
Building a Safety Case in Compliance
with ISO 26262 for Fuel Level
Estimation and Display System

Master Thesis in Intelligent Embedded Systems
School of Innovation, Design and Engineering

Mälardalen University
Väster̊as, Sweden

Author
Raghad Dardar

Supervisors:
Barbara Gallina, Mälardalen University

Mattias Nyberg, Scania CV AB

Examiner:
Kristina Lundqvist, Mälardalen University

September, 2013

Abstract

Nowadays, road vehicles, including trucks, are characterized by an increased
complexity due to a greater variety of software, and a greater number of sen-
sors and actuators. As a consequence, there is an increased risk in terms
of software or hardware failures that could lead to unacceptable hazards.
Thus safety, more precisely functional safety, is a crucial property that must
be ensured to avoid or mitigate these potential unacceptable hazards. In
the automotive domain, recently (November 2011), the ISO-26262 safety
standard has been introduced to provide appropriate requirements and pro-
cesses. More specifically, the standard defines the system development pro-
cess that must be carried out to achieve a system that can be considered
acceptably safe. To be released on the market, systems must be certified,
proofs that the systems are acceptably safe must be provided in terms of a
structured argument, known as safety case, which inter-relates evidence and
claims. Certification authorities are in charge of evaluating the validity of
such safety cases. In the automotive domain, certification and compliance
with the standard ISO-26262 is becoming mandatory. By now, trucks do
not have to be compliant with the standard. However, it is likely that by
2016 they will have to. Scania is one of the leading companies in trucks
development. To be ready by 2016, Scania is interested in investigating
ISO-26262 as well as safety case provision. Thus this thesis focuses on the
provision of a safety case in the context of ISO-26262 for Fuel Level Es-
timation and Display System (FLEDS), which is one of the safety-critical
systems in Scania.

1

Contents

1 INTRODUCTION 9
1.1 Context and motivation . 10
1.2 Contributions . 10
1.3 Organization of the thesis . 10

2 BACKGROUND and RELATED WORK 11
2.1 User Functions . 11

2.1.1 Implementation of User Functions 11
2.2 FUEL LEVEL ESTIMATION AND DISPLAY 12

2.2.1 FLEDS variants . 13
2.2.2 FLEDS Allocation Elements 14
2.2.3 FLEDS Requirements 15

2.3 HAZARD ANALYSIS TECHNIQUES 17
2.3.1 Failure Modes and Effect Analysis 17
2.3.2 Hazard and Operability Study 19
2.3.3 Fault Tree Analysis 22

2.4 ISO 26262 . 26
2.4.1 Management of functional safety 28
2.4.2 Concept phase . 28
2.4.3 Product development at the system level 31
2.4.4 Product development at the software level 32

2.5 SAFETY CASE . 33
2.5.1 Safety Case in Compliance with ISO 26262 35
2.5.2 Safety Case Life Cycle 35

2.6 Modelling Techniques . 37
2.6.1 Text-Based Notations 37
2.6.2 Graphics-Based Notations 37

2.7 Safety Case Fallacies . 42
2.8 Challenges when Developing Safety Cases 43
2.9 D-Case editor . 43
2.10 Related Work . 45

3 PROBLEM FORMULATION 47

2

4 SOLUTION METHODS 48
4.1 Scope . 49
4.2 Limitations . 49

5 COLLECTION AND PROVISION OF EVIDENCE 50
5.1 Hazard Analysis and Risk Assessment (Pt 3, Cl 7) 51
5.2 Functional Safety Concept (Pt 3, Cl 8) 53
5.3 Specification of the Technical Safety Requirements (Pt 4, Cl 6) 55
5.4 System Design (Pt 4, Cl 7) 57

5.4.1 SESAMM . 58
5.4.2 ECU software . 60
5.4.3 Software Layers in Coordinator ECU system 64

5.5 Software Architectural Design (Pt 6, Cl 7) 90
5.6 Item Integration and Testing (Pt 4, Cl 8) 93

6 SAFETY CASE OF FLEDS 98

7 DISCUSSION 112

8 CONCLUSION AND FUTURE WORK 115
8.1 Conclusion . 115
8.2 Future Work . 116

Appendices 121

A Standard Deviation Analysis 122

3

List of Tables

2.1 Configuration parameters for variant 1 of FLEDS 14
2.2 UFRs for FLEDS . 15
2.3 AER 201 for FLEDS . 16
2.4 AER 201 for FLEDS . 16
2.5 Basic Sheet of FMEA . 18
2.6 Basic Sheet of HAZOP . 21
2.7 Classes of severity . 30
2.8 Classes of exposure . 30
2.9 Classes of controllability . 30
2.10 ASIL classification . 30
2.11 System design verification methods [17] 31
2.12 Verification methods for the software architecture design [17] 32
2.13 Mapping of GSN elements to D-Case elements 44

5.1 Hazard Analysis using Adapted HAZOP [5] for FLEDS . . . 52
5.2 Safety goals for FLEDS . 53
5.3 Functional safety requirements for FLEDS 54
5.4 Technical safety requirements for FLEDS 56
5.5 System design analysis methods 75
5.6 FMEA for the system made at Scania-part 1 77
5.7 FMEA for the system made at Scania-part 2 78
5.8 FMEA for the system made at Scania-part 3 79
5.9 Safety related requirements of FLEDS that have been verified

along with the verification methods used 92
5.10 Mapping of Scanias testing levels for FLEDS to item integra-

tion and testing in ISO 26262 94
5.11 Consistent and correct implementation of external and inter-

nal interface at the hardware-software level [17] 94
5.12 Test cases and results for the ECU system test in Scania that

corresponds to hardware software integration and testing . . 96
5.13 Consistent and correct implementation of external and inter-

nal interface at the vehicle level [17] 96

4

5.14 Test cases and results for the vehicle integration system test
and lab integration test for FLEDS in Scania that corresponds
to vehicle integration and testing and system integration and
testing in ISO26262 . 97

A.1 Standard deviation for both of the filters and the sensor in
different driving scenarios [31] 122

5

List of Figures

2.1 Components of Fuel Level Estimation and Display (FLEDS) . 13
2.2 Basic process of FMEA [3] 17
2.3 Basic process of HAZOP [3] 20
2.4 Basic process of FTA [3] . 23
2.5 Event symbols for FTA . 24
2.6 Gate symbols for FTA . 24
2.7 FTA example . 25
2.8 Overall structure of ISO 26262 [17] 27
2.9 Dependencies among the safety case elements [33] 34
2.10 Safety case life cycle during traditional development life cycle

[33] . 36
2.11 Normal prose example . 37
2.12 Structured prose example . 38
2.13 Argument outline example . 38
2.14 CAE modelling elements . 38
2.15 GSN modelling elements [9] 39
2.16 Goal structure example [35] 40
2.17 GSN extensions [9] . 41
2.18 Functional breakdown pattern [35] 42

4.1 Solution methods used in this thesis 49

5.1 Technical view of SESAMM 59
5.2 Relations among ECU software layers 60
5.3 internal functional view for the software of the ICL ECU system 61
5.4 Information flow among software layers in COO ECU system 63
5.5 Internal functional view of MIDD layer 66
5.6 Internal functional view of fuel level display system 68
5.7 Internal functional view of TankCalculation 71
5.8 Internal functional view of AE201 73
5.9 Internal functional view of GainCalculation 74
5.10 Internal functional view of AE202 76

6

5.11 Fault tree for the deviation ”Fuel gauge indicates higher fuel
level than the actual fuel level in the tank” 81

5.12 Fault tree for the deviation ”Fuel gauge indicates lower fuel
level than the actual fuel level in the tank” 83

5.13 Fault tree for the deviation ”Fault tree for the deviation Fuel
gauge indicates no fuel level when it should not” 84

5.14 Fault tree for the deviation ”Fuel level warning displayed
when it should not” . 85

5.15 Fault tree for the deviation ”Fuel level warning not displayed
when it should” . 87

5.16 Simulation result for the system when KF driven only by fuel
consumption [23] . 88

5.17 Simulation result for the system when KF driven only by fuel
level sensor [23] . 89

5.18 Simulation result for the system when KF driven by fuel con-
sumption and fuel level sensor [23] 89

5.19 Vehicle test results for the system when KF is driven only by
fuel consumption [23] . 90

5.20 The verification model for the requirements of FLEDS using
Model checking [30] . 91

5.21 Original sample for one of the test cases regarding ECU sys-
tem test done for FLEDS at Scania 95

6.1 Goal structure of FLEDS . 99
6.2 Goal structure for the product-based argument 99
6.3 Goal structure for the Module D 3 100
6.4 Goal structure for the Module D 6 101
6.5 Goal structure for the Module D 7 102
6.6 Goal structure for the Module D 8 102
6.7 Goal structure for the Module D 10 103
6.8 Goal structure for the Module D 9 104
6.9 Goal structure for the Module D 12 105
6.10 Goal structure for the Module D 13 106
6.11 Goal structure for Module D 4 107
6.12 Goal structure for Module D 1 107
6.13 Goal structure for Module D 14 108
6.14 Goal structure for Module D 15 109
6.15 Goal structure for Module D 16 110
6.16 Goal structure for Module D 17 111

A.1 Simulation of the standard deviation for both of the filters
and the sensor [31] . 123

7

ABBREVIATIONS

AE Allocation Element

AER Allocation Element Requirement

APPL Application Layer

ASIL Automotive Safety Integrity Level

Cl Clause

COO Coordinator

EMS Engine Management System

FAA Federal Aviation Administration

FSR Functional Safety Requirement

FTA Fault Tree Analysis

FMEA Failure Mode and Effect Analysis

FLEDS Fuel Level Estimation and Display System

HW Hardware

HAZOP Hazard and Operality Study

ICL Instrument Cluster

KF Kalman Filter

MIDD Middle Layer

NGC New Generation Scania

Pt Part

PHA Preliminary Hazard Analysis

RTDB Real Time DataBase

SG Safety Goal

SW Software

TSR Technical Safety requirement

UF User Function

UFR User Function Requirement

8

1. INTRODUCTION

This chapter presents a brief introduction about the safety case, ISO 26262
and the system under study. Moreover, context and motivation and the
organization of this thesis are presented further in the next sections.

The need for safety cases that are used to argue and demonstrate the safety
of the system has appeared. Safety case is a contextualized structured ar-
gument that links evidence to claims to show that the system is acceptably
safe. There are twdo types of arguments that are used to construct the safety
case; product and process-based arguments. Product-based argument is an
argument that is used to show that the behaviour of the system is safe by
using evidence that is related to the product’s behaviour, whereas process-
based argument is the one that is used to show that the process followed
during the development life cycle is trustworthy. More details about these
arguments are presented further in chapter 2.
With the introduction of safety standards such as ISO 26262, there was
a change in the approach being followed in safety management as these
standards provide the best practices that should be followed during the de-
velopment, construction and operation of safety critical system.
Quoting from the standard: ISO-26262 is intended to be applied to safety-
related systems that include one or more electrical and/or electronic (E/E)
systems and that are installed in series production passenger cars with a
maximum gross vehicle mass up to 3 500 kg. This thesis is about build-
ing a safety case for Fuel Level Estimation and Display System (FLEDS),
which is one of the safety-critical systems in Scania trucks. Indeed, a wrong
behaviour (e.g. false fuel level) of such system could lead to hazardous
events for the driver, such as engine stop and loss of power assisted steering.
The focus of the thesis is to show how the different work products that are
generated during the development life-cycle can be used to construct sub-
arguments that are to be used to build the partial safety case. Moreover,
the focus will be on collecting and providing (when missing) the evidence
(product and process evidence) required for constructing the sub-arguments
that are used to construct the safety case. In order to build a safety case in
compliance with ISO 26262, mapping of what the system has to the standard
is required. More detailed information about mapping is presented later in
this thesis.

9

1.1 Context and motivation

Scania is interested in exploring ISO 26262 and the provision of the safety
case. Therefore, the safety case is built in the context of ISO 26262. Only
specific parts of ISO 26262 have been covered due to time limitation. This
thesis will help Scania to address what is needed and missing in case Scania
is interested in certification. Moreover, experiences from building a safety
case in the context of ISO 26262 in an industrial setting are not so many
and therefore such experiences are valuable and presented in the end of this
thesis. Moreover, throughout this thesis, we will try to address the following
questions:

• What does it mean to build a safety case in compliance with ISO
26262?

• What does it mean to have a clear separation between process and
product-based arguments?

• What kind of work-products are required to be in compliance to the
standard?

• What are the estimated effort for complete conformity with ISO 26262?

1.2 Contributions

The author of this thesis has provided a partial safety case for an indus-
trial setting [FLEDS] in the context of ISO 26262. A clear separation be-
tween product and process-based arguments have been maintained during
this thesis as well. Moreover, a paper [25] presented at the 23rd Interna-
tional Symposium on Software Reliability (ISSRE) has steemed from this
thesis.

1.3 Organization of the thesis

The rest of the report is organized as follows: In chapter 2, essential back-
ground necessary for this thesis as well as the related work are presented.
In chapter 4, the solution methods used to achieve the results of this thesis
are presented. In chapter 5, how we have collected or provided (when miss-
ing) the evidence needed to develop illustrative process and product-based
arguments through mapping are explained. In chapter 6, the safety case of
the system is presented. Moreover, lessons learned and general guidelines
to facilitate the adoption of ISO 26262 and the creation of safety cases are
presented in chapter 7. Conclusion remarks and future work are presented
in chapter 8. Finally, Contributions of this thesis are presented in section 1.2

10

2. BACKGROUND and
RELATED WORK

This chapter introduces the background information that are essential for
this thesis. Section 2.1 introduces essential information about the concept
of the user function in Scania. Consecutive sections introduce essential
infromation about hazard analysis, ISO 26262 and safety case.

2.1 User Functions

In Scania, there’s a possibility to select different driver experience functions
based on customer demands. These functions are called user functions (UF).
UF is a function that the user can perceive on the vehicle level [29], for
example air condition function is a UF since the driver can control the
adjustment of the air condition. User functions can be seen as high level
customer requirements [29].

2.1.1 Implementation of User Functions

To be able to implement UFs, one or more ECUs are required for each
function. Each ECU unit consists of specific hardware and software that
are needed to implement the specific UF. Moreover, communication among
ECUs is also essential in order to have a complete working system. The
following subsections explain what is required to implement a UF.

Electronic control unit

The electronic control unit (ECU) is a vital part to do all the required op-
erations to implement the UF. Each ECU consists of hardware and software
in which the hardware of an ECU consists of sensors and actuators. ECUs
are the main components that are used in the electrical system of Scania
which is called Scania Electrical System Architecture for Modularization
and Maintenance (SESAMM).

11

Controller Area Network

The communication among different ECUs is established through a con-
troller area network (CAN). CAN communication in SESAMM is divided
into three buses which are red CAN bus, yellow CAN bus, and green CAN
bus. The distribution of ECUs to these buses is as follows:

• The ECUs of the drive-line system are connected on a separate bus,
the red bus. This is done to protect the drive-line functions from other
less important functions from causing a failure on the bus. The ECU
systems of the red bus are considered to be of highest criticality. These
systems have criticality 1 [8].

• The ECUs of the most important systems that are not part of the
drive-line are connected on a separate bus, the yellow bus, for the
same reasons as given for the red bus. These systems have criticality
2 [8].

• The rest of the ECU systems are placed on the green bus. These
systems have criticality 3 [8].

Allocation Element

Allocation element (AE) is a piece of code that is responsible for realizing a
UF. Each ECU unit contains several AEs where each UF is realized by one
or more AE.

2.2 FUEL LEVEL ESTIMATION AND DISPLAY

In this section, FLEDS is presented in order to understand how the system
works and what are the components needed to build the system. There
are different variants of FLEDS and only one variant is considered in this
thesis. Therefore, FLEDS variants are presented in this section. Moreover,
allocation elements for FLEDS are presented since it’s necessary to analyse
AEs with respect to safety because AEs correspond to the code needed to
implement the required functionality. The requirements of the systems are
also necessary to be presented in this section in order to know later if these
requirements have been met or not.
FLEDS has two major functions; Fuel level estimation and low fuel level
warning. Truck driver needs to know how much fuel left in the tank and
thus there’s a need for a function that will estimate fuel level and display it to
the driver. Therefore fuel level estimation function will be used. Sometimes
the driver doesn’t check the gauge frequently and thus there is a need for
a mechanism that indicates that there’s low fuel level in the tank. Thus
low fuel level warning function will be used to indicate to the driver that

12

a refuel is needed. Fuel level is measured and presented to the driver in
the instrument cluster. If the fuel level is below a predetermined level a
warning is presented in the instrument cluster as well. UF18 is responsible
for FLEDS. The system consists of three ECU (Electronic Control Unit)
systems which are Engine Management System (EMS), Instrument Cluster
(ICL), and Coordinator (COO). In order to be able to estimate and check
the fuel level in the tank, a fuel level sensor is essential, in which it will be
placed in the tank. A signal from parking brake switch (PBS) is necessary
for refuel detection purposes. A battery is used to provide a power supply
for ECU systems.

Figure 2.1: Components of Fuel Level Estimation and Display (FLEDS)

2.2.1 FLEDS variants

FLEDS will be used in two types of vehicles and with two different types
of fuel (liquid and gas). Thus there are four variants for fuel level display
system:

1. Truck with liquid fuel

2. Bus with liquid fuel

13

3. Truck with gas

4. Bus with gas

For the simplicity of this thesis, only one variant is considered. The con-
sidered variant is for truck with liquid fuel (variant 1) with one tank and
one sensor. Moreover, there are different types of sensors and tank sizes.
Therefore, only one sensor type and one tank size (left and right tank) is
considered in this thesis. For the first variant of fuel level display system,
the fuel level is estimated by COO.

Table 2.1: Configuration parameters for variant 1 of FLEDS

2.2.2 FLEDS Allocation Elements

Two allocation elements have been used for the realization of UF18 (Fuel
Level Estimation and Display): AE 201 and AE 202. AE 201 and AE 202
are allocated in COO.AE 201 handles the fuel level estimation part. The
following steps are carried out for fuel level estimation:

1. The fuel level sensor is connected to COO and the level of the fuel is
read as a voltage value [27].

2. The voltage value is transformed into the corresponding volume in
percentage of the total volume. The percentage value is used together
with the total fuel capacity of the tank in litres to calculate the current
fuel volume [27].

3. A kalman filter algorithm is used to estimate the fuel level. The last
fuel volume estimate is used together with the current volume calcu-
lated in step 2 and the fuel consumption from the engine to calculate
a new estimate [27].

4. The estimated value from step 3 is transformed into a corresponding
percentage value and sent to ICL for display of the current fuel level
and to AE 202 for low fuel level indication [28].

AE 202 handles low fuel level warning. Information about the fuel level
and tank capacity on the vehicle is used to activate a warning if the fuel level
drops below a predefined level. The warning is kept even if the fuel level

14

Table 2.2: UFRs for FLEDS

for some reason increases again after the warning is set. Unusual driving
environments, such as steep hills and tough terrain, can affect the fuel level
to increase a short period even if no fuel is filled. However if the fuel level
increases a lot, caused by for example a refill, the warning is unset again
[28].

2.2.3 FLEDS Requirements

There are two types of requirements for FLEDS: User Function Require-
ments (UFRs) and Allocation Element Requirements (AERs). UFRs are
used to describe the high level requirements for UF18 whereas AERs de-
scribe how to implement UFRs. UFRs and AERs that have been covered in
this thesis are presented below.

15

Table 2.3: AER 201 for FLEDS

Table 2.4: AER 201 for FLEDS

16

2.3 HAZARD ANALYSIS TECHNIQUES

The objective of hazard analysis is to identify all the hazards that are caused
by malfunctioning behaviour of electrical, electronic, or programmable items.
A number of hazard analysis techniques are available nowadays. The tech-
niques that are covered in the next sections are Failure Modes and Effect
Analysis, Hazard and Operability Study, and Fault Tree Analysis. The rea-
son why these techniques are explained is because they are in the context
of this thesis.

2.3.1 Failure Modes and Effect Analysis

Failure Modes and Effects Analysis (FMEA) is a detailed, bottom up, in-
ductive analysis technique that is used to identify the effects of the primary
failure modes of subsystems, components, or functions, and to identify how
to control or avoid the undesired effects of these failure modes. FMEA is
primarily used for evaluation of the entire system when undesired failure
modes occur. However FMEA can be used for hazard analysis as well. The
technique provides a possibility to specify failure rates for the primary fail-
ure modes, thus serving as a quantitative probabilistic analysis technique.
FMEA is oriented towards detailed component and functional level. FMEA
is also used to document the analysis and the design changes needed to
reduce the risk associated to primary failure modes.

A. FMEA Process
Basic FMEA process starts by evaluating the design of the system. After
evaluation, possible potential failure modes should be identified along
with their possible causes. Effects of the specified failure modes should
be considered. If possible, specifying recommended actions to reduce
the risk of the potential failure modes is preferable. After following the
previous steps, documentation of the results from those steps is essential.
The output from FMEA process is a worksheet, as explained in the next
paragraph

Figure 2.2: Basic process of FMEA [3]

B. FMEA Worksheet
The information retrieved by performing FMEA is usually documented
by using a worksheet. Many different types and formats of FMEA work-
sheets have been suggested by different projects and disciplines over the

17

past years. The amount and type of information that should be cov-
ered in the worksheet is determined by the project particular needs, the
person that is performing FMEA, or the safety manager. The minimum
information that must be presented in FMEA worksheet that supports
hazard analysis is as follows:

• Failure mode: This field must be filled in with all the possible failure
modes that may affect the item under examination.

• Failure mode causes: This field must be filled in with all the possible
causes that result in the appearance of a particular failure mode.

• Immediate effect of failure mode: This field must be filled in with
the direct effect of the failure mode that occurs on the next item in
the design.

• System effect of failure mode: This field must be filled in with the
effect of the failure mode that occurs on the system as a whole.

• Detection methods of failure modes: This field describes how the
failure mode will be detected. If the method will result in detection
of the failure mode before resulting in severe consequences, the
detection methods can be specified as mitigation means.

• Current controls: This field must be filled in with the controls avail-
able currently in the system that are used to prevent failure modes
from happening or causing severe consequences.

• Recommended actions: This field must be filled in with the meth-
ods that can be used for controlling, mitigating, or eliminating the
effects of failure modes.

Table 2.5: Basic Sheet of FMEA

18

C. Advantages and Disadvantages

1. Advantages

• Easy to learn and perform

• Provides a structural way for evaluating systems, subsystems,
and components

• Allows predicting the reliability of the item under analysis

2. Disadvantages

• Provide a way to identify failure modes related to multiple com-
ponents failing together

• Provides less focus on failures resulting from human errors

• Requires expertise in order to know what to analyse

• Boring and time consuming

2.3.2 Hazard and Operability Study

Hazard and Operability study (HAZOP) is a qualitative analysis technique
that is used to identify hazards by examining possible deviations in the de-
sign of the system [3]. This technique is oriented to subsystems, components,
software, environment, and human errors. The analysis can be performed
at any level of the design such as conceptual design, high level design, or
detailed system design. In order to be able to identify hazards using HA-
ZOP, guide words, parameters, and presentation of the system design are
required. Guide words are adjectives that are used to identify deviations
in the design. Correct operation of the system is specified by the correct
interactions among its components. Interaction among two components is
established by passing a parameter, which will affect the correctness of the
systems operation. To specify deviations, guide words are combined with
parameters. Examples on guide words can be not supplied when demanded,
supplied when not demanded, more, less, early, late, and etc. Knowledge
about the system is necessary in order to be able to identify related devia-
tions and hazards.

A. HAZOP Process
HAZOP analysis is conducted by a team and not by a single analyst.
Success of HAZOP is determined by the appropriate selection of the
team leader and team members. As depicted in Figure 2.3, the basic
HAZOP process is constituted of the following steps:

• Establish HAZOP plan-In this step, the analysis goals and schedule
are defined.

19

• Team selection-In this step, the appropriate team leader and team
members are selected. Team members should have different disci-
plines (e.g. design, testing, verification, and etc.)

• Define system elements-In this step, the desired system is divided
into smaller subsystems. The decomposition process continues until
all the items, component, or functions under analysis have been
defines.

• Select guide words-In this step, the required guide words are de-
fined.

• Perform analysis-This step involves many activities such as

– Identifying the appropriate parameters for every item, compo-
nent, or function under analysis. The parameters will be the
one that will decide the successful operation of the item.

– Combine each parameter of the item with the appropriate guide
words in order to define deviations

– Derive hazards from deviations

– Identify consequences for each particular hazard in order to
know which hazards have severe consequences

– If possible, assign corrective actions for the hazards. Correc-
tive actions can be assigned by preventing particular causes
from happening

• Document process
In this step, the entire HAZOP process should be documented by
using a worksheet.

Figure 2.3: Basic process of HAZOP [3]

B. HAZOP Worksheet
The information retrieved by performing FMEA is usually documented
by using a worksheet. The amount and type of information that should
be covered in the worksheet is determined by the project particular
needs, the team that is performing HAZOP, or the safety manager. Thus

20

the layout of the worksheet is not critical. The minimum information
that must be presented in HAZOP analysis worksheet is as follows:

• No.: It’s used to identify each analysis line in the worksheet. The
column is used for reference purposes.

• Item: This field specifies the desired item, component, or function
for analysis.

• Function/purpose: This field specifies the purpose or the function
of the item, component, or function under analysis.

• Parameter : This field specifies the parameter of the item, compo-
nent, or function under the analysis.

• Guide word : This field specifies the guide word that will be used
with the particular items parameter. It is important to note that
more than one guide word can be defined for the particular param-
eter.

• Deviation: This field identifies the particular deviation that results
from combining the guide word with the parameter.

• Consequences: This field describes the consequences resulting from
the identified deviation.

• Causes: This field describes the possible and the credible cause for
a particular deviation.

• Hazard : This field describes the hazard that is resulting from a
particular deviation.

• Risk : This field specifies the risk for the consequences of the partic-
ular hazard. Risk will be measured by combing the severity of the
consequences with the probability of occurrence for the particular
deviation.

• Corrective actions: This field specifies the actions that will be used
in order to mitigate or eliminate hazards.

Table 2.6: Basic Sheet of HAZOP

C. Advantages and Disadvantages

21

1. Advantages

• The technique is easy to learn and perform

• Structured and organized technique for hazard analysis

• Can be applied to any type of system

• Help the team to discover and think about less obvious behaviours
that may result in a deviation

2. Disadvantages

• Time consuming

• Considers only single item deviations and not combination of
items deviations

• Depends on the skills of the team

2.3.3 Fault Tree Analysis

Fault Tree Analysis (FTA) is a deductive failure analysis technique that is
used to analyse a specific undesired event into its possible causes [3]. It
is a top down approach since it starts with a top undesired event down to
its causes. Undesired event is a failure that could lead to undesired con-
sequences. Failure means that the system is unable to deliver the required
functionality when needed. Failures can cause hazard, where hazard is a
source of injury or harm to the environment or people. In reliability and
safety engineering, it’s important to find the weakness points in the system
design when a a specific failure occurs. Therefore, FTA is used to analyse
safety-critical failures in those fields. The term undesired event may differ
from one field to another. In Aerospace, system failure condition term is
used instead of undesired event term. FTA requires a deep analysis of the
possible causes for the undesired event. Moreover, the system under analysis
might be complex. Therefore, FTA construction process can be exhausting
and costly. The top event in the fault tree is the undesired event which is
the root of the hazard. Every event that causes the top event should be
described in the lower levels of the tree. The lower levels are used to show
the relationship between the undesired event and its possible causes. The
relationship between the undesired event and its possible cause are modelled
using logical symbols and gates. More information about FTA modelling is
presented in the upcoming sub sections.

22

A. FTA Process
The elements that are considered necessary in order to construct the
fault tree are undesired event and the causes that lead to that event.
The top undesired event should be resolved to its intermediate causes.
The analysis process of the intermediate causes should continue until
the fundamental causes are reached. The top event should provide a de-
scription of WHAT the event is and WHEN it will occur. The event can
be related to hardware fatigue, component (hardware or software) mal-
function, mechanical components malfunction, or a combination of the
factors mentioned previously. It’s very essential to describe the top event
correctly; otherwise it will result in wrong conclusions and evaluation of
the systems design.

Figure 2.4: Basic process of FTA [3]

B. FTA modelling

Modelling symbols are grouped between events, gates, and transfer sym-
bols. Figure 2.5, and Figure 2.6 shows the symbols that are used in this
master thesis for modelling FTA. Figure 2.5, shows the event symbols
for FTA where there are two types of events that can be modelled, where

• Basic Event
represents the final basic cause for a specific intermediate event.

• Intermediate event
represents the intermediate cause for a specific top undesired event.

Figure 2.6, shows the logical gates that can be used to model the rela-
tionship between the top event and its lower level causes. Gates work as
follows:

• AND gate
This gate shows that the output event occurs if all input events
occur.

23

Figure 2.5: Event symbols for FTA

• OR gate
This gate shows that the output event occurs if any of the input
events occur.

Figure 2.6: Gate symbols for FTA

Figure 2.7, shows an example about a fault tree for the event The car
doesn’t start during start up. The top event is caused either by a failure
in the engine or a failure in the battery. The failure in the battery is
caused by an electrical fault whereas the failure in the engine system is
caused either by a communication fault or an engine fault. Modelling
symbols can vary based on the software tool used for FTA construction.

24

Figure 2.7: FTA example

C. Advantages and Disadvantages

1. Advantages

• Show the logical relationship between the top event and all its
possible causes

• Evaluate the current design of the system with respect to safety
and reliability

• Find the gaps in the system

• Suggest effective safety mechanisms that can be used to get rid
of the gaps in the system

• Enhance the testing and maintenance process. Since it provides
an understanding about what can cause a failure then this point
can enhance the testing process by using fault injection method
during testing.

2. Disadvantages

• Time consuming technique

• Needs training and experience

• Could lead to the production of large trees if the domain of the
system is broad

• Modelling dynamic scenarios is hard

25

• It may not succeed in addressing some problems as it’s a binary
technique (either fail or success)

• Not possible to analyse combination of events in a single fault
tree

Since every technique has its own strengths and weaknesses, it is preferred
to use more than one technique for hazard analysis as they complement each
other.

2.4 ISO 26262

ISO 26262 is a functional safety standard for road vehicles with a maximum
vehicle weight of 3500 kg. The standard specifies a set processes (life-cycles)
that have to be followed to achieve safety critical systems. The purpose of
ISO 26262 is to reduce the risk of hazards that are caused by a malfunc-
tioning behaviour of electrical, electronic or programmable safety critical
systems. ISO 26262 consists of ten parts. Each part in the standard is
divided into sub parts that are called clauses. Under each clause there are
several requirements. In turn, each requirement has a number of sub require-
ments. As it can be retrieved from Figure 2.8, ISO 26262 defines a life-cycle
that is based on the V-model [ref]. This life-cycle which is followed from
left to right is defined in parts 3-7 of the standard. In this thesis, the parts
of the standard that mainly are considered are: Concept phase (Part 3),
Product development at the system level (Part 4), Product developement
at the software level (Part 6). Management of functional safety (Part 2) is
also partially considered. Thus, the following subsubsections provide basic
information on these parts and clauses.

26

Figure 2.8: Overall structure of ISO 26262 [17]

27

2.4.1 Management of functional safety

This part is about safety management during different phases of the safety
life cycle. It includes three clauses: Overall safety management, safety man-
agement during the concept phase and the product development, and safety
management after the items release for production. Overall safety man-
agement clause specifies the requirements of safety management for the
organization that is responsible for the development of the safety related
item. One of the requirements prescribes that the organization should have
a safety plan along with the process description of the plan. Another re-
quirement prescribes that the organization should have a quality manage-
ment according to a quality standard as well as a competence management
that shows the competence of the people involved in the safety life cycle.
The next clause, safety management during the concept phase and product
development requires that a safety manager is assigned to be responsible for
the whole safety management during Part3 to Part 7. This clause includes
other requirements regarding the safety plan that will be followed during
these parts. The last clause, safety management after the items release for
production specifies the requirements for safety management when the item
is released for production in order to ensure that the functional safety is
achieved during the production process.

2.4.2 Concept phase

The first clause of this part is item definition. Item definition is used to
identify the item and all the interactions that the item has with other items
and the environment. Item is defined as a systems or a group of systems that
implement one or more functionality that is observed at the vehicle level.
The main purpose of this clause is to understand what will be developed and
how it does work. The next step is to plan how the development according
to ISO 26262 is to be made. This is done through initiation of safety life
cycle clause.
The next step in the concept phase is the hazard analysis and risk as-
sessment. In this step, all the hazards that are caused by malfunctioning
behavior of electrical, electronic, or programmable items should be identi-
fied. Hazard is an undesired event that results in harm to the humans or
the environment. For each identified hazard, an automotive safety integrity
level (ASIL) should is assigned. ASIL taxonomy consists of four levels that
range from A to D, in which D is the highest and A is the lowest. ASIL is
used to know which requirement of ISO 26262 to follow in order to reduce or
avoid the risk of particular hazards. For each particular hazard that has an
ASIL level A, B, C, or D, at least one safety goal is identified. A safety goal
is a sentence that describes how to avoid or mitigate a particular hazard.
The safety goal inherits the ASIL level of the particular hazard that it aims

28

to mitigate or avoid. The following is the requirements of hazard analysis
and risk assessment that has been covered in this thesis:

• 7.4.2.2.1 The hazards shall be identified systematically by using a suit-
able analysis technique.

• 7.4.2.2.2 Hazards shall be specifed in a way that can be observed at the
vehicle level.

• 7.4.2.2.3 The hazardous event shall be specified by comining pertinent
hazards and operational situations.

• 7.4.2.2.4 The consequences for each hazard shall be specified.

• 7.4.3.1 All the specified hazardous events shall be classified.

• 7.4.3.2 For each hazardous event, the severity level shall be specified to
one of the four levels S0, S1, S2 or S3 with respect to Table 2.7.

• 7.4.3.4 TFor each hazardous event, the exposure level shall be speci-
fied to one of the four levels E0, E1, E2, E3 and E4, with respect to
Table 2.8.

• 7.4.3.7 For each hazardous event, the controllability level shall be spec-
ified to one of the four levels C0, C1, C2 and C3 with respect to Ta-
ble 2.9.

• 7.4.4.1 For each identified hazardous event, an ASIL level is assigned
using the parameters ”severity”, ”exposure” and ”controllability” with
respect to Table 2.10.

• 7.4.4.3 A safety goal shall be specified for each hazardous event with
an ASIL level A to D. If similar safety goals are specidied, these may
be combined into one safety goal.

• 7.4.4.4 The safety goal shall inherent the same ASIL level for the cor-
responding hazardous event. If similar safety goals are combined into
a single one, with respect to 7.4.4.3, the combined safety goal shall
inherent the highest ASIL level.

The next step in the concept phase is to define at least one functional
safety requirement for each safety goal. Functional safety requirement is
a sentence that describes the functionality to achieve the safety goal but
it shouldnt describe how it will be implemented in hardware or software.
Each functional safety requirement inherits the ASIL level of the particular
safety goal. Allocation of functional safety requirement to the preliminary
architectural elements of the item is essential. The derivation of functional

29

Table 2.7: Classes of severity

Table 2.8: Classes of exposure

Table 2.9: Classes of controllability

Table 2.10: ASIL classification

30

safety requirements, ASIL, and their allocation to the preliminary architec-
ture is called functional safety concept. The requirements that has been
covered in this thesis are as follows:

• 8.4.2.1 The functional safety requirements shall be deduced from the
safety goals, taking into account the elementary architectural presump-
tions.

• 8.4.2.2 At least one functional safety requirement shall be identified for
each safety goal.

• 8.4.3.1 Every functional safety requirement shall be assigned to the
elementary architectural presumptions.

2.4.3 Product development at the system level

The first clause in this part is planning of the work activities and it’s called
initiation of product development at the system level. The next
clause is to the specification of technical safety requirements for each
functional safety requirement. Technical safety requirement specifies how to
implement a functional safety requirement in hardware or software. Alloca-
tion of technical safety requirement to hardware and or software is essential.
Next step is to develop the system design based on the functional safety
requirements, technical safety requirements, and non safety related require-
ments. After developing the system design, verification of the system design
shall be conducted with respect to the Table 2.11. Afterwards, the software
architectural design shall be developed. The software architectural design
shall be verified by using the verification methods listed in Table 2.12 [17].
Afterwards product development at the hardware respective soft-
ware is conducted in which these parts are explained later in this thesis.

Table 2.11: System design verification methods [17]

31

Table 2.12: Verification methods for the software architecture design [17]

The next step after product development at the hardware and software
level is item integration and testing. The purpose of item integration
and testing is to test every safety requirement in order to see if it is in
compliance with its specification and ASIL categorization. Moreover, item
integration and testing is used to verify that the items within the vehicle
interact correctly. Item integration and testing is conducted at three levels:
hardware-software, item, and vehicle level. The first level is to integrate and
test the hardware and software of each particular element that compose the
item. After that, integration and testing of all the elements that compose a
particular item is conducted. Thereafter, integration and testing of all the
items that compose the vehicle is conducted.

Thereafter in this part is safety validation. The purpose of safety val-
idation is to provide evidence based on tests that the safety goals have been
realized at the vehicle level. Moreover, safety validation is used to check
whether the functional safety of the item is in compliance with the func-
tional safety concept.

After that, functional safety assessment is conducted in order to evalu-
ate the functional safety accomplished by the item. Thereafter, release for
production clause is conducted. In this step, a check is made to see if the
item meets all the considered requirements for functional safety. In case the
item meets its requirements, release for production can start.

2.4.4 Product development at the software level

The first step starts with the planning of the work to be performed during
this part. This step is called initiation of the product development at

32

the software level. The next step is to derive software safety require-
ments from the technical safety requirements along with the allocation of
these requirements to software parts in a high abstraction level. Thereafter,
software architectural design that meets software safety requirements
is developed. The next step is to design and implement software units
that are in compliance with the architectural design and the software safety
requirements. Verification of the designed and implemented software units
is followed. Next step is the software integration and testing in which
is used to integrate all the software units and test them to demonstrate that
the designed software architecture meets its software safety requirements.
The last step is the verification of software safety requirements. The
purpose of the verification of software safety requirements according to ISO
26262 is to demonstrate that the embedded software satisfies its require-
ments in the target environment [17].

2.5 SAFETY CASE

A safety case is defined as an argument supported by evidence to show that
the system is safe enough to operate in a given context [14]. The safety case
should be understandable by different stakeholders, convincing about the
safety of the system, as well as complete and consistent. The main elements
of a safety case are requirements, evidence, argument, and context. More
explanation about each of the elements is provided as follows:

• Requirements: are the safety requirements, goals, or objectives that
must be achieved in order to ensure the safety of the system.

• Evidence: The evidence about the safety of the system. The evidence
can be based on the development process, testing, verification, simu-
lation, safety management, and analysis.

• Argument: It’s used to connect safety requirements to their evidence
in a structured and a manageable way.

• Context: Identifies the domain or scope within which the safety to be
argued.

It is mandatory for the safety case to have these four elements otherwise
the case is not complete. An argument without evidence is baseless whereas
evidence without an argument is unexplained [33]. The elements of the
safety case are inter-related. Thus consistency must be maintained when
a change is introduced in any of the safety case elements. For example,
if a change has been introduced to the context, other elements should be
checked to maintain if they are still valid in the context. Figure 2.9 shows

33

Figure 2.9: Dependencies among the safety case elements [33]

the elements of the safety case as well as the dependencies among these
elements. The figure shows that the elements should be valid in the context.

Based on the type of the evidence, the argument will be classified as
either process-based or product-based. Process-based argument assumes
that a good process will lead to a good product. Process-based safety case
should provide evidence about the ordinary development process as well as
the safety engineering process followed. Thus process-based argument can
have two sub-arguments. The first sub-argument should provide a set of
evidence to show that the development process used in the development
life cycle is rigorous. The second sub-argument should provide a set of ev-
idence to show that the safety engineering process used is effective. The
other type of safety cases is the product-based argument. product-based
argument should provide evidence that is related to the safe behavior of
the product. Product-based evidence should show that the system has the
required safe behavior when something wrong happens. The system should
have fail-safe techniques. Fail-safe techniques result in a product that is
more capable in handling all the considered failures. Fail-safe techniques
can be either hazard mitigation or elimination techniques. These techniques
should be considered in the design phase of the product. product-based
argument should be supported by evidence from testing, verification, and
simulation if possible.

34

2.5.1 Safety Case in Compliance with ISO 26262

Before the introduction of ISO 26262, the automotive industry has followed
IEC 61508 international standard for electrical and electronic systems [16]
and MISRA Guidelines for Safety Analysis of Vehicle Based Programmable
Systems for development, operation and maintenance of safety electrical and
electronic embedded systems. With the introduction of ISO 26262, require-
ments about the safety case have been stated clearly in the standard. A
safety case in compliance with ISO 26262 (as stated in Part 2, Management
of Functional Safety [17]) should meet the following requirements:

”6.4.6.1 The safety case shall be complied with for items that have at
least one safety goal with an ASIL (A), B, C or D: a safety case shall be
developed in accordance with the safety plan”.

”6.4.6.2 The safety case should compile the work products that are gen-
erated during the safety life cycle”.

The requirements means that the safety case should be developed for items
with an ASIL level A or higher and it shall consist of a set of work prod-
ucts that are generated by following the activities of ISO 26262 where work
products means the result of performing one or more requirements of the
standard . Requirement 6.4.6.2 encourages box ticking mentality as the com-
pany or organization may pretend that it has a safety case in compliance
with the standard just because it has the required work products.

2.5.2 Safety Case Life Cycle

A safety case is usually built at the end of the development life cycle. How-
ever this approach has a number of disadvantages such as:

• The resulted safety case is less robust as the safety case developers will
have to argue over the design as it’s given to them. Thus it will not
be possible to influence the design in order to improve safety.

• The resulted safety case could lead to redesign and redevelopment of
the system, in which it can be expensive with respect to time and
money.

It is required by some safety standards such as U.K. Defense Standards
00-56 [26] to develop safety case during different phases of the development
life cycle. Three versions of safety cases can be obtained based on in which
phase the case is presented. These versions are as follows [33]:

• Preliminary Safety Case At this stage, the safety case is presented af-
ter the systems requirements have been identified and reviewed. The

35

safety case in this stage will present the objectives, the arguing ap-
proach as well as the anticipated evidence.

• Interim Safety Case At the interim stage, the safety case will be up-
dated to reveal the knowledge from detailed design and system speci-
fication.

• Operational Safety Case At the operational stage, the safety case will
be updated with complete evidence that shows that the system meets
its safety requirements. This safety case should be created before the
system is put into service. Figure 2.10 shows the safety case develop-
ment during traditional development life cycle.

Figure 2.10: Safety case life cycle during traditional development life cycle
[33]

36

2.6 Modelling Techniques

Based on the presentation of information used for describing the safety case
arguments, modeling techniques can differ between graphics-based notations
and text-based notations.

2.6.1 Text-Based Notations

This type of notation uses textual presentation to represent the elements
of the safety case. Normal Prose, Structured Prose, and Argument Outline
are some styles used for text-based notations. In normal prose, the safety
argument is written as a normal text as presented in Figure 2.11. It can
be difficult to understand and trace the structure of the argument in nor-
mal prose. One way to solve this problem is to use structured prose, in
which it requires to denote the structure of the argument by highlighting
claim, context, evidence, strategy, solution, assumption, and justification.
Figure 2.12, shows an example of a structured prose. The structure of the
argument can be made clearer by using argument outline style. Different
formats can be used in argument outline. Figure 2.13, shows an example
of argument outline style. Other text-based notation styles are available
such as mathematical proof and lisp style. Refer to [4] for more information
about these styles.

Figure 2.11: Normal prose example

2.6.2 Graphics-Based Notations

This type of notation uses graphical presentation to represent the elements
of the safety case. Claim Argument Evidence (CAE), and Graphical Struc-
ture Notation (GSN) [36] are the notations used for graphical presentation
of the safety case arguments. CAE has a number of modeling elements that
represent claim, argument, evidence, and the relationships among these ele-
ments. The basic argumentation elements that are used in modeling safety
case arguments using CAE are given in Figure 2.14.

37

Figure 2.12: Structured prose example

Figure 2.13: Argument outline example

Figure 2.14: CAE modelling elements

38

GSN uses basic argumentation elements to model the individual ele-
ments of the safety case. GSN modeling elements are explained below, and
presented in Figure 2.15.

• Goal: is a claim about the system

• Strategy: A method that is used when decomposing a claim or goal
into sub claims or sub goals.

• Solution: represents evidence that shows that a particular goal or claim
has been met.

• Context: definition of the domain or scope in which a goal, evidence
or strategy is given

• Undeveloped entity: Indicate that specific part of the argument has
not been developed. It can be applied to goals and strategies.

– Undeveloped goal: It indicates that the goal has not been devel-
oped yet because the evidence supporting this goal is not available
yet.

Figure 2.15: GSN modelling elements [9]

The argument is built by linking together the basic elements using two
relationships that are solved by and in context of. The claim is continuously

39

decomposed into sub claims using GSN strategy element. The decomposi-
tion continues until sub claims are supported by direct evidence. Linking
together GSN elements in a network is called a goal structure. Figure 2.16,
shows an example about goal structure. In this example, the top level goal
G1 ”The control system is acceptably safe” in the context C1 ”Definition
of acceptably safe” is broken down into sub goals G2 ”The possible hazards
have been identified” and G3 ”The possible hazards have been mitigated”
by using strategy S1 ”Argument over hazard identification and mitigation”.
G2 and G3 are supported by direct evidence sol1 ”Hazop” and sol2 ”Verifi-
cation” respectively.

Figure 2.16: Goal structure example [35]

40

GSN has two extensions: Patterns and Modular extensions [9]. Patterns
are used for recording and documenting successful argument structures for
reusability purposes [9]. The pattern can be reused when building a safety
case for a system that has a similar domain as the pattern’s domain. The
pattern should have a description that demonstrates the purpose, motiva-
tion and other information necessary about the pattern. It could result in
improper use of the pattern in case those necessary information are missing.
Figure 2.17 shows the extensions of GSN

Figure 2.17: GSN extensions [9]

Figure 2.18, shows a functional breakdown pattern as an example on
GSN patterns. This pattern argues the safety of the system functions by
arguing further that each of those functions are safe and by arguing that
either the interaction among the system function are independent or the
system functions are independent from each other (no interactions). This
pattern is used in chapter 6 to construct the safety case of FLEDS. A safety
case can grow in size and complexity for complex safety critical systems.
Thus modularization can be used to construct modules of safety arguments.

41

Figure 2.18: Functional breakdown pattern [35]

2.7 Safety Case Fallacies

Flaws in the safety case are called fallacies. Undetected fallacies could lead
to over trust of the systems safety. Therefore, fallacious argument could
result in a system that has modes that could result in accidents. Falla-
cies are widespread in safety arguments and in order to be able to detect
them, awareness about them is required. Thus, logical fallacies have been
categorized into the following [37]:

• Circular reasoning: Happens when the argument reassert its claim in
a way that it makes it true.

• Diversionary arguments: contain enormous amount of insignificant
material in order to divert the readers attention from a feeble sup-
ported claim.

• Unsupported assertions: occur when an argument is not supported by
evidence.

• Anecdotal arguments: concern arguments in which their claims are
true in particular circumstances.

• Fallacious appeals: concern arguments that are supported by irrelevant
evidence.

• Mathematical fallacies: contain common defects in mathematical in-
ferences.

42

• Omission of key evidence: occurs when the argument lacks the neces-
sary evidence to ascertain its authenticity

• Linguistic fallacies: Concerns arguments where the language is weak
and distracting where such language could direct the reader to unde-
sired conclusions.

A safety case expert can compare his arguments with respect to the different
types of fallacies in order to see if the arguments have any underlying logical
fallacies.

2.8 Challenges when Developing Safety Cases

Many challenges could appear while developing safety cases. Such challenges
are:

• The person that is responsible for building the safety case can tend to
show information that support safety and hide information that shows
the opposite. This is called confirmation bias

• There’s a risk that the safety case becomes a paper practice in case the
regulator demonstrate the required work products that the company
has without actually checking the safety of the system.

• Safety case can increase in size and complexity for complex systems.
Thus making it difficult to understand

• It can be difficult to organize and introduce evidence from different
sources. Thus it’s difficult to keep up a clear structure of the safety
argument

• It can be difficult for the reader to find where the relevant safety
information can be found in the safety document

2.9 D-Case editor

D-Case editor has been used for the creation of the safety case. The goal
of this thesis was not to make a survey between different tools due to time
limitation of this thesis. D-Case is an editor for dependability cases where
D stands for dependability. It’s implemented as an eclipse plugin and it has
a framework for benchmark test [10]. The author of this thesis has decided
to choose D-case editor because it is a user friendly and it provides support
for modularity and GSN. Table 2.13 shows the mapping of GSN elements
to D-Case elements.

43

Table 2.13: Mapping of GSN elements to D-Case elements

44

2.10 Related Work

Based on our experience, there are few studies regarding the experience of
building a safety case and certifying systems in compliance with ISO26262.
Born et al. in [20] demonstrate the experiences from applying ISO26262 to
a German car manufacturer. Even though the paper is not considering the
issue of building a safety case, however, the experiences are important with
respect to building a safety case in compliance with ISO26262. Born et al.
experiences present three issues of applying the standard to car manufactur-
ers. The first issue is that the company is accustomed to the existing internal
safety processes and unwilling to the external obliged processes. The sec-
ond issue is that the company is concentrating on the documentation rather
than the contents of the documents. Moreover, the companies having diffi-
culties in maintaining consistency among multiple documents and versions.
This issue leads to the third issue; the problem of maintaining traceability
among multiple documents. Born et al. suggests that traceability can be
maintained by using cross-referenced identifiers among requirements, haz-
ards and etc. The first issue of Born et al. is in consistent with the results of
Kienle et al. presented in [1]. Kienle et al. results were based on an industrial
questionnaire. The questionnaire showed that the internal code guidelines
and processes are more important than the external ones. Johansson et al.
in [18] demonstrate the gap analysis between the development life cycle of
Scania and the requirements of ISO 26262. The gap analysis was conducted
in order to define what is needed by Scania to achieve compliance with ISO
26262. The analysis of Johansson et al. showed that: No ASIL classification
is conducted by Scania, requirement derivation by Scania is not performed
as required by ISO 26262, and no planning for safety activities is conducted
by Scania as required by ISO 26262. Johansson et al. suggests that Scania
must focus on ASIL classification and the derivation of requirements in case
Scania is interested in compliance with ISO 26262. ASIL classification and
the derivation of requirements are essential sections of the standard. Fol-
lowing other sections of ISO 26262 are dependent on both of those sections.
Feather and Markosian in [21] present their experiences about building a
safety case for a piece of a safety-critical software that is used to launch
a Nasa’s vehicle. Their experiences present two issues. The first issue is
that it was very difficult for them to start constructing the safety case as
there were no examples about safety cases for software systems. The second
issue is that it was hard to achieve a well-written and well-structured safety
case. The authors of the safety case didn’t have a good understanding of
how safety cases should be structured. In [6], Törner and Öhman present
an industrial study regarding the introduction of the safety case in the auto-
motive industry. Their study was based on interviews and workshops. The
first issue from their study showed that the main concept of the safety case
was not used. Moreover, the results showed that it was difficult to collect

45

information for building safety cases. Moreover, competence and experience
are required when building safety cases. In this thesis, similar issues were
experienced as presented in chapter 7.

46

3. PROBLEM
FORMULATION

This thesis consider applying ISO 26262 and building a safety case on an
industrial setting. The author of this thesis will try to show how the different
work products that are generated during the development life cycle can be
used to construct the safety case. Moreover, throughout this thesis we will
try to address the following questions:

• What does it mean to build a safety case in compliance with ISO
26262? This question direts us to the following subquestions:

– How to make the safety case in compliance with the standard?

– How to find the evidence relevant to build the safety case?

• What does it mean to have a clear separation between process and
product-based arguments? This question opens the door to another
one which is; what makes a work product a process-based evidence
and what makes it a product-based evidence?

• What are the main challenges that may appear when applying ISO
26262 and building the safety case?

47

4. SOLUTION METHODS

This chapter presents the solution methods that have been used to perform
this thesis as well as the scope of this thesis. Moreover, the limitations of
this thesis with respect to the time limit and the documents that has been
found for the system are presented further in this chapter.

In order to be able to perform this thesis in a structured way, a number
of steps have been taken. The first step is to study ISO 26262 in order to
be able later to map what has been found for the system to the standard
in order to produce process-based evidence that is in compliance with the
standard. ISO 26262 study has been conducted in section 2.4. Thereafter, a
detailed study of the system under analysis is conducted as presented in sec-
tion 2.2. If information needed about the system is missing, interviews are
conducted to gather relevant information (information gathering). There-
after, evidence about the safe behaviour of the system and the process that
has been followed during the system development are collected as presented
in chapter 5. The next step is to map what the system has to the standard
and in case of absence of important evidence, evidence should be provided.
The mapping is presented in chapter 5. The last step is to search and find a
tool for constructing the safety case as presented in section 2.9. Figure 4.1
shows these steps. The resulting safety argument can be ambiguous and
un-understandable because not all engineers are able to write clear, well
reasoned, and well structured English. To overcome the limitations of text-
based notations, graphical structure notations are used as explained before
in subsection 2.6.2. GSN is the one that has been used in this thesis because
of:

• Ease of construction and management of the safety argument

• Easy to understand the logical flow in the safety argument

• Ease of maintenance

• Tool support

• Modularity and patterns support

To make the construction of the safety case easier, a tool that supports
modularity is needed. Thus, searching and finding a suitable tool is essential.

48

Figure 4.1: Solution methods used in this thesis

4.1 Scope

The scope of this project is to develop an operational safety case for FLEDS
because the system is already in the production phase and the evidence
regarding the system safety is present.

4.2 Limitations

• With respect to the time limit of the thesis and with respect to what
documents have been found regarding the system, the work covers only
the software functions of the system. Therefore, the hardware of the
system haven’t been analysed with respect to safety.

• The parts of ISO 26262 that has been covered in this thesis, are based
on what have been found for the system under analysis. The system is
studied and each activity that is implemented for the system is checked
against ISO to see to which part of the standard it corresponds.

49

5. COLLECTION AND
PROVISION OF
EVIDENCE

To build a safety case, first of all, the claims to be supported must be
clear and the evidence to support them must be identified. Usually,
the top-level claim is that the system is acceptably safe with respect
to the definition of acceptably safe. This top-level claim is shown
to be founded by providing evidence that all the hazards that lead
to intolerable risk are mitigated. This top-level claim stems from the
objective of ISO 26262, which states that the product should ensure an
adequate and acceptable level of safety. Our work has not consisted in
making a cost and benefit analysis to achieve a definition of acceptably
safe for which the risk is as low as reasonably practical. Instead,
we have proceeded as if a definition was present or at least could be
provided in further developments of this work. Our main focus has
been in finding a clear mapping between the evidence required by the
standard and the evidence available in the company. This mapping was
needed to understand which evidence could be collected to build the
safety case and which evidence was missing and needed to be provided.
To do such mapping, we thoroughly studied FLEDS, ISO 26262 and
the safety life-cycle adopted by the company. Moreover, interviews
have been conducted with the employees who were involved in the
development of the system. Therefore, in this section, a mapping of
what the system has to the standard is presented. The clauses that
are covered in this section are based on what have been found and
or provided for the system regarding hazard analysis, design, testing,
verification and etc.

50

5.1 Hazard Analysis and Risk Assessment (Pt
3, Cl 7)

As stated in the background subsection 2.4.2, the objective of hazard
analysis and risk assessment is to identify and classify all the hazards
that are caused by malfunctioning behaviour of electrical, electronic,
or programmable items. No hazard analysis and no ASIL classification
have been made in Scania since the standard is not adopted. Thus,
evidence about hazard analysis, ASIL classification and safety goal
identification was essential. Thus this evidence has been provided by
the author of this thesis. HAZOP technique has been used for hazard
analysis and more fields to the HAZOP sheet have been added in order
to make it in compliance with ISO 26262. UFR of FLEDS corresponds
to SG. Thus a mapping from UFRs to SGs is conducted for the spec-
ification of SGs. Both, the requirements of hazard analysis and risk
assessment in the background subsection 2.4.2 and the hazard analysis
techniques suggested in the course DVA321 [5] has been followed when
providing an adapted HAZOP table.

Hazard analysis has been conducted for the main two functions of
FLEDS (fuel level estimation and low fuel level warning). Adapted
HAZOP technique has been selected for hazard analysis. Table 5.1,
shows HAZOP analysis for FLEDS. To make ASIL classification much
more clear, colours has been used such as red, orange and green where
red stands for ASIL level D (catastrophic), orange stands for ASIL A,
B, and C, and green stands for No ASIL level or QM level. Safety
goals have been formulated as it is required in requirement 7.4.4.3 and
7.4.4.4 in the background subsection 2.4.2. Table 5.2, shows the safety
goals that are formulated for each hazard.

51

Table 5.1: Hazard Analysis using Adapted HAZOP [5] for FLEDS

52

Table 5.2: Safety goals for FLEDS

5.2 Functional Safety Concept (Pt 3, Cl 8)

The goal of this section is to collect and or provide evidence that
FSRs are derived for each safety goal. As stated in the background
subsection 2.4.2, FSR describes the functionality of how to achieve
the safety goal. Some of AERs of FLEDS corresponds to FSR in
ISO 26262. Thus a mapping from AERs of FLEDS has been made
regarding the specifications of FSR. As the system is already under
production, only mapping of AERs to the standard has been made.
The mapping to the standard has been conducted by following the
requirements of ISO 26262 in the background subsection 2.4.2.

53

Table 5.3: Functional safety requirements for FLEDS

54

5.3 Specification of the Technical Safety Re-
quirements (Pt 4, Cl 6)

The goal of this section is to collect and or provide evidence that TSRs
are derived for each FSR. As stated in the background subsection 2.4.3,
TSR describes how to implement FSR in hardware or software. Based
on what have been found for FLEDS, only one requirement from ISO
26262 regarding the specification of TSR have been followed as the sys-
tem is already under production and we can’t specify new TSR rather
than a mapping of AERs of FLEDS to TSR concept is conducted. The
requirement that has been followed is stated as:

– 6.4.1.1 The technical safety requirements shall be defined with re-
spect to the functional safety concept as well as the elementary
architectural presumptions of the item.

Some AERs that corresponds to TSRs were not documented in AERs
documents but they were implemented in the system. Thus, no map-
ping were found and as a result, the corresponding AER field in Ta-
ble 5.4 is filled with no requirement about this TSR is specified in the
requirement document. Table 5.4, shows the technical safety require-
ments for the system.

55

Table 5.4: Technical safety requirements for FLEDS

56

5.4 System Design (Pt 4, Cl 7)

As stated in the background subsection, the system design shall be
in compliance with FSRs and TSRs. Therefore, this section aims to
collect and or provide evidence about that. In order to achieve the goal
of this section, we need first to present the system design as well as
the software design. Secondly, we collect and provide evidence about
the analysis on the system design to identify the causes and effects of
the systematic failures. Thereafter, evidence about the verification of
both the system and the software design is presented. In Scania, the
design of the system was presented as simulink models. Due to the
complexity of the models, the author of this thesis has modelled the
system using SysML modelling language [32] in order to simplify the
design and extract the information that are needed only for variant 1
of the system. COO ECU system is the main ECU that is responsible
for fuel level display system functions. COO ECU system requires
three inputs. The inputs are as follows:

– Fuel level signal from fuel level sensor

– Fuel rate signal from EMS ECU system

– Parking brake status from parking brake switch

The communication among systems components is as follows:

– Communication between fuel level sensor and COO ECU system
is

– established through cable

– The communication between parking brake switch and COO ECU
system is established through cable as well

– The communication between COO and ICL ECU system is es-
tablished through SAE-J1939 connector cable using yellow CAN

– The communication between COO and ICL ECU system is es-
tablished through SAE-J1939 connector cable using yellow CAN

The power supply is fed to different ECUs through cables. More in-
formation about the internal functions for the ECUs is presented in
the next sections.

57

5.4.1 SESAMM

Scania has developed an electrical system which can be used on both
trucks and buses with minor modifications. SESAMM system is com-
posed of a number of ECU systems as shown in Figure 5.1, that are
responsible for different services in the vehicle. Since the thesis is
about FLEDS, thus only FLEDS related ECUs are considered. Re-
lated ECU systems of FLEDS are: EMS ECU system, ICL ECU sys-
tem, and COO ECU system. EMS ECU system is responsible for all
the functions that are related to the engine, ICL ECU system is re-
sponsible for all the functions that are used for displaying indications
to the driver such as warning lamps, whereas COO ECU system con-
tains all the functions that do not obviously belong to any other ECU
system. The main focus of this thesis is COO ECU system since it
has all the functions related to fuel level display system. There is a
relation between EMS and COO ECU systems in which EMS send a
signal to COO system and thus a relation is presented between these
two ECU systems. Another relation exists between COO and ICL
ECU systems, in which COO provides interfaces that are presented as
indications to the driver through ICL ECU system. COO ECU Sys-
tem is composed of COO ECU Hardware and COO ECU Software,
whereas it’s aggregated by other components such as fuel sensor and
PBS as the life time of fuel level sensor and PBS don’t depend on the
life time of COO ECU system. ICL ECU System is composed of ICL
ECU Hardware and ICL ECU Software, whereas it’s aggregated by
other components such as fuel gauge and warning lamp.

The software for ECU system in SESAMM consists of the following
three main layers:

MIDD layer

A layer where the information is processed into engineering quanti-
ties such as converting the voltage value via an analogue input to a
specified value needed for calculations, decoding or encoding of CAN
messages. The layer is also responsible for signal processing of input
data such as filtering, linearisation, and out of range control. Each
ECU has different software modules that compose MIDD layer.

58

Figure 5.1: Technical view of SESAMM

APPL layer

This layer consists of software modules that handle the trucks be-
haviour This layer gets its input from RTDB and also delivers its
results there. Each ECU has different software modules that compose
the APPL layer.

RTDB layer

It’s a signal layer that is used for storing the information that is to
be passed between MIDD and APPL layers. For exchanging of data
through the signal layer, read and write operations are used. Figure
5.2 shows the relations among those ECU software layers.

59

Figure 5.2: Relations among ECU software layers

5.4.2 ECU software

There are three main ECUs that are involved in FLEDS system. These
system are introduced in more details in the following sections.

Instrument Cluster

ICL ECU system is responsible for indicating information to the driver.
ICL ECU software is composed of MIDD and APPL layers, whereas
it’s aggregated by RTDB as RTDB is distributed among all ECUs.
Indications related to fuel level display system that are presented to
the driver are total fuel level and low fuel level warning. Total fuel
level is presented on the fuel gauge of the ICL ECU system, whereas
low fuel level warning is indicated by a warning lamp. APPL layer of
the ECU software is composed of gauge function, warning lamp, and
other functions that are out of the scope of this thesis. Figure 5.3
shows the internal functional view for the software related to the ICL.

60

Figure 5.3: internal functional view for the software of the ICL ECU system

Coordinator

Since fuel level display functions are located in COO ECU system,
thus APPL and MIDD layers have a number of functions that han-
dle the inputs and the calculations for fuel level display. COO ECU
software is composed of MIDD and APPL layers, whereas it’s aggre-
gated by RTDB as RTDB is distributed among all ECUs. MIDD layer
is responsible for a number of functions that handle the inputs from
sensor, PBS, and EMS ECU system. MIDD layer is composed of the
following functions:

• EncodingCANMessages

• DecodingCANMessages

• MapVoltageToVolPercentage

61

Whereas MIDD layer is aggregated of the following function as these
functions life time is independent of the MIDD layers life time. These
functions are reused in other parts of the system and the parts are out
of the scope of this thesis. Thus the relation between MIDD layer and
these functions are represented as aggregation.

• LowPassFilter

• WritingToRTDB

• ReadingFromRTDB

More information about the purpose of each function is explained in
the next few sections. APPL of the coordinator software is composed
of fuel level display system and other functions. Only fuel level display
system is considered in the APPL layer because other systems are out
of the scope of this project. AE can contain one or more than one
function. Fuel level display system is composed of two main allocation
elements which are AE201 for fuel level estimation and AE202 for
low fuel level warning. AE201 is composed of a number of internal
functions that perform different tasks in order to estimate the total
fuel level in the tank. AE201 is composed of:

• CalculateCurrentVolume

• ScaleFuelConsumption

• GainCalculation

• RefuelDetection

• KalmanAlgorithm

• ConvertToPercent

Whereas AE202 is composed of a number of internal functions in order
to check if there is a low fuel level in the tank. AE202 is composed of:

• CheckSignalStatus

• WarningLevel

• SetStatus

MIDD layer receives the input signals and then writes it to RTDB in
which the latter pass the signals to APPL layer. When total fuel level
is calculated and low fuel level warning is checked, the values are sent
from APPL to RTDB, in which the values are passed from RTDB to
MIDD layer. The latter encodes the values in CAN messages that are
to be sent to ICL ECU system.

62

Figure 5.4: Information flow among software layers in COO ECU system

63

5.4.3 Software Layers in Coordinator ECU system

This section will introduce the input signals to each layer and then explains
the functional components that compose each layer.

MIDD Layer

The layer is responsible for signal processing of input data such as filtering,
linearisation, and out of range control as it was mentioned in the beginning
of this report. MIDD layer receives input signals from different components.
The input signals are as follows:

• fuelLevelSensorValue: indicates fuel level sensor signal that is received
from fuel level sensor

• fuelEconomy E:FuelRate: indicates fuel rate signal that is received
from EMS ECU system though CAN message

• PBrakeApplied: indicates the parking brake state that is received from
parking brake switch

The layer is responsible for processing of the signals through internal func-
tional units. Afterwards the layer passes these signals to RTDB layer. The
internal functional units of MIDD layer and their purposes are as follows:

• MapVoltageToVolPercent
This functional unit is responsible for converting the analogue input
voltage into fuel level in percentage. The unit has a lookup table that
maps the voltage to the corresponding level in percentage.

• LowPassFilter
After converting the analogue input into a percentage value, the con-
verted value is filtered by applying a low pass filter. The low pass filter
is implemented by applying a specific equation. The purpose of low
pass filter is to remove the high value frequencies that result when the
vehicle moves uphill or downhill.

• DecodingCANMessages
Fuel rate from EMS ECU system is received as a CAN message. In
order to get the value of fuel rate, the CAN message have to be de-
coded. So this unit is responsible for decoding CAN messages that are
received from other ECU systems.

• WritingToRTDB
The filtered fuel level, fuel rate and parking brake applied values has
to be written to RTDB. WritingToRTDB functional unit is responsible
for this task.

64

• ReadingFromRTDB This functional unit is responsible for reading the
total fuel level and low fuel level warning from RTDB.

• EncodingCANMessages
Total fuel level and low fuel level warning has to be sent to ICL ECU
system in order to be presented on the instrument cluster. Encoding-
CANMessages functional unit is responsible for encoding these values
into messages that are sent through CAN to ICL ECU system. Fig-
ure 5.5, shows the internal functional view of MIDD layer.

65

Figure 5.5: Internal functional view of MIDD layer

66

RTDB Layer

This is a signal layer that s used for signal storage and signal passage be-
tween MIDD and APPL layer as it was mentioned before in the beginning
of this report. No information has been provided about the internal working
mechanism for this layer because it’s out of the scope of this project.

APPL Layer

This layer consists of software modules that handle the trucks behaviour.
One of the software modules that are within the scope of this project is fuel
level display system. More details about the internal functional units of this
module are presented in details in the next sections.

• Fuel Level Estimation and Display System
There are a number of requirements for fuel level display system that
must be met. The system is designed in a way that makes it possible
to meet its requirements. Fuel level display system is composed of
two main functions; AE201 and AE202. Some functions besides these
two main functions are used to do some calculations of values that are
required in the calculations of the main functions. Other functions
are used in order to provide safety mechanisms. There are two types
of inputs that are used in fuel level display system; input signals and
input parameters. Input signals are the actual signals coming from fuel
level sensor, PBS, and EMS ECU system. Whereas input parameters
are used to specify the sensor type used in the particular truck, tank
sizes used, and which ECU system should be responsible for fuel level
estimation. Input parameters are set manually by the engineers. Other
functions other than the main functions are used as it was mentioned
in the beginning of this section.

67

Figure 5.6: Internal functional view of fuel level display system

68

So the functions (functional blocks) that compose FLEDS are:
ReplacementInputSignals, ReplacementInputParameters, InputFilters,
TankCalculation, AE201 and AE202. More details about the those
functional blocks of are presented in the following sections. Safety
mechanisms related functions are:

ReplacementInputSignals

This is one of the safety mechanisms that are present in the system.
This functional block is responsible for checking the input signals from
RTDB layer. The block will check the value of the input and then
assign a status for it. The status will be either Good or Not Good.
The output from this block will be a string that contains the value
for each input along with its status. If the status of the input is Not
Good, a replacement value to be passed instead of the original value.
The original status will be passed as well which means that when a
value is replaced, the status Not Good is passed anyway. It receives
three input signals from RTDB which are fuel level percentage, fuel
rate, and parking brake applied.

ReplacementInputParameters

This is one of the safety mechanisms that are present in the system.
This component will replace the faulty parameters that are coming
from RTDB with safe signals in order to avoid undesired events when
faulty parameters are present. The input parameters are used for
configuration of the fuel level display system. The component will
check the value of the input and then assign a status for it. The status
will be either Good or Not Good. If the status of the input is Not
Good, a replacement value to be passed instead of the original value.
It receives four configuration parameters as explained below:

• RTDB UP FUEL LEVEL SENS E
Based on the value of this parameter, the fuel level sensor that
is placed in the vehicle is defined. The values range from 10 to
20 where 20 mean that the fuel type is gas and there will be no
sensor for measuring the fuel level. Thus receiving gas level from
EMS unit (This case is out of the scope of this project).

• RTDB UP FUEL LEVEL TOT E
Based on the value of this parameter, the total fuel level will be
estimated by one of the ECU units in the system. If the value
is 10 then the total fuel level is estimated by COO, otherwise
if the value of this parameter is 20 then the total fuel level is

69

estimated by Bus Chassis System (BCS) which is out of the scope
of this project. Figure 9 shows the configuration parameters for
fuelLevelSensorParam and fuelLevelTotalParam.

• RTDB UP TANK VOLUME LEFT E
This parameter indicates the fuel tank volume on the left side in
liter unit. The parameters values range from 1 to 35, where every
value correspond to a specific capacity.

• RTDB UP TANK VOLUME RIGHT E
This parameter indicates the fuel tank volume on the right side
in litre unit. The parameters values range from 1 to 36, where
every value correspond to a specific capacity.

Other functions other than safety mechanism functions are:

InputFilters

This block is responsible for evaluating the digital input from PBS. It
checks whether the PBS is applied or not. Other inputs to this block
are just passed with no processing.

TankCalculation

Tank capacity is necessary in fuel level estimation since it’s used in
kalman filter algorithm in order to calculate total fuel level. Tank sizes
value is also necessary since it’s used to set different trigger levels for
low fuel level warning. Thus TankCalculation block is used to calculate
tank capacity and tank sizes. The difference between tank capacity
and size is that tank capacity means the total usable volume including
the hidden volume, bulb volume, end plate volume and etc., whereas
tank size is the actual size of the tank. TankCalculation functional
unit consists of the following internal functional units:

� ParameterCheckLogic
This functional unit is responsible for checking if the fuel level
sensor parameter or one of the tank volume Parameters has in-
valid value. The output from this function is used in FindVolumes
function.

� MapParameterToTankSize
This functional unit is responsible for mapping the tank volume
parameters to the actual tank size. If there is a left and a right
tank then both of them shall be considered. The mapping is
based on a look up table.

70

� FindVolumes
This block is used to calculate the static volume. Static volume
is the total volume in the tank including the hidden volume, the
bulb volume and etc. The calculation will be based on the sensor
type. Each sensor has a different number of steps that are used
to read the level in the tank. Fuel level sensor will not cover all
the volume in the tank; instead it will cover the volume from
the minimum point of the sensor until the maximum points of
the sensor. Thus there are volumes that are not considered in
the measurement of the sensor and it should be considered in the
estimation algorithm. This function will handle the volumes that
are not considered by the sensor. The output from this block will
contain all the calculated different volumes (hidden, bulb, end
plate, and etc).

� AddLevels
This block is responsible for accumulating all the volumes re-
ceived from FindLevels block. The result of accumulation is the
tank capacity. The output is a string that contains both tank
capacity and wrong tank parameter setting.

Figure 5.7: Internal functional view of TankCalculation

71

AE201

This functional unit is responsible for calculating the total fuel level that
is presented on the fuel gauge. AE201 consists of a number of functional
units in order to estimate the total fuel level. Each signal that ends with
str means that it contains a value (Val) and a status (SS). Figure 5.8, show
the internal functional view of AE201.

Internal blocks of AE201 are:

• CalculateCurrentFuelVolume
Fuel level received from RTDB layer is just the level measured by the
sensor and converted to percentage. The level measured by the sensor
represents only what is in the range of the sensor. There are hidden
volumes that are not measured by the sensor. Thus it cant be used
directly in kalman filter algorithm. Fuel volume is required in order
to estimate the total fuel level. Two inputs are needed in order to
calculate the current fuel volume. These inputs are fuel level sensor
value and tank capacity.

• ScaleFuelConsumption
The fuel rate received from EMS ECU system is received as liter per
hour. This block takes the fuel rate value, scales it, and then converts
it to cubic meter per hour in order to be used in the algorithm. The
status for fuel rate is checked. In case fuel rate status is Not Good,
kalman gain is changed in a way that makes it possible to not be
affected by the bad status of fuel rate. More details about this are
explained further in this report.

• RefuelDetection
One of the requirements for fuel level display system is to detect the
refuel made by the driver. The purpose of this requirement is to re-
estimate the total fuel level when the tank is refueled. In order to be
able to check if there is a refuel, a parking brake signal is necessary to
be checked, and a fuel level in the tank must be monitored. The fuel
level must be monitored in order to see whether there is at least 30%
increase in the fuel level or not. The reason why parking brake signal
to be checked is that because the driver usually applies the parking
brake before he starts to refill the tank. Therefore refuel detection
function is needed in order to detect the refuel action. Two inputs
are required to this block as it’s obvious from figure 12. If a refuel is
detected, a reset string is set to true. When reset string is true, the
kalman algorithm and low fuel level warning are reset too.

72

Figure 5.8: Internal functional view of AE201

73

• GainCalculation
Gain feedback is used in kalman algorithm to estimate the total fuel
level. The value of gain feedback is very essential and it affects the
result of the algorithm. Thus it’s very important to write a function
that takes care of gain in case some of the inputs to kalman algorithm
are not of Good Status or Not Available. GainCalculation functional
block checks fuel rate status and tank size parameters. If there’s an
error in fuel rate or if tank size parameters are not set, then feedback
gain is replaced with a constant value in order to make the algorithm
continues to calculate total fuel level by only using fuel level from
the sensor as an input. Figure 5.9, shows internal functional view of
GainCalculation.

• KalmanAlgorithm
It’s an algorithm that is used to estimate the total fuel level in the tank.
It uses the fuel volume and fuel consumption in the calculations. The
output from the algorithm is the volume in cubic meter per second.

• ConvertToPercent
The output from kalman algorithm is in cubic meter per hour. Since
total fuel level is indicated on the fuel gauge as a percentage between
0 and 100, thus a conversion from cubic meter per hour to percentage
is essential. The output from this function is the total fuel level value
in percentage.

Figure 5.9: Internal functional view of GainCalculation

74

AE202

The low fuel level warning is used to warn if the estimated fuel level is below
a predetermined level in the tank. The limit is 10% for tank sizes below 900
litres and 7% for larger tanks. Low fuel level warning function consists of
internal functions to achieve the required functionality. Internal functions
and their purposes are as follows:

• CheckSignalStatus
CheckSignalStatus function is used to check the status of total fuel
level. Before checking if low limit has been reached or not, total fuel
level status is checked. In case total fuel level status is Not Good, total
fuel level is set to a value that doesn’t trigger a low level warning.

• WarningLevel
WarningLevel function is used to check if low limit has been reached
or not. In case fuel level total status is Good then an input from tank
size is used to check the size of the tank in order to be able to know
the limit that has to be reached in order to indicate if low level has
been reached or not.

• SetStatus
SetStatus functional block is used to either set or reset the low level
warning. If a refuel of the tank is detected then the warning is not set,
otherwise the warning is set.

After presenting the system and the software architectural design, the
next step is to analyse the design by following 7.4.3 requirement. The re-
quirement states that:

• 7.4.3.1 Safety analyses on the system design to identify the causes of
systematic failures and the effects of systematic faults shall be applied
in accordance with 5.5 [17].

Table 5.5: System design analysis methods

75

Figure 5.10: Internal functional view of AE202

The requirement suggests the use of inductive or deductive analysis
methods for the assessment of the design. The design has been assessed
in Scania by using FMEA. The next set of tables provides FMEA that were
done by Scania. The tables provides sufficient information about different
failure modes and their effects. The tables are not completely compatible
with the sheets presented in the background subsection 2.3.1. However, the
analysis done by Scania shows that the company made efforts to consider
the consequences as well as provided mechanisms in the design to overcome
the possible failures that may occur. .

76

Table 5.6: FMEA for the system made at Scania-part 1

77

Table 5.7: FMEA for the system made at Scania-part 2

78

Table 5.8: FMEA for the system made at Scania-part 3

79

However in order to be able to know if there were any safety mechanisms
for particular causes, an analysis of the design with respect to the causes was
essential. Moreover, the standard requires an an assessment of the design
as presented in the following requirement:

• 7.4.3.1 Safety analyses on the system design to identify the causes of
systematic failures and the effects of systematic faults shall be applied
in accordance with Table 5.5

Thus, the design has been analysed using FTA as it was recommended
by the standard. FTA is based on the hazards that have been identified in
HAZOP that is in Table 5.1.
Based on hazard and operability study (HAZOP) and FMEA, possible de-
viations that can occur in the system have been defined. Deviations that
have been defined and considered are as follows:

• Fuel gauge indicates higher fuel level than actual fuel level in the tank.

• Fuel gauge indicates lower fuel level than actual fuel level in the tank.

• Fuel gauge indicates no fuel level when it should not.

• Fuel level warning displayed when it should not.

• Fuel level warning not displayed when it should.

For each of the deviations presented above, a fault tree is presented in
order to investigate the possible causes of each deviation. Every fault tree
shall analyse one and only one deviation or undesired event. Fault tree
analyses and its description for the considered deviations are as follows:

• Fuel gauge indicates higher fuel level than actual fuel level in the tank
The possible causes for this deviation can be either a mechanical fault
in fuel gauge, Bug in gauge function in ICL ECU system that lead
to setting wrong steps for fuel gauge, or erroneous fuel estimation by
kalman filter. Kalman filter depends on fuel rate and fuel level in
order to estimate the total fuel level in the tank. Thus erroneous fuel
estimation by kalman filter can be caused when any of these inputs has
an erroneous value. Fuel level is measured by fuel level sensor, then
low pass filtered, and afterwards used with tank capacity in order
to calculate the usable fuel level in the tank. Thus possible causes
of erroneous fuel level can be either by erroneous fuel level sensor
value, erroneous filtering of fuel level value , or erroneous calculation
of tank capacity in which the latter is caused by either erroneous tank
parameter settings or erroneous sensor parameter setting. Fuel rate
is calculated in EMS ECU system. Thus erroneous fuel rate results
from fault in fuel rate calculations by EMS ECU system. Figure 5.11,
shows fault tree for this deviation.

80

Figure 5.11: Fault tree for the deviation ”Fuel gauge indicates higher fuel
level than the actual fuel level in the tank”

81

• Fuel gauge indicates lower fuel level than actual fuel level in the tank
The possible causes for this deviation are the same as the causes for
deviation Fuel gauge indicates higher fuel level than actual fuel level
in the tank. Figure 5.12, shows the fault tree for this deviation.

• Fuel gauge indicates no fuel level when it should not
The possible causes for this deviation can be a mechanical fault in fuel
gauge, a hardware fault in ICL ECU system, a bug in gauge function in
ICL ECU system, or there’s no total fuel level received by ICL ECU
system. The possible causes for no total fuel level received by ICL
ECU system can be a communication problem between COO and ICL
ECU system or problem in COO ECU system. The communication
problem can be either because of a cut in the communication cable
or a lost CAN message that contains the total fuel level, in which the
latter is caused by a Fault in the CAN bus. Problem in COO ECU
system can be caused by a hardware fault in COO or when no power
supply is fed to COO, in which the latter is caused by a fault in power
supply or a fault in power supply cable between COO and the power
supply source. Figure 5.13, shows the fault tree for this deviation.

• Fuel level warning displayed when it should not
The possible causes for this deviation can be either a bug in warning
lamp function in ICL ECU system or an erroneous output from low fuel
level warning function in COO ECU system. Erroneous output from
low fuel level warning is caused by erroneous fuel estimation by kalman
filter or erroneous value of tank sizes. Erroneous fuel estimation by
kalman filter is caused by erroneous fuel level or erroneous fuel rate
in which the latter is caused by a fault in the calculations of fuel rate
by EMS. Erroneous fuel level is caused by erroneous fuel level sensor
value, erroneous mapping of voltage to volume percentage, erroneous
filtering of fuel level value, or erroneous calculations of tank capacity.
Erroneous calculations of tank capacity are caused by erroneous tank
parameter settings or erroneous sensor parameter in which both are
caused by human faults. Erroneous filtering of fuel level value is caused
by fault in low pass filter equation. Erroneous mapping of voltage to
volume in percentage is caused by fault in mapping look up table.
Whereas erroneous fuel level sensor value is caused by either electrical
or mechanical fault in fuel sensor. Figure 5.14, shows the fault tree for
this deviation.

• Fuel level warning not displayed when it should
The possible causes for this deviation can be a communication prob-
lem between COO and ICL ECU systems, a fault in warning lamp
(burned), a bug in warning lamp function in ICL ECU system, er-
roneous output from low fuel level warning function in COO ECU

82

Figure 5.12: Fault tree for the deviation ”Fuel gauge indicates lower fuel
level than the actual fuel level in the tank”

83

Figure 5.13: Fault tree for the deviation ”Fault tree for the deviation Fuel
gauge indicates no fuel level when it should not”

84

Figure 5.14: Fault tree for the deviation ”Fuel level warning displayed when
it should not”

85

system. The communication problem between COO and ICL ECU
system can be either a cut in the communication cable or a lost CAN
message that contains the activation of the warning in which the latter
is caused by a fault in the CAN bus. Erroneous output from low fuel
level warning function in COO ECU system is caused by erroneous
fuel estimation by kalman filter or erroneous value of tank sizes. Er-
roneous fuel estimation by kalman filter is caused by erroneous fuel
level or erroneous fuel rate in which the latter is caused by a fault in
the calculations of fuel rate by EMS. Erroneous fuel level is caused
by erroneous fuel level sensor value, erroneous mapping of voltage to
volume percentage, erroneous filtering of fuel level value, or erroneous
calculations of tank capacity. Erroneous calculations of tank capacity
are caused by erroneous tank parameter settings or erroneous sensor
parameter in which both are caused by human faults. Erroneous fil-
tering of fuel level value is caused by fault in low pass filter equation.
Erroneous mapping of voltage to volume in percentage is caused by
fault in mapping look up table. Whereas erroneous fuel level sensor
value is caused by either electrical or mechanical fault in fuel sensor.
Figure 5.15, shows the fault tree for this deviation.

86

Figure 5.15: Fault tree for the deviation ”Fuel level warning not displayed
when it should”

87

Figure 5.16: Simulation result for the system when KF driven only by fuel
consumption [23]

A verification of the system design has been found for fuel level display
system. So based on what have been found for the system, the next require-
ment in the product development at the system level that has been followed
is requirement 7.4.8.1 verification of the system design. This requirement
states that

• 7.4.8.1 The system design shall be examined for compliance and perfec-
tion with respect to the technical safety concept using the verification
methods as listed in Table 2.11 in the background subsection 2.4.3.

Three methods have been used for the verification of the system de-
sign and they correspond to three methods from Table 2.11: System Design
Walk-through, Simulation and System Prototyping and Vehicle Tests. Sys-
tem Design Walkthrough has been conducted by the author of this master
thesis since there was no verification for a number of requirements through
simulation and system prototyping methods because these requirements
were not easy to verify. A number of AERs that correspond to FSRs and
TSRs have been verified using these three methods. Other allocation element
requirements are verified during the software verification part. Thus software
verification is complementary to system verification where each verification
level (system or software level) takes care of a number of requirements.
AERs that have been verified using System Design Walkthrough, simula-
tion and systems prototyping and vehicle tests are AER 201 4, AER 201 09,
AER 201 11, AER 201 20, AER 201 21 and AER 201 42. Specifically, AERs
that have been verified using System Design Walkthrough method are AER 201 4
and AER 201 21. The verification using simulation and system prototyp-
ing methods is done by Peter Wallbeck [23]. The results of simulation and
system prototyping are presented in the following figures. The first sets of
figures are the results from simulation. Figure 5.16 shows that KF algorithm
can still estimate the fuel level even when there’s no input from fuel level
sensor.

Figure 5.17 shows that KF algorithm can estimate the fuel level even
when theres no input about fuel consumption. Thus, this simulation result
verifies AER 201 20 and AER 201 42.

88

Figure 5.17: Simulation result for the system when KF driven only by fuel
level sensor [23]

Figure 5.18: Simulation result for the system when KF driven by fuel con-
sumption and fuel level sensor [23]

Figure 5.18 shows that KF estimate the fuel level by depending on two
inputs which are: fuel level sensor and fuel consumption. This simulation
result verifies AER 201 11. Moreover, in order for KF to estimate fuel level,
a pre-filtering using low pass filter is implemented. Thus this simulation
result verifies AER 201 9.

Using the verification method system prototyping and vehicle test, the
system gave the same results as the simulation results but with lower reso-
lution. Thus, it means that the system works properly when implemented
in a Scania vehicle. Figure 5.19 shows KF when it’s driven only with fuel
consumption on a real vehicle. Other scenarios such as KF driven by sensor
or KF driven by both of the input signals (fuel level sensor and fuel con-
sumption) gives the same result as the simulation results but those results
are not presented here as they are the same as the simulation results. For
more information about the simulation, please refer to Peter Wallbeck thesis
report [23].

89

Figure 5.19: Vehicle test results for the system when KF is driven only by
fuel consumption [23]

5.5 Software Architectural Design (Pt 6, Cl 7)

The objective of the software architectural design is to develop the software
architecture as well as to verify it. The software architectural design repre-
sents all the software components along with the interactions, data paths,
and interfaces among these components. The software architectural design
should be developed in compliance with the software safety requirements.
However, the system is already under production and no there are no soft-
ware safety requirements have been found in the requirement documents of
fuel level display system. Since the system design presented in section 5.4
contains all the software components, interaction and interface among those
components. Thus the system design is also considered as the software ar-
chitectural design. A verification of the software arch design has been found
for fuel level display system. So based on what have been found for the
system, the next requirement in the product development at the software
level that has been followed is requirement 7.4.18 verification of the software
arch design. This requirement states that

• 7.4.18 the software architectural design shall be verified in accordance
and by using the software architectural design verification methods
listed in Table 2.12 [17] in the background subsection 2.4.3.

The method that has been used for the verification of the software ar-
chitecture design is formal verification. Model checking approach has been
used for the verification of the software architectural design as presented
in Ali and Muhammad thesis work [30]. In their work the software archi-
tecture design has been verified against these requirements: AER 201 11,
AER 201 12, AER 201 13, AER 201 14, AER 201 15, AER 202 2, AER 202 3,
and AER 202 5.
However, the requirements that are safety related are AER 201 11 and
AER 202 2. Thus, these requirements are in significance for this thesis.
Figure 5.20 shows the verification model for the requirements mentioned
above using Model checking approach.

Table 5.9 shows the safety requirements that have been verified during
the system design and software architectural design as well as the verification

90

Figure 5.20: The verification model for the requirements of FLEDS using
Model checking [30]

91

Table 5.9: Safety related requirements of FLEDS that have been verified
along with the verification methods used

method used for verification.

92

5.6 Item Integration and Testing (Pt 4, Cl 8)

In item integration and testing, the integration and testing is done at three
levels: Integration and testing of the hardware and the software of each
element that compose an item, integration and testing of all the elements
that compose an item and the integration and testing of the item with
other items within a vehicle. The objectives of item integration and testing
are: to test the compliance with safety requirements as well as to verify
that the system design implements the safety requirements correctly. Item
integration and testing is carried out through the following phases:

• Hardware and software integration and testing

• System integration and testing

• Vehicle integration and testing

In order to be able to see which testing level at Scania corresponds
to which level in ISO26262, we need to have a look at the testing levels
implemented for fuel level display system at Scania. The testing levels that
have been implemented for the system are as follows:

• ECU system test
The ECU system test integrates the hardware and software of an ECU
in order to verify the inputs, outputs, performance and robustness.

• Complete vehicle system test and complete vehicle integration test
These tests are performed to test the system of interest on the vehicle
as well as testing the system with other systems within the vehicle. It
aims at verifying the communication on the CAN bus as well as the
basic functionality of the user functions.

Now, a mapping of the testing levels at Scania to ISO 26262 is presented
below:

• Hardware-Software integration and testing
The test level at Scania that best matches the hardware and software
integration and testing is ECU system test as the ECU system test
integrates the hardware and software of an ECU system.

• System integration and testing
The test level at Scania that best corresponds to system integration
and testing is lab integration test.

• Vehicle integration and testing
The test level at Scania that best corresponds to vehicle integration
and testing is complete vehicle system test and complete vehicle inte-
gration test. At Scania, this level is conducted in vehicles. Table 5.10
shows the mapping of Scania to ISO 26262

93

Table 5.10: Mapping of Scanias testing levels for FLEDS to item integration
and testing in ISO 26262

After checking the requirements of item integration and testing, require-
ment 8.4.2.2.4 of the standard is found to be implemented in FLEDS at
Scania. The requirement is as follows:

• 8.4.2.2.4 The consistent and correct implementation of the external and
internal interfaces at the hardware-software level shall be demonstrated
using feasible methods [17] given in Table 5.11

Table 5.11: Consistent and correct implementation of external and internal
interface at the hardware-software level [17]

In order to be able to know which testing method of hardware and soft-
ware integration and testing Scania have used for FLEDS, a brief explanation
about internal and external interfaces is required. Thus, an interface means
the interaction among components (hardware/software). External interfaces
presents the interaction (i.e. input and output) of the ECU system of inter-
est with other ECUs through the CAN bus. Since ECU system test tests
against the communication on the CAN and the inputs and outputs passed
among ECUs. Thus, as a conclusion, ECU system test for fuel level display
system uses +emphtesting of external interfaces method. See Figure 5.21 for
the original sample for one of the test cases regarding testing with respect
to communication and the inputs and outputs that is carried out in ECU
system test in Scania. Internal interfaces mean an interaction among the
allocation elements of the ECU system of interest, as well as the interaction
between allocation element and sensors and actuators. ECU system test

94

Figure 5.21: Original sample for one of the test cases regarding ECU system
test done for FLEDS at Scania

aims at verifying AERs that are allocated to the ECU system of interest
and since those requirements specifies the interaction among AEs and sen-
sors and actuators. Thus, ECU system test tests internal interfaces as well.
Therefore, as a conclusion, ECU system test uses test of internal interfaces
method. Table 5.12 shows the corresponding test cases and results for the
requirements covered.

In Figure 5.21, the description column shows that the testing covers the
inputs, the outputs as well as the communication over CAN. So for example
you can see in Act1 what should be expected on the yellow bus and the
output value as well.

After checking the requirements of vehicle integration and testing, re-
quirement 8.4.4.2.4 of the standard is found to be implemented in fuel level
display system at Scania. The requirement is as follows:

• 8.4.4.2.4 The consistency and correctness of the implementation of the
external interfaces at the vehicle level shall be demonstrated using fea-
sible test methods as given in Table 5.13 [17].

95

Table 5.12: Test cases and results for the ECU system test in Scania that
corresponds to hardware software integration and testing

Table 5.13: Consistent and correct implementation of external and internal
interface at the vehicle level [17]

96

Test of interaction/communication aims at testing the communication
among the ECUs of the vehicle during the runtime. Complete vehicle sys-
tem test, complete vehicle integration test and lab integration test test the
communication on the CAN bus during the basic functionality of differ-
ent ECU systems. The testing is conducted in integration lab (ILab) and
sometimes even in lab vehicles. As a conclusion, complete vehicle system
test, complete vehicle integration test and lab integration testing uses test
of interaction/communication method during testing.

Table 5.14: Test cases and results for the vehicle integration system test
and lab integration test for FLEDS in Scania that corresponds to vehicle
integration and testing and system integration and testing in ISO26262

97

6. SAFETY CASE OF
FLEDS

The purpose of this chapter is to build the safety case of FLEDS. The case
is built by using the theory of building a safety case in chapter 2 (more
precisely section 2.5) and by using the evidence that has been collected
and or provided in chapter 5. The evdience that has been collected and
or provided in is used to create the process and product-based arguments.
These arguments are combined to form the safety case of FLEDS. D-Case
editor tool has been used for the creation of the safety case because of its user
friendly GUI and its support for modularity and GSN as mentioned before
in section 2.9. More details about how the evidence from chapter 5 has been
used for the creation of the safety case is presented further in this chapter.
Functional breakdown pattern in Figure 2.18 has been used in the creation of
FLEDS safety case. We have already collected and provided evidence about
the safety of the system functions of FLEDS and the interactions among
these functions. Therefore, this pattern has been reused in the creation
of the safety case. Functional breakdown pattern has been used in the
argument given in figure Figure 6.2.

Figure 6.1, shows the goal structure for FLEDS. In the structure, a
clear separation between process and product-based arguments has been
maintained. Moreover, the top level goal is broken down by strategy S1:
Argument over the behaviour of the system and the process followed during
the development life-cycle. We proceed with the safety case by arguing
about the behaviour of the system (product-based argument).

98

Figure 6.1: Goal structure of FLEDS

Figure 6.2 shows the argument for module D 2: FLEDS behaviour is ac-
ceptably safe. This goal structure reuses the functional breakdown pattern.
The goal structure provides an argument to show that the top level goal G 2
: FLEDS behaviour is acceptably safe, is supported by evidence regarding
the safety related functions, the interactions among these functions and the
hardware of FLEDS. Modules D 3 (Safety related functions of FLEDS are
acceptably safe), D 4 (Interaction between system functions are non haz-
ardous) and D 5 (Hardware related to FLEDS is acceptably safe) have been
used to provide arguments for goal G 2.

Figure 6.2: Goal structure for the product-based argument

The goal structure in Figure 6.3 provides an argument that supports the
top level goal G 3: Safety related functions of FLEDS are acceptably safe.

99

This goal is supported by an argument over the safety of fuel level estima-
tion function (G 4) and fuel level warning function (G 5) by using strategy
S 3: Argument over the safety of safety related functions. Thereafter, goal
G 4 is supported by arguments over the robustness of fuel level estimation
algorithm (Module D 6), hazard identification and analysis (Module D 7)
and mitigation/elimination of the hazards associated to fuel level estimation
function (Module D 8). Likewise, goal G 5 is supported by arguments over
hazard identification and analysis (Module D 7) and mitigation/elimination
of the hazards associated to fuel level warning function (Module D 9). Goal
structures for Modules D 6, D 7, D 8 and D 9 are presented further in the
next pages.

Figure 6.3: Goal structure for the Module D 3

The goal structure in Figure 6.4 provides the argument to show that
the top level goal G 5 is supported by evidence E 1: Standard deviation
analysis and E 2: Simulation results. This goal structure merges the findings
in chapter 5 concerning the software architectural design in section 5.5,
more precisely simulation results (Figure 5.16, Figure 5.17 and Figure 5.18),
system prototyping and vehicle test in Figure 5.19 and standard deviation
analysis in appendix A. Evidence E 1 is thus used to support goal G 7:
Kalman filter gives a steadier estimate with less deviation whereas evidence
E 2 is used to support goals G 8: Filter’s output is rarely shows a false
increase in the fuel level and G 9: Kalman filter is not easily affected by fuel
movements in the tank.

The goal structure in Figure 6.5 provides the argument to show that

100

Figure 6.4: Goal structure for the Module D 6

the top level goal G 6 is supported by evidence E 3: Adapted HAZOP
(Table 5.1), E 4: FTA figures (Figure 5.11 to Figure 5.15) and E 5: FMEA
tables (Table 5.6 to Table 5.8). This goal structure merges the findings
in chapter 5 concerning Hazard analysis in section 5.1 and system design
in section 5.4. Evidence E 3 is thus used to support goal G 7: All the
possible hazards have been identified, G 8: All the possible hazards have
been analyzed to their possible causes and G 9: All the possible hazards
have been analyzed to their possible consequences, then evidence E 4 is
used to support goal G 8 and E 5 is used to support goal G 9.

Figure 6.6 shows the argument for module D 8: All the possible hazards
associated with fuel level estimation have been mitigated/eliminated. The
goal structure provides an argument to show that the top level goal G 10 is
supported by evidence regarding the mitigation of hazard H1, H2 and H3.
Modules D 10 and D 11 have been used to provide arguments regarding
mitigation these hazards.

101

Figure 6.5: Goal structure for the Module D 7

Figure 6.6: Goal structure for the Module D 8

102

Module D 11: H3 has been mitigated, is not developeds further since that
hazard is related to the hardware and we haven’t cover the hardware in this
thesis due to time limitation. Module D 10: H1 and H2 have been mitigated,
is supported by the goal structure that is shown in Figure 6.7. This goal
structure merges the findings in chapter 5 concerning the verification of the
system and the software design(Figure 5.6, Figure 5.7 and Table 5.9) as well
as the findings concerning the identification of the SGs, FSRs and TSRs
(Table 5.2, Table 5.3 and Table 5.4 respectively).

Figure 6.7: Goal structure for the Module D 10

103

Figure 6.8 shows the argument for module D 9: All the possible hazards
associated with fuel level warning have been mitigated/eliminated. The
goal structure provides an argument to show that the top level goal G 24 is
supported by two modules D 12 and D 13. Module D 12 is used to provide
an argument that hazard H4 is negligible whereas module D 13 is used to
provide an argument that hazard H5 has been mitigated.

Figure 6.8: Goal structure for the Module D 9

104

Figure 6.9 shows the goal structure for module D 12: H4 is Negligible.
This goal structure merges the findings in chapter 5 concerning hazard anal-
ysis and risk assessment, more precisely ASIL classification in Table 5.1.

Figure 6.9: Goal structure for the Module D 12

105

Figure 6.10, shows the goal structure for Module D 13: Hazard H5 has
been mitigated. This goal structure merges the findings in chapter 5 con-
cerning the system design and the verification of the system and the software
design (Figure 5.10 and Table 5.9). Moreover, this structure merges the find-
ings concerning the identification of the SGs, FSRs and TSRs (Table 5.2,
Table 5.3 and Table 5.4 respectively).

Figure 6.10: Goal structure for the Module D 13

Back to the product-based argument given in Figure 6.2, furthermore, we
need to support module D 4 . The goal structure in Figure 6.11 provides the
argument to support module D 4. This goal structure merges the findings
in chapter 5 concerning item integration and testing in section 5.6 . The
top level goal G 34 is supported by evidence E 17: HW-SW integration and
testing (Table 5.12) and E 18: vehicle integration and testing (Table 5.14).

Furthermore, we need to support process-based argument given in Fig-
ure 6.1. Process-based argument is supported by four sub-modules D 14,
D 15, D 16 and D 17. Figure 6.12 shows the sub-modules that support
the process-based argument. The goal structures to support each of these
nodules are presented in the next few pages.

Figure 6.13, shows the goal structure for Module D 14: Requirements
definition process is trustworthy. This goal structure merges the findings
in chapter 5 concerning the identification of the SGs, FSRs and TSRs (Ta-

106

Figure 6.11: Goal structure for Module D 4

Figure 6.12: Goal structure for Module D 1

107

ble 5.2, Table 5.3 and Table 5.4 respectively).

Figure 6.13: Goal structure for Module D 14

Figure 6.14 shows the goal structure for module D 15: Hazard analysis
process is trustworthy. The goal structure merges the findings in chapter 5
concerning Hazard analysis in section 5.1 and system design in section 5.4.
This goal structure reuses evidence E 3, E 4 and E 5 from module D 7 in Fig-
ure 6.5. The the top level goal G 42 is supported by evidence E 3: Adapted
HAZOP (Table 5.1), E 4: FTA figures (Figure 5.11 to Figure 5.15), E 5:
FMEA tables (Table 5.6 to Table 5.8) and E 22: Training and education.

Figure 6.15 shows the goal structure for module D 16: Verification is
trustworthy. The goal structure merges the findings in chapter 5 concerning
the verification of the system design in section 5.4 and the verifiaction of
the software architectural design in section 5.5. This goal structure reuses
evidence E 2 from module D 6 in Figure 6.4. The the top level goal G 47
is supported by evidence E 23: Verification model of the requirements (Fig-
ure 5.20), E 2: Simulation results (Figure 5.16, Figure 5.17 and Figure 5.18)
and E 24: Verification results in Scania’s vehicle (Figure 5.19).

Figure 6.16 shows the goal structure for module D 17: Testing is trust-
worthy. The goal structure merges the findings in chapter 5 concerning item
integration and testing in section 5.6. This goal structure reuses evidence
E 17 and E 18 from module D 4 in Figure 6.11. The the top level goal
G 54 is supported by evidence E 25: Experience and education, E 26: Test-
ing team is independent from design team, E 17: HW-SW integration and

108

Figure 6.14: Goal structure for Module D 15

109

Figure 6.15: Goal structure for Module D 16

110

testing (Table 5.12) and E 18: Vehicle integration and testing (Table 5.14).

Figure 6.16: Goal structure for Module D 17

111

7. DISCUSSION

In this section, the author of this thesis present the experience concerning
applying ISO26262 and building a safety case in a setting that is not in the
scope of ISO26262. By comparing the life cycle presented in ISO26262 and
the life cycle used in the company, the author of this thesis have realized
that:

• The life cycle of the company doesn’t consider some work-products
that are compulsory by the standard. Such work-products are SGs,
FSRs, and TSRs, as presented in chapter 5, more pecisely Table 5.2,
Table 5.3, and Table 5.4.

• Traceability among life cycle work-products (i.e. SG, FSR, TSR, ver-
ification and testing) is quite essential and it must be seeked and re-
tained. Presently, the company doesn’t have any approach to maintain
traceability in order to be in compliance with the standard. Valuable
means to support traceability would be a model-based approach or ta-
bles with cross references as presented in chapter 5 when maintaining
SGs, FSRs and TSRs for example.

• By deliberating ISO26262 with the company employees, the company
has evolved curiousity in the standard.

• The practice of FTA in chapter 5 as recommended by ISO26262 has led
to be advantageous to achieve a complemental analysis of the system.
Therefore, the company has evolved curiousity in using the technique
in the future.

• Building a safety case in compliance with ISO26262 is useful because
it’s easy to support evidence traceability since each clause followed will
result in product and process-based evidence. As a result, the safety
case more dependable because it’s in compliance with the ISO26262.

By building the safety case in chapter 6, the author of this thesis has
realized that:

• The product-based evidence should show that the system behaves in
a safe way when a failure occurs. Moreover, the product-based evi-
dence should emerge from activities such as verification (i.e. testing

112

and model checking) and simulation as presented in chapter 6. From
the user point of view, the product behaviour is more essential than
the process followed during the development life-cycle of the product.
Therefore, at the first sight, product-based arguments may look like
more important than the process-based arguments. However, there’s a
necessity for trust in the product-based evidence and therefore process-
based arguments play an essential role too. Therefore, to have more
persuasive safety case, the two types of the arguments should be sup-
plied.

• Though we have applied ISO26262 and built the safety case for a sim-
ple system, the resulted safety case in chapter 6 is big and complex. As
a result of this thesis, the author has realized that in case of complete
conformity with ISO26262, even small systems will result in complex
safety cases because the standard demands around 100 work-products
that comes from fulfilling all the requirements from different phases of
the standard’s life-cycle. Therefore, managing the complexity of the
safety case is laborious. Even though modularity and the use of pat-
terns can be useful, however,safety case writers can write arguments
with good structures only after having a long experience.

• If the company follows a common process for all the products that
it develops then by having a clear separation between process and
product-based arguments, the company can certify its process. By cer-
tifying its process, the company can focus more on the product-based
argument rather than focusing on both of them. Moreover the com-
pany can generate process-based patterns that present evident comon-
alities. Therefore it’s beneficial to have a clear separation between
process and product-based arguments.

• It’s not always clear how to supply evidence and the chance of baseless
and fallacious safety cases is factual.

• The evidence can be unvisible either because it’s undocumented or
because the employees has no knowledge about it. Therefore, it’s
highly preferred to educate the staff with respect to ISO26262 in order
to increase their knowledge about the necessary evidence required to
build the safety case. By doing so, they will be able to provide quick
and relevant information to safety experts in which will reduce the
time of building the safety case.

The type of the safety case that is presented in chapter 6 is operational
safety case because FLEDS is already under production. Therefore, the
author of the thesis had to argue on the design of the system as it was given
to author of this thesis. Therefore, there was no chance to affect the design

113

of the system. During building FLEDS safety case, a number of challenges
and difficulties has been faced. The following challenges have been faced:

• It is hard to achieve a clear structure that contains evidence from
various sources.

• In the beginning of the thesis, the author acted in a bias way since the
company is a big one but later on the author has decided to act as an
inspector and that made him get rid of the confirmation bias. So it’s
easy to fall in the bias trap.

• It’s difficult to build a safety case without getting a chance to test the
system and see how it really reacts in reality.

• It was hard to find relevant information related to the system be-
cause the system’s developers have already left the company without
documenting that much about the system. Moreover, Scania is not
good at documentation. Relevant information about FLEDS has been
gathered through interviews with employees.

114

8. CONCLUSION AND
FUTURE WORK

In this chapter, the author of the thesis present what has been concluded
throughout this theis regarding what is required in case Scania is interested
in certifying its systems in compliance with ISO 26262. Moreover, future
work for this thesis is presented further in this chapter.

8.1 Conclusion

In this report, we have presented a partial safety case that is in compliance
with ISO26262 for one variant of FLEDS (one sensor with liquid fuel and
one tank). Only few parts of the standard have been followed due to time
limitation of this thesis. Discussion about how the evidence have been pro-
vided and or collected have been presented in this thesis as well as the use
of the evidence to create product and process-based arguments. Moreover,
this thesis doesn’t provide a survey regarding how to verify the validity of
the safety case since it’s not in the scope of this thesis. However, one mech-
anism to check the validity of the safety case is by examining the safety case
arguments with respect to the logical fallacies presented in the background
section 2.7. Furthermore, in this thesis, a clear separation between product
and process-based arguments have been maintained. Moreover, the lessons
that have been learned during this thesis have been presented in chapter 7 in
order to ease the adjustment of ISO26262. One of the important conlusions
is that Scania needs to take care more about the documentation process in
case it’s interested in certification. Scania should document every single step
during the development life-cycle because documentation should contain all
the evidence about the process followed and the product behaviour. More-
over, Scania should have an approach for maintaining traceability because
traceability is quite important in certification as it’s used to check wheather
the requirements have been implemented and verified against the design.
Last but not least, it will take a lot of efforts for Scania to be completely in
compliance with the standard because:

• The standard requires around 100 work products and these work prod-
ucts needs generation and documentation which will take time and

115

efforts.

• Scania’s process will require a lot of change and adaptation to be
in compliance with the standard. ASIL classification is an example
for such an adaptation. Moreover, almost most of the systems are
already in the production phase and thus it will take time and effort
to make these systems in compliance with the standrd as it will require
mapping of what these systems has to the standrd as well as providing
the missing information required by the standard. More precisely,
More work is required compared to what have been done in this thesis
since in this thesis only some parts of the standard have been covered.

• It requires experience about ISO 26262 and this experience is not avail-
able recently as the standard was deployed in 2011. It takes time and
efforts to gain such experience.

8.2 Future Work

In future, to achieve a complete safety case, we have to consider all the parts
of ISO26262 as well as considering all the variants of the systems. Moreover,
patterns can be generated from the partial safety case presented in this
thesis in order to facilitate the argumentation. The goal is to concentrate
on process-based arguments that are focusing on ISO26262 and other safety
standards. Therefore, there’s a necessity to survey the results in [2] in which
a discussion about process line of safety arguments is presented.

116

Bibliography

[1] A. Johnsen, H. Kienle, K. Lundqvist and D. Sundmark, ”Liability
for Software in Safety-Critical Mechatronic Systems: An Industrial
Questionnaire”, Proc. of the 2nd International Workshop on Software
Engineering for Embedded Systems, 2012.

[2] B. Gallina, O. Jaradat and I. Sljivo, ”Towards a Safety- oriented Pro-
cess Line for Enabling Reuse in Safety Critical Systems Development
and Certification”, Post-proc. of the 35th IEEE Software Engineering
Workshop (SEW-35), Heraclion, Crete (Greece), 2013.

[3] C.A. Ericson (2005), ”Hazard Analysis Techniques for System Safety”,
John Wiley Sons, 2005.

[4] C.M. Holloway, ”Safety Case Notations: Alternatives for the Non-
Graphically Inclined?”,In C.W. Johnson and P. Casely (eds.),Proc. of
the IET 3rd International Conference on System Safety, IET Press,
Savoy Place, London, 2008.

[5] DVA321 Safety Critical Systems Engi-
neering Course, Malardalen University,
http://www.mdh.se/studieinformation/VisaKursplan?kurskod=
DVA321termin=20122sprak=en.

[6] F. Törner, P. Öhman, ”Automotive Safety Case A Qualitative Case
Study of Drivers, Usages, and Issues”, Proc. of the 11th IEEE High
Assurance Systems Engineering Symposium, 2008.

[7] G. Boman, ”Modularization”, Scania company presentation, 2010.

[8] G. Magnus, ”Datakommunikation CAN”, 2010.

[9] GSN Community Standard Version 1, November 2011,
http://www.goalstructuringnotation.info/
GSNStandard.pdf.

117

[10] H. Fujita, T. Hanawa, Y. Ishikawa, S. Kato, Y. Matsuno and M. Sato,
”DS-Bench Toolset: Tools for Dependability Benchmarking with Sim-
ulation and Assurance”, 42nd IEEE/IFIP International Conference
on Dependable System and Networks (DSN 2012), 8 pages, June 2012.

[11] History of Scania, http://www.Scania.com/Scania-group/history-of-
Scania

[12] I.Bate, T.Kelly, ”Architecture Consideration in the Certification of
Modular Systems. Reliability Engineering and System Safety,” vol.
81, Issue 3, pp 303-324, 2003.

[13] I. Habli, R. Palin, R. Rivett and D. Ward, ”ISO 26262 safety cases:
compliance and assurance”.

[14] I. Habli, T. Kelly, ”A Safety Case Approach to Assuring Configurable
Architectures of Safety-Critical Product Lines”, Proceedings of the In-
ternational Symposium on Architecting Critical Systems (ISARCS),
Prague, Czech Republic, 2010.

[15] I. Habli, T. P. Kelly, ”Process and Product Certification Arguments
- Getting the Balance Right Workshop on Innovative Techniques for
Certification of Embedded Systems”, Proceedings of 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, San
Jose, California, United States, 2006.

[16] IEC 61508:2010, ”Functional safety of E/E programmable electronic
safety-related systems.”

[17] ISO26262, Functional safety for road vehicles, International Standard,
November 2011.

[18] J. Johansson, N. Karlsson,”Gap analysis of Scania development of
electric functionality and ISO 26262”,Malardalen University, School
of Innovation, Design and Engineering, Master thesis, 2011.

[19] Linkedin Group:,http://www.linkedin.com/groups/ISO- 26262-
Functional-Safety-2308567

[20] M. Born, J. Favaro, and O. Kath, ”Application of ISO DIS 26262
in practice”, Proceedings of the 1st Workshop on Critical Automotive
applications: Robustness Safety, 2010.

[21] M. Feather, L. Markosian, ”Building a Safety Case for a Safety-Critical
NASA Space Vehicle Software System”, Proceedings of the 4th IEEE
International Conference on Space Mission Challenges for Information
Technology, 2011.

118

[22] N. Leveson, ”White Paper on The Use of Safety Cases in Certification
and Regulation”, Journal of System Safety, updated May 6, 2012.

[23] P. Wallbeck, ”Fuel Level Estimation for Heavy Vehicles Using a
Kalman Filter”, Masters thesis performed at Division of Vehicular
Systems, Department of Electrical Engineering, Linkoping University,
24 of November 2008.

[24] R. Alexander, T. Kelly, Z. Kurd, J. McDermid, ”Safety Cases for
Advanced Control Software: Safety Case Patterns”, Technical report,
University of York, 2007.

[25] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, M. Nyberg, ”In-
dustrial Experiences of Building a Safety Case in Compliance with
ISO 26262”, Proceedings of the 2nd WoSoCER, joint event of the
23rd International Symposium on Software Reliability (ISSRE), Dallas
(Texas), USA, 29 of November, 2012.

[26] Safety Case definition from UK Defence Standard 00-56 Issue,
http://www.dstan.mod.uk/standards/defstans/00/
056/02000400.pdf.

[27] Scania Technical Product Data 1949329, Allocation Element Require-
ment AER Fuel Level Estimation: AE201.

[28] Scania Technical Product Data 1949330, ”Allocation Element Require-
ment AER Low Fuel Level Warning: AE202”.

[29] SESAMM model concept, http://wiki.inline.Scania.com/wiki/SESAMM
model concept.

[30] S. Ali, M. Sulyman, ”Applying Model Checking for Verifying
Functional Requirements of a Scanias Vehicle Control System”,
School of Innovation, Design and Engineering Malardalen University,
Vasteras,Sweden, September 2012.

[31] S. Amberkar, B. J. Czerny, J. G. DAmbrosio, J. D. Demerly and B.
T. Murray, ”A Comprehensive Hazard Analysis Technique for Safety-
Critical Automotive Systems”, SAE 2001 World Congress, Detroit,
Michigan, United States.

[32] S. Friedenthal, A. Moore, R. Steiner, ”A Practical Guide to SysML:
Systems Modeling Language”, Morgan Kaufmann, 9780123852069,
2011.

[33] T. P. Kelly, ”Arguing Safety- A systematic Approach to Managing
Safety Cases”, Department of Computer Science, University of York,
UK. 1998.

119

[34] T.Kelly, J. McDermid, ”Safety Case Construction and Reuse Using
Patterns”, Proceedings 16th International Conference on Computer
Safety and Reliability, York, 1997.

[35] T.Kelly, J. McDermid, ”Safety case patterns-reusing successful argu-
ments”, IEEE Colloquium on Understanding Patterns and Their Ap-
plication to System Engineering, 1998.

[36] T. Kelly, R. Weaver, ”The Goal Structuring Notation A Safety Argu-
ment Notation”, Proceedings of the Dependable Systems and Networks
2004 Workshop on Assurance Cases, 2004.

[37] W.S. Greenwell, C.M. Holloway, J. C. Knight, J.J. Pease, ”A Tax-
onomy of Fallacies in System Safety Arguments”, Proceedings of the
24th International System Safety Conference, 31 July - 4 August 2006,
Albuquerque, New Mexico.

[38] W.Chen, W. Li and H. Zhang,”Model-based Hazard Analysis Method
on Automotive Programmable Electronic System”, 3rd International
Conference on Biomedical Engineering and Informatics (BMEI), 2010.

120

Appendices

121

A. Standard Deviation
Analysis

This appendix shows the standard deviation for KF, exponential filter
and the fuel level sensor for different driving scenarios. The following
table and figure shows that KF has a lower standard deviation than
the exponential filter except for for the fifth scenario because the latter
had a stable initial state that was not affected by the changes in the
sensor readings.

Table A.1: Standard deviation for both of the filters and the sensor in
different driving scenarios [31]

122

Figure A.1: Simulation of the standard deviation for both of the filters and
the sensor [31]

123

	INTRODUCTION
	Context and motivation
	Contributions
	Organization of the thesis

	BACKGROUND and RELATED WORK
	User Functions
	Implementation of User Functions

	FUEL LEVEL ESTIMATION AND DISPLAY
	FLEDS variants
	FLEDS Allocation Elements
	FLEDS Requirements

	HAZARD ANALYSIS TECHNIQUES
	Failure Modes and Effect Analysis
	Hazard and Operability Study
	Fault Tree Analysis

	ISO 26262
	Management of functional safety
	Concept phase
	Product development at the system level
	Product development at the software level

	SAFETY CASE
	Safety Case in Compliance with ISO 26262
	Safety Case Life Cycle

	Modelling Techniques
	Text-Based Notations
	Graphics-Based Notations

	Safety Case Fallacies
	Challenges when Developing Safety Cases
	D-Case editor
	Related Work

	PROBLEM FORMULATION
	SOLUTION METHODS
	Scope
	Limitations

	COLLECTION AND PROVISION OF EVIDENCE
	Hazard Analysis and Risk Assessment (Pt 3, Cl 7)
	Functional Safety Concept (Pt 3, Cl 8)
	Specification of the Technical Safety Requirements (Pt 4, Cl 6)
	System Design (Pt 4, Cl 7)
	SESAMM
	ECU software
	Software Layers in Coordinator ECU system

	Software Architectural Design (Pt 6, Cl 7)
	Item Integration and Testing (Pt 4, Cl 8)

	SAFETY CASE OF FLEDS
	DISCUSSION
	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	Appendices
	Standard Deviation Analysis

