Agency, 51000-1
Tilgjengelig fra: 2023-02-21 Laget: 2023-02-21 Sist oppdatert: 2024-04-15bibliografisk kontrollert
Zainali, S., Ma Lu, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M. & Campana, P. E. (2023). Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts. Applied Energy, 339, Article ID 120981.
Åpne denne publikasjonen i ny fane eller vindu >>Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
Vise andre…
2023 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 339, artikkel-id 120981Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Agrivoltaic systems are becoming increasingly popular as a crucial technology for attaining multiple sustainable development goals, such as affordable and clean energy, zero hunger, clean water and sanitation, and climate action. However, a comprehensive understanding of the shading effects on crops is essential for choosing an optimal agrivoltaic system, as an incorrect choice can result in significant crop yield reductions. In this study, fixed vertical, one-axis tracking, and two-axis tracking photovoltaic arrays were developed for agrivoltaic applications to analyse the shading conditions on the ground used for crop production. The models demonstrated remarkable accuracy in comparison to commercial software such as PVsyst® and SketchUp®. These models will help to reduce crop yield uncertainty under agrivoltaic systems by providing accurate photosynthetically active radiation distribution at the crop level. The photosynthetically active radiation distribution was further analysed using a light homogeneity index, and the results showed that homogeneity and photosynthetically active radiation reduction varied significantly depending on the agrivoltaic system design, ranging from 86% to 95%, and 11% to 22%, respectively. Studying the effect of shading with distribution analysis is crucial for identifying the most suitable agrivoltaic system layout for specific crops and geographical locations.

sted, utgiver, år, opplag, sider
Elsevier Ltd, 2023
Emneord
Agrivoltaics, Beam Shading Factor, Diffuse Shading Factor, Photosynthetically Active Radiation, Photovoltaics, Tracking
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-62207 (URN)10.1016/j.apenergy.2023.120981 (DOI)000967301400001 ()2-s2.0-85151327591 (Scopus ID)
Forskningsfinansiär
SOLVE, 52693-1Swedish Energy Agency, 51000-1Swedish Research Council Formas, FR-2021/0005
Tilgjengelig fra: 2023-04-12 Laget: 2023-04-12 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Campana, P. E., Stridh, B., Zainali, S., Ma Lu, S., Andersson, U., Nordström, J., . . . Svensson, S.-E. (2023). Evaluation of the first agrivoltaic system in Sweden.
Åpne denne publikasjonen i ny fane eller vindu >>Evaluation of the first agrivoltaic system in Sweden
Vise andre…
2023 (engelsk)Rapport (Annet vitenskapelig)
Alternativ tittel[sv]
Utvärdering av det första agrivoltaiska systemet i Sverige
Abstract [en]

Photovoltaic (PV) systems in Sweden have primarily been seen as an energy efficiency measure to reduce the amount of purchased electricity for buildings, both residential and commercial. Only recently utility-scale solar systems have begun to increase their share of the solar market to support national energy and emissions targets. Due to the economies of scale, conventional ground-mounted PV (CGMPV) installations represent the best solution for producing electricity at the lowest specific initial investment costs. This relatively new solar market segment, with large-scale ground-mounted solar farms on agricultural land, has faced several challenges with the permitting process. Agricultural land that is suitable for cultivation is of "national importance" according to the Swedish Environmental Code. Cultivable agricultural land may be exploited for other purposes on a permanent basis only if it is necessary to satisfy essential societal interests and there is no other possible land to use within the area in question. Traditionally, ground-mounted solar farms have increased competition for land resources for food production and drawn criticism in the so-called "food-versus-fuel (electricity)" debate over whether agricultural land should be used for electricity generation or food production. Agrivoltaic (APV) systems represent an intelligent solution to avoid land use competition by combining arable farming and electricity production on the same agricultural land. The main objective of this project was to study how APV systems perform from an energy, agricultural and economic perspective compared to CGMPV systems and agriculture production. The project aimed to highlight advantages and disadvantages of APV systems at northern latitudes with an energy-food-water perspective. The aim was pursued by establishing an APV test site, the first APV system in Sweden, monitoring its performance both from an energy and agricultural point of view, and developing new techno-economic models. Data from the APV test site were used to better understand how APV systems at northern latitudes affect: 1) the efficiency of the solar modules; 2) crop productivity, and 3) the financial return for ground-based solar PV systems. The first agrivoltaic system in Sweden has been built on a permanent ley grass field, at Kärrbo Prästgård, Västerås, and research activities have been carried out on the ley grass during 2021 and 2022. As in previous research studies in other countries, we defined three sub-fields: 1) a sub-field is covered only by the ley grass (reference area), 2) a sub-field is a CGMPV system 11.8 kWp solar PV system with two rows of solar modules with a 30° tilt and 3) the last subfield is a  22.8 kWp APV system with three rows of vertically mounted solar modules, with ley grass between the modules. This field set-up allowed for comparisons between practices (agriculture and electricity generation) and technologies (CGMPV systems versus APV systems). The calculated specific electricity production during a typical meteorological year for the APV system and the CGMPV system was 1,067 kWh/kWp/year and 1,116 kWh/kWp/year, respectively. Nevertheless, the APV system tends to have higher efficiency than the CGMPV systems due to the solar irradiation patterns on the solar cell surfaces and wind cooling of the PV modules. The main results of the project in terms of shadow effects on the ley grass showed that the APV system did not significantly affect the productivity of the forage grass in 2021-2022. There was no statistically significant difference between the yield of the samples taken in the APV system and the reference area. Even so, the yield per hectare is reduced by approximatively 10%, when the distance between the vertically mounted solar modules is 10 meters, due to the area under the solar modules that cannot be mechanically harvested. The measurements performed at the test site allowed us to validate the earlier developed model for both electricity production and the effects of shading on crop production. Having a model to assess crop yields under APV systems is of utmost importance to be able to pre-assess the system's effects on food production, which is one of the main goals of APV system regulations worldwide. From an economic perspective, APV systems cannot compete with CGMPV systems due to lower electricity production per hectare, lower density of the solar modules per hectare, and higher investment costs per hectare. Nevertheless, APV systems can be the solution to overcome the legal obstacles that prohibit or hinder the use of agricultural land for electricity generation with PV systems. 

Abstract [sv]

Solceller i Sverige har främst setts som en energieffektiviseringsåtgärd för att minska mängden köpt el för byggnader, både bostäder och kommersiella. Först nyligen har solcellssystem i bruksskala börjat öka sin andel på solcellsmarknaden för att stödja de nationella energi- och utsläppsmålen. På grund av stordriftsekonomins fördelar representerar markmonterade solcellsanläggningar den bästa lösningen för att producera el till lägsta initiala investeringskostnader. Detta relativt nya marknadssegment för solel, med storskaliga markmonterade solcellsparker på jordbruksmark har ställts inför flera utmaningar med tillståndsprocessen. Jordbruksmark som är lämplig för odling är av "nationell betydelse" enligt svenska Miljöbalken. Odlingsvärd jordbruksmark får varaktigt exploateras för andra ändamål endast om det behövs för att tillgodose väsentliga samhällsintressen och det inte finns någon annan möjlig mark att använda inom det aktuella området. Traditionellt har markmonterade solcellsparker ökat konkurrensen om markresurser för livsmedelsproduktion och väckt kritik i den så kallade "mat-mot-elproduktion"-debatten, dvs om marken ska användas för elproduktion eller livsmedelsproduktion. Agrivoltaiska (APV) solcellssystem representerar en intelligent lösning för att undvika konkurrensen om markanvändning genom att kombinera odling och elproduktion på samma markområde.  Huvudmålet med detta projekt var att studera hur APV-system presterar ur ett energi-, jordbruks- och ekonomiskt perspektiv jämfört med konventionella markbaserade solcellssystem och vanlig jordbruksproduktion. Projektet syftade till att belysa fördelar och nackdelar med APV-system på nordliga breddgrader med ett energi-mat-vatten-perspektiv. Syftet var att etablera en APV-testplats, det första APV-systemet i Sverige, övervaka dess prestanda både ur energi- och jordbrukssynpunkt och utveckla nya teknoekonomiska modeller. I synnerhet användes data från APV-testplatsen, Kärrbo Prästgård, Västerås, för att bättre förstå hur APV-system på nordliga breddgrader påverkar: 1) effektiviteten hos solcellsmoduler; 2) grödans produktivitet och 3) den ekonomiska avkastningen för markbaserade solcellsanläggningar. Det första agrivoltaiska systemet i Sverige har byggts på en permanent vall och forskningsverksamhet har genomförts på vallgrödan under 2021 och 2022. Liksom i tidigare forskningsstudier i andra länder, definierade vi tre delfält på försöksplatsen: 1) ett delfält med enbart odling av vallgrödan (referensområdet), 2) ett delfält med ett konventionellt markbaserat 11,8 kWp solcellssystem med två rader av solcellsmoduler med 30 graders lutning och 3) det sista delfältet med ett 22,8 kWp APV-system med tre rader av vertikalt monterade solcellsmoduler, med odling av vallgrödan mellan de tre raderna av solcellsmoduler. Denna fältuppsättning möjliggjorde jämförelser mellan praxis (jordbruk och elproduktion) och teknik (markmonterade solcellssystem kontra APV-system). Den beräknade specifika elproduktionen under ett typiskt meteorologiskt år för det agrivoltaiska systemet och det konventionella solcellssystemet var 1067 kWh/kWp/år respektive 1116 kWh/kWp/år. Ändå tenderar det agrivoltaiska systemet att ha högre verkningsgrad än de konventionella solcellssystemen på grund av solinstrålningsmönstren på solcellsytorna och vindkylning av modulerna. Projektets huvudresultat, när det gäller skuggeffekter på skördens storlek, visade att det agrivoltaiska systemet inte förändrade vallgräsets produktivitet under 2021–2022. Det fanns ingen statistisk säkerställd skillnad mellan skördeutbytet av proverna som tagits i det agrivoltaiska systemet och referensområdet. Trots detta minskar skördeutbytet per hektar med ca 10 %, när det är 10 meter mellan raderna av solcellsmodulerna i APV-systemet, på grund av den yta under solcellsmodulerna som inte kan skördas maskinellt.  Mätningarna som utfördes vid testanläggningen gjorde det möjligt för oss att validera den sen tidigare utvecklade modellen för elproduktion och effekterna av skuggning på grödan mellan solcellspanelerna. Att ha en modell för att bedöma skörden i agrivoltaiska system är av yttersta vikt för att i förväg kunna bedöma APV-systemets effekter på livsmedelsproduktionen, vilket är ett av de viktigaste målen i regelverk för agrivoltaiska system över hela världen. 

Publisher
s. 60
Emneord
Agrivoltaiska solcellssystem, elproduktion, jordbruk, odling, samverkan energi, mat och vatten
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-64682 (URN)
Tilgjengelig fra: 2023-11-07 Laget: 2023-11-07 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Zainali, S., Lindahl, J., Lindén, J. & Stridh, B. (2023). LCOE distribution of PV for single-family dwellings in Sweden. Energy Reports, 10, 1951-1967
Åpne denne publikasjonen i ny fane eller vindu >>LCOE distribution of PV for single-family dwellings in Sweden
2023 (engelsk)Inngår i: Energy Reports, E-ISSN 2352-4847, Vol. 10, s. 1951-1967Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In Sweden, the installations of solar photovoltaic systems are growing rapidly, and especially the market segment of small-scale distributed systems is experiencing positive growth. The current installation volumes exceed the expectations of the Swedish authorities. This study presents an up-to-date assessment of the levelized cost of electricity to be used for both agencies in their long-term scenario work of PV development and for private investors for estimating the upfront and future costs and risks associated with photovoltaic systems. The analysis is based on the turnkey system cost of 6,098 single-family dwelling photovoltaic systems commissioned in Sweden between the 1st of January 2019 and 1st of July 2020. The statistics of system investments costs are complemented by literature studies and by interviews of relevant stakeholders for the other input parameters needed to calculate the Levelized Cost of Electricity (LCOE). A Monte Carlo analysis was applied on all the input parameters provides relevant insight into the range of LCOE values. The unsubsidized levelized cost of electricity for most systems ranged from 0.85 SEK/kWh (25th percentile) to 1.15 SEK/kWh (75th percentile), with a mean at 1.02 SEK/kWh at reasonable real discount rate of 2%, but that extreme values can reach 0.30 SEK/kWh at a 0% discount rate and 5.70 SEK/kWh at a 5% discount rate. Taking into account the current (2023) Swedish tax reduction for investment in green technologies that amounts to an effective deduction of 19.4% of the total system investment costs lowers the LCOE to mean at 0.82 SEK/kWh at real discount rate of 2%. The LCOE for single-family dwelling photovoltaic systems are generally lower than the assumed LCOE in long-term scenario studies of the Swedish electricity system. This finding helps to explain to the authorities the unexpected fast deployment of distributed photovoltaic systems in Sweden.

Emneord
Photovoltaics (PV), Levelized cost of electricity (LCOE), Production cost, Monte Carlo simulation, Distributed electricity
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-64207 (URN)10.1016/j.egyr.2023.08.042 (DOI)001072432700001 ()2-s2.0-85170413435 (Scopus ID)
Forskningsfinansiär
SOLVE, P52693-1Energy Research, EVH47000
Tilgjengelig fra: 2023-09-07 Laget: 2023-09-07 Sist oppdatert: 2023-10-11bibliografisk kontrollert
Ma Lu, S., Zainali, S., Sundström, E., Nygren, A., Stridh, B., Avelin, A. & Campana, P. E. (2023). Validation of Vertical Bifacial Agrivoltaic and Other Systems Modelling: Effect of Dynamic Albedo on Irradiance and Power Output Estimations. In: : . Paper presented at The World Conference AgriVoltaics, 2023 April 12-14 Daegu, South Korea & Online.
Åpne denne publikasjonen i ny fane eller vindu >>Validation of Vertical Bifacial Agrivoltaic and Other Systems Modelling: Effect of Dynamic Albedo on Irradiance and Power Output Estimations
Vise andre…
2023 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In agrivoltaic systems combining solar photovoltaic and agricultural activities, ground albedo is mainly characterized by the crop and its seasonal variations. This study examines the effects of using fixed, satellite-derived, and hourly measured albedo on the performance of a vertical bifacial system and a 1-axis tracking system using a bifacial photovoltaic model (AgriOptiCE®). The model is developed with Matlab® and partially based on the open-source package pvlib. AgriOptiCE® is firstly validated by comparing estimated front and rear irradiances with on-site measurements for specific periods from a 1-axis tracker site in Golden, USA and a vertical agrivoltaic system in Västerås, Sweden. Furthermore, photovoltaic system power output estimations using AgriOptiCE® are also validated for the vertical agrivoltaic system and the conventional ground-mounted fixed-tilt system at the same location. The validations demonstrate the high accuracy of the proposed model in estimating front and rear irradiances and power output, obtaining R2 > 0.85 for all the studied cases. The study results indicate that measured albedo provides the highest accuracy, while satellite- derived albedo has poorer results due to the broader spatial, temporal, and spectral resolution. Fixed albedo is not recommended for yearly assessment of bifacial PV systems because it cannot account for snow events and daily variations, resulting in lower overall accuracy. 

Emneord
Agrivoltaics, Albedo, Agri-OptiCE, Modelling and Simulation, Bifacial PV
HSV kategori
Forskningsprogram
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-66406 (URN)
Konferanse
The World Conference AgriVoltaics, 2023 April 12-14 Daegu, South Korea & Online
Forskningsfinansiär
Swedish Energy Agency, 52693-1
Merknad

Accepted manuscript

Tilgjengelig fra: 2024-04-10 Laget: 2024-04-10 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Johansson, F., Gustafsson, B. E., Stridh, B. & Campana, P. E. (2022). 3D-thermal modelling of a bifacial agrivoltaic system: a photovoltaic module perspective. Energy Nexus, 5, Article ID 100052.
Åpne denne publikasjonen i ny fane eller vindu >>3D-thermal modelling of a bifacial agrivoltaic system: a photovoltaic module perspective
2022 (engelsk)Inngår i: Energy Nexus, ISSN 2772-4271, Vol. 5, artikkel-id 100052Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study presents a 3D computational fluid dynamic model to evaluate the temperature distribution and energy performances of a vertical bifacial photovoltaic module for agrivoltaic applications. This last is compared to a conventionally tilted bifacial photovoltaic module for ground-mounted applications. The simulations are performed in SolidWorks Flow Simulation® and validated with measured data gathered from the first experimental agrivoltaic system in Sweden. Additionally, four more simulations scenarios were defined to compare the performances of vertically mounted and conventionally tilted bifacial photovoltaic modules under different operating conditions

The validation of the computational fluid dynamic model shows that the model tends to underestimate the readings performed with the thermal camera in the order of 3°C to 4°C for the vertical bifacial PV module. The comparison of the results obtained from the computational fluid dynamic model with existing models available in literature shows a good agreement. The comparison of the heat distribution from the computational fluid dynamic model and the thermal images also shows a good agreement. In all the scenarios investigated, the vertical bifacial photovoltaic module's overall efficiency was higher than that of the ground-mounted module due to lower average operating temperatures. The use of the computational fluid dynamic approach for studying the performance of a single photovoltaic module showed promising results that can be extended to study the system performance and microclimatic conditions.

Emneord
agrivoltaic, bifacial PV modules, CFD
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-61379 (URN)10.1016/j.nexus.2022.100052 (DOI)2-s2.0-85137791606 (Scopus ID)
Tilgjengelig fra: 2022-12-25 Laget: 2022-12-25 Sist oppdatert: 2023-04-12bibliografisk kontrollert
Ma Lu, S., Zainali, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M. & Campana, P. E. (2022). Photosynthetically active radiation decomposition models for agrivoltaic systems applications. Solar Energy, 244, 536-549
Åpne denne publikasjonen i ny fane eller vindu >>Photosynthetically active radiation decomposition models for agrivoltaic systems applications
Vise andre…
2022 (engelsk)Inngår i: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 244, s. 536-549Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well known to be essential for predicting the performance of solar photovoltaic systems. In open-field agrivoltaic systems (i.e., the dual use of land for both agricultural activities and solar power conversion), cultivated crops receive unequal amounts of direct, diffuse, and reflected photosynthetically active radiation (PAR). These uneven amounts depend on where the crops are growing due to the non-homogenous shadings caused by the presence of the installed solar panels (above the crops or vertically mounted). It is known that, per unit of total PAR, diffuse PAR is more efficient for canopy photosynthesis than is direct PAR. For this reason, it is essential to estimate the diffuse PAR component when agrivoltaic systems are being assessed, in order to properly predict the crop yield. Since PAR is the electro-magnetic radiation in the 400-700 nm waveband that can be used for photosynthesis by the crops, several stand-alone decomposition models typically used to split global horizontal irradiance are selected in this study to decompose PAR into direct and diffuse. These models are applied and validated in three locations in Sweden (Lanna, Hyltemossa and Norunda) using the coefficients stated on the models' original publications and locally fitted coefficients. The results showed weaker performances in all stand-alone models for non-locally fitted coefficients (nRMSE ranging from 27% to 43%). However, performances improve with re-parameterization, with a highest nRMSE of 35.24% in Lanna. The Y(ANG)2 decomposition model is the best-performing one, with the lowest nRMSE of 23.75% in Norunda when applying re-estimated coefficients. Country level sets of coefficients for the best-performing models (Y(ANG)2 and STARKE) are given after parameterization using combined data for all three locations in Sweden. These Sweden-fitted models are tested and show an nRMSE of 25.08% (Y(ANG)2) and 28.60% (STARKE). These results can be used to perform estimations of the PAR diffuse component in Sweden wherever ground measurements are not available. The overall methodology can be similarly applied to other countries.

sted, utgiver, år, opplag, sider
PERGAMON-ELSEVIER SCIENCE LTD, 2022
Emneord
Agrivoltaic, Photosynthetically active radiation, Decomposition models, Diffuse fraction, Integrated Carbon Observation System
HSV kategori
Identifikatorer
urn:nbn:se:mdh:diva-60198 (URN)10.1016/j.solener.2022.05.046 (DOI)000860998200002 ()2-s2.0-85134749111 (Scopus ID)
Forskningsfinansiär
SOLVE
Tilgjengelig fra: 2022-10-12 Laget: 2022-10-12 Sist oppdatert: 2024-04-22bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3168-1569