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Abstract

The Hierarchical Scheduling Framework (HSF) has been doited to en-
able compositional schedulability analysis and executibembedded soft-
ware systems with real-time constraints. In this thesiscamsider a system
consisting of a number of semi-independent componentedalibsystems,
and these subsystems are allowed to share logical resotifeesiSF provides
CPU-time to the subsystems and it guarantees that the cha@iVsubsystems
respect their allocated CPU budgets. However, if subsystam allowed to
share logical resources, extra complexity with respechtdyeis and run-time
mechanisms is introduced.

In this thesis we address three issues related to hierat@dheduling of
semi-independent subsystems. In the first part, we invastifpe feasibility of
implementing the hierarchical scheduling framework in enotercial operat-
ing system, and we present the detailed figures of varioupkayerties with
respect to the overhead of the implementation.

In the second part, we studied the problem of supportingesha@sources
in a hierarchical scheduling framework and we propose tiferdint solutions
to support resource sharing. The first proposed solutioralied SIRAP, a
synchronization protocol for resource sharing in hiergxalty scheduled open
real-time systems, and the second solution isr@manced overrun mechanism

In the third part, we present a resource efficient approaahingmize sys-
tem load (i.e., the collective CPU requirements to guasatite schedulability
of hierarchically scheduled subsystems). Our work is naddist from a trade-
off between reducing resource locking times and reducirstesy load. We
formulate an optimization problem that determines theuesmlocking times
of each individual subsystem with the goal of minimizing flystem load sub-
ject to system schedulability. We present linear compyeigorithms to find
an optimal solution to the problem, and we prove their camess.
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Chapter 1

Introduction

Hierarchical scheduling has shown to be a useful approaporting modu-
larity of real-time software [1] by providing temporal piéidning among appli-
cations. In hierarchical scheduling, a system can be lukieally divided into
a number of subsystems that are scheduled by a global (systet sched-
uler. Each subsystem contains a set of tasks that are seldedyla local
(subsystem-level) scheduler. The Hierarchical Scheduiramework (HSF)
allows for a subsystem to be developed and analyzed iniisolatith its own
local scheduler. At a later stage, using a global schedulgr as Fixed Prior-
ity Scheduling (FPS), Earlier Deadline First (EDF) or TimwiBion Multiple
Access (TDMA), it allows for the integration of multiple ssystems without
violating the temporal properties of the individual sutieyss. The subsystem
integration involves a system-level schedulability testjfying that all timing
requirements are met. This approach by isolation of tasksimsubsystems,
and allowing for their own scheduler, has several advastagduding [2]:

¢ |t allows for the usage of the best scheduler (e.g., FPS, BOMDMA)
that fit the requirements of each subsystem.

e By keeping a subsystem isolated from other subsystems eeqing the
subsystem local scheduler, it is possible to re-use a campldsystem
in a different applicatiofrom where it was originally developed.

1Assuming that the timing parameters of the internal taskisegubsystem will not be changed
when the subsystem is re-used in a different application.
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e Hierarchical scheduling frameworks naturally supmatcurrent devel-
opmenbf subsystems.

Over the years, there has been a growing attention to HSHedbtime
systems. Deng and Liu [3] proposed a two-level hierarclsicaéduling frame-
work for open systems, where subsystems may be developed#dated in-
dependently in different environments. Kuo and Li [4] prasel schedulabil-
ity analysis techniques for such a two-level framework wfitl fixed-priority
global scheduler. Lipari and Baruah [5, 6] presented sclabdity analysis
techniques for the EDF-based global schedulers. ktoid. [7, 8] proposed
the bounded-delay virtual processor model to achieve andeparation in a
multi-level HSF. In addition, Shin and Lee [1] introducee theriodic virtual
processor model (to characterize the periodic CPU allocdiehaviour), and
many studies have been proposed on schedulability analytsighis model
under fixed-priority scheduling [9, 10, 11] and under EDFestilling [1, 12].
Being central to this thesis, the virtual periodic resourtedel is presented
in detail in Chapter 3. More recently, Easwaratnal. [13] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model.vdwer, a common
assumption shared by all above studies is that tasks arpendent.

In this thesis we address the challenges of enabling effic@npositional
integration preserving temporal behavior for indepenigeheveloped semi-
independent subsystems (i.e., subsystems are allowedhthrgnize by the
sharing of logical resources) in open systems where sufrsgstan be devel-
oped independently. Efficient compositional integratiozams that the system
should require as little CPU-resources as possible, atipwiore subsystems
to be integrated in a single processor. Achieving efficiemhpositional inte-
gration makes the HSF a cost-efficient approach applicalbla fvide domain
of applications, including, automotive, automation, apace and consumer
electronics.

There have been studies on supporting resource sharingnveitibsys-
tems [9, 4] and across subsystems [14, 15, 16] in HSFs. Dadi8arns [14]
proposed the Hierarchical Stack Resource Policy (HSRPpatipg global
resource sharing on the basis of an overrun mechanism. THeslgkability
analysis associated with the HSRP does not support indepésdbsystem
development (i.e., when performing schedulability analysr internal tasks
of a subsystem using HSRP, information about other subsgsthould be
provided). Fisheet al. [16] proposed the BROE server in order to handle
sharing of logical resources in a HSF. A detailed descniptibthese proto-
cols and a comparison between our proposed protocol and gresocols is
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presented in Chapter 4.
Our overall goal of this thesis is to propose a schedulinpméaork and
synchronization protocols that are able to fulfill the faliag requirements;

e With acceptable implementation overhead, it should beiplest im-
plement the HSF in commercial real-time operating systems.

e The framework should support sharing of logical resouredsben sub-
systems while preserving the timing predictability and-éiy allowing
for temporal requirements of the system.

e No knowledge about the parameters of other subsystems isreeq
when developing a subsystem, even in the case when therepea-d
dencies between subsystems (semi-independent subsysteerent in
the sharing of logical resources.

e The HSF should use the CPU-resources efficiently by minimgizhe
collective CPU requirement (i.e., system load) necessaguarantee
the schedulability of an entire framework.

1.1 Contributions

The contributions presented in this thesis can be dividedthree parts:

Implementation Over the years, there has been a growing attention to HSFs
for real-time systems. However, up until now, those stuldés mainly worked
on various aspects of HSFs from a theoretical point of viemodr knowledge,
there are very few studies that focus on the implementatibtSé-, especially
looking at what can be done with commercial operating system

We present our work towards a full implementation of the dwiehical
scheduling framework in the VxWorks commercial operatiggtem without
changing or modifying the kernel of the operating systemradoer, to show
the efficiency of the implementation, we measure the ovelhizaposed by the
implementation as a function of number of subsystems andeuof tasks for
both FPS and EDF local and global schedulers.

Supporting shared resources Allowing tasks from different subsystems to
share logical resources imposes more complexity for thediding of sub-
systems. A proper synchronization protocol should be usegulevent unpre-
dictable timing behavior of the real-time system. Sincedlege dependencies
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between subsystems though sharing of logical resourcésy tise protocol
with the HSF should not require any information from othdsststems when
developing a subsystem in order to not violate the requirgredeveloping
subsystems independently (support open systems).

We present the SIRAP protocol, a novel approach to allow lsorgza-
tion of semi-independent hierarchically scheduled sulesys. We present the
deduction of bounds on the timing behaviour of SIRAP togettith accom-
panying formal proofs and we evaluate the cost of using tfagogol in terms
of the extra CPU-resources that is required by the usagesqgfritocol.

In addition to SIRAP, we extend the schedulability analysisISRP [14]
so that it allows for independent analysis of individual sémdependent sub-
systems. And also, we propose an enhanced overrun mechtaisgives two
benefits (compared with the old version of overrun mechani€hy it may in-
crease schedulability within a subsystem by providing CRatations more
efficiently, and (2) it can even accept subsystems whichldpee their timing
requirements without knowing that the proposed modifiedrovemechanism
would be employed in the system.

Efficient CPU-resources usage As mentioned previously, one of the require-
ments that the proposed framework should provide, is tomirg the system
load. This can be achieved by finding optimal subsystem tniirterfaces
(specifies the collective temporal requirements of a subsy)sthat minimize
the system load. Supporting shared resources across sisysroduces in-
terference among subsystems which imposes more CPU deffoaiedsh sub-
system and makes the problem of minimizing the system loa cmmplex.
We identify a tradeoff between reducing the time that a ssiesy can
block other subsystems when accessing a shared resowkm@dime which
is a part of subsystem timing interface) and decreasingytses load. Se-
lecting the optimal subsystem interface for a subsystemiregjinformation
from other subsystems that the subsystem will interact.witbwever, the re-
quired information may not be available during the develeptstage of the
subsystem and in this case we may not be able to select thealtiterface.
To solve the problem of selecting an optimal interface fahesubsystem, we
propose a two-step approach towards the system load matimrizproblem.
In the first step, a set of interface candidates, that haveaenfal to produce
an optimal system load, is generated for each subsystenolatiean. In the
second step, one interface will be selected for each sudraybm its own
candidates to find the minimum resulting system load. We ideogne algo-
rithm for each step and we also prove the correctness angthmaality of the
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provided algorithms formally.

1.2 Outline of thesis

The outline of this thesis is as follows: in Chapter 2 we ekpénd define the

basic concepts for real-time systems and the terms thabevilised throughout
this thesis and in addition we present the system model. ppath 3 we de-

scribe the hierarchical scheduling framework and the aatatschedulability

analysis assuming that the subsystems are fully indepéniie@hapter 4 we

address the problem of allowing dependency through shéwiigal resource

between subsystem and we present some solutions for thikeproln Chapter

5 we present our conclusion and suggestions for future walk present the
technical overview of the papers that are included in thésithin Chapter 6
and we present these papers in Chapters 7-10.






Chapter 2

Background

In this chapter we present some basic concepts concerrahgjmee systems,
as well as some methods that will be used in the next chapters.

2.1 Real-time systems

A real-time system is a computing system whose correctrdiss not only on
the functionality, but also on timeliness, i.e., the sysstould produce correct
results at correct instances of time. Real-time systemssrally constructed
using concurrent programs calléasksand each task is supposed to perform
a certain functionality (for example reading a sensor vateenputing output
values, sending output values to other tasks or devices, Atreal-time task
should complete its execution before a predefined timeddbadline

Real-time tasks can be classified according to their timomstraint to ei-
ther hard real-time tasks osoft real-time tasks. For hard real-time tasks, all
tasks should complete their execution before their deadlatherwise a catas-
trophic consequence may occur. However, for soft real-tamks, it is accept-
able that deadlines are missed which may degrade the systdonmance, for
example consider a mobile phone where missing some deadlifielecrease
the quality of the sound. Many systems contain a mix of hacisaxit real-time
tasks.

A real-time task consists of an infinite sequence of acéigitalled jobs,
and depending on the way of task triggering, real-time tasksmodeled as
either anaperiodic taskor asporadic taslor aperiodic task
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e Aperiodic tasks are triggered at arbitrary times, with nown minimum
inter-arrival time.

e Sporadic tasks have known minimum inter-arrival time.
e Periodic tasks have a fixed inter-arrival time called period

Depending on the task model, each task is characterizedinygiparame-
ters including task period (periodic task), worst case etien time, deadline,
etc.

2.2 System model

In this thesis we focus on scheduling of a single node. Eade imodeled
as a systen$ which consists of one or more subsystefps= S. The schedul-
ing framework is a two-level hierarchical scheduling framek as shown in
Fig 2.1. During run-time, the system level scheduler (Glgbheduler) selects
which subsystem that will access the CPU-resources.

/ \

}
Local Local Local
scheduler scheduler| """ scheduler

Subsystem, || Subsystem, Subsystem,,
/

Figure 2.1: Two-level hierarchical scheduling frameworkhwesource shar-
ing.

2.2.1 Subsystem model

A subsystemS, consists of a task set and a scheduler. Once a subsystem is
assigned the processor, the corresponding local schedilleselect which
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task that will be executed. Each subsyst8mis associated with a periodic
processor model (abstractioR) (Ps, Qs), whereP; andQ are the subsys-
tem period and budget respectively. This abstradiiofPs, Q) specifies the

collective temporal requirements of a subsystem and itésl @s an interface
between the subsystem and the global scheduler (we ret@stalistraction as
subsystem timing interfare

2.2.2 Task model

In this thesis, we consider a deadline-constrained spotedd real-time task
modelr;(T;, C;, D;,{c; j}) whereT; is a minimum separation time between
its successive jobg;; is a worst-case execution time requirement for one job,
D; is arelative deadlingf; < D, < T;) by which each job must have finished
its execution. Each task is allowed to access one or moredbgisources and
each element; ; in {c; ;} is acritical section execution timthat represents

a worst-case execution time requirement within a critieatiosn of a global
shared resourcgk;.

2.2.3 Shared resources

The presented hierarchical scheduling framework allovasisg of logical re-
source between tasks in a mutually exclusive manner. Tosac@eesource
R;, a task must first lock the resource, and when the task no toregzls the
resource it is unlocked. The time during which a task holdsch Is called a
critical section time. Only one task at a time may be insideitical section
corresponding to a specific resource. A resource that is lmséakks in more
than one subsystem is denoteglabal shared resourceA resource only used
within a single subsystem islacal shared resourceWe are concerned only
with global shared resources and will simply denote themhayexd resources.

2.3 Scheduling algorithms

In a single processor, the CPU can not be assigned to moretieatask to be
executed at the same time. If a set of tasks are ready to exénaut a schedul-
ing criterion should be used to define the execution ordehese tasks. The
scheduling criterion uses a set of rules defined by a scheglalgorithm to

determine the execution order of the task set. If all taskspiete their execu-
tion before their deadlines then the schedule is called sidlaschedule and
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the tasks are said to be schedulable. If the scheduler petimeit tasks to inter-
rupt the execution of the running task (task in executiorfiypteecompleting of
its execution then the scheduling algorithm is called a mE@/e algorithm,
otherwise it is called a non-preemptive scheduling algarit

Real-time scheduling algorithms fall in two basic categsrbnline sched-
ule and off-line schedule [17].

2.3.1 Online scheduling

For online scheduling, the order of task execution is deirsthduring run-
time according to task priorities. The priorities of tasksde static which
means that the priorities of tasks will not change duringtiore. This type
of scheduling algorithm is called Fixed Priority SchedglifFPS) and both
Rate Monotonic (RM) scheduling [18] and Deadline Monotoiv) [19]
use this type of scheduling. The task priorities can be dyoahich means
that they can change during run-time, and Earlier Deadlirst (EDF) [18] is
an example of such scheduler.

RM and DM scheduling algorithms In RM, the priorities of the tasks are
assigned according to their periods; the priority of a tagiroportional to the
inverse of the task period such that the task with shorteéogdevill have higher
priority than the tasks with longer period. The priority afak is fixed during
the run time. The RM scheduling algorithm assumes that tpskieds equals
to tasks deadlines. Another FPS algorithm is DM which is lsinto RM but
the priority depends on the task relative deadlines insbéaériods.

The schedulability analysis for each task using RM or DM ifo#lews [20];

V1, € 1,0 < 3t < D; dbf(i,t) <t. (2.1)

wherel is the set of tasks that will be scheduled dnds the relative deadline
of the taskr; anddbf (i, t) is evaluated as follows;

abf(it) =Ci+ Y [TLWC,C, (2.2)
71, EHP(4) '

whereC; is the worst case execution time of the taskndT; is the task period
andHP(4) is the set of tasks with priority higher than thatef
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EDF scheduling algorithm In this scheduling algorithm, the task that has
earlier deadline among all tasks that are ready to execiltexecute first. The
priority of the task is dynamic and can be changed duringtime-depending
on the deadline of the task instant and other released taakly for execution.
The schedulability test for a set of tasks that use EDF is shovq. (2.3) [21]
whichincludes the case when task deadlines are allowed&sbéhan or equal
to task periods.

t+1T; — D,
vt > 0, — |- C; <t (2.3)
PO

2.3.2 Offline scheduling

In offline scheduling, a schedule is created before run-tifilee scheduling
algorithm can take into consideration the timing conssahreal-time tasks
such as execution time, deadline, precedence relatiortgglashould execute
always before another task), etc. The resulting execuggpence is stored
in a table and then dispatched during run-time. Finding ailidéa schedule
using offline scheduling should be done up to the hyper-pgti€M) of task

periods, and then, during the run-time, this hyper-pesagpeated regularly.

2.4 Logical resource sharing

A resourceis any software structure that can be used by a task to adsnce
execution [22]. For example a resource can be a data steydtash memory,
a memory map of a peripheral device. If more than one task hsesame
resource then that resource is cal&tired resourceThe part of task’s code
that uses a shared resource is called critical section. \&ljeln enters a criti-
cal section (starts accessing a shred resource) then ngaliseincluding the
jobs of higher priority tasks, can access the shared resauntil the access-
ing job exits the critical section (mutual exclusion method@he reason is to
guarantee the consistency of the data in the shared resandcthis type of
shared resource is called nonpreemptable resource. Famptive scheduling
algorithms, sharing logical resources cause a probleradyaiority inversion
The priority inversion problem happen when a job with higlopty wants to
access a shared resource that is currently accessed byeafmtier priority
job, so the higher priority job will not be able to preempt theer priority
job. The higher priority job will be blocked until the loweriprity job release
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the shared resource. The time that the high priority job lpélblocked can be
unbounded since other jobs with intermediate priority th@tot access the
shared resource can preempt the low priority job while itdigoaiting inside

its critical section. As a result of the priority inversionoplem, the higher
priority job may miss its deadline. A proper protocol shob&lused to syn-
chronize the access to the shared resource in order to bloemdhiting time of

the blocked tasks. Several synchronization protocold sscthe Priority In-

heritance Protocol (PIP) [23], the Priority Ceiling Pradd@PCP) [24] and the
Stack Resource Policy (SRP) [25], have been proposed te soévproblem

of priority inversion. We will explain the SRP protocol intdéds, a protocol

central for this thesis, suitable for RM, DM, and EDF schéuyhlgorithms.

2.4.1 Stack resource policy

To describe how SRP [25] works, we first define some terms tieatsed with
SRP.

e Preemption level Each taskr; has a preemption level which is a static
value and proportional to the inverse of task relative deed|, = 1/D;,
whereD; is a relative deadline of task.

¢ Resource ceilingEach shared resourég; is associated with a resource
ceiling which equal to the highest preemption level of adksthat use
the resourc&;; rc; = max{m;|r; accesseR, }.

e System ceilingSystem ceiling is a dynamic parameter that change dur-
ing execution. The system ceiling is equal to the currenttkéd highest
resource ceiling in the system. If at any time there is no ssee shared
resource then the system ceiling would be equal to zero.

According to SRP, a job; generated by task; can preempt the currently
executing jobJ, only if J; is a higher-priority job ofJ; and the preemption
level of 7; is greater than the current subsystem ceiling.

2.4.2 Resource holding time

For a set of tasks that uses the SRP protocol, the duratiamefthat a task;

locks a shared resource, is caltedource holding timg26, 27] which equals to
the maximum task execution time inside a critical sectiarsphe interference
(preemption inside the critical section) of higher pripriasks that have pre-
emption level greater than the ceiling of locked resourd¢® resource holding
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time can be computed depending on the scheduling algorithreg, as shown
below;

Under FPS scheduling the resource holding timeof a shared resource
R; is [26];

WFPS t) = cx; + Z - Ch, (2.4)
k=rc;j+1

wherecz; is the maximum worst-case execution time inside the ctisieation
of all tasks that access resouge andn is the number of tasks.
The resource holding timk; is the smallest positive timg such that

WFPS () =t~ (2.5)

Under EDF scheduling the resource holding tifeof a shared resource
R; is [27];

WER( <ot 3 (min([] |22 1)) -cu 2o

k=rc;+1

The resource holding timk; is the smallest positive timg such that

WPPE(*) =t (2.7)

An algorithm to decrease the resource holding time withdalating the
schedulability of the system under the same semantics esftS8&P, was pre-
sented in [26, 27]. The algorithm works as follows; it ingea the resource
ceiling of each shared resource to the next higher valuehénigreemption
level than the ceiling of the resource) in steps and in eagp tchecks if
the schedule is still feasible or not. If the schedule isifdaghen it contin-
ues increasing the ceiling of the resource until either ttteedule becomes
infeasible or the ceiling of the task equals to the maximugeprption level.
The minimum resource holding time of a resoutgg is obtained when its
resource ceiling equal to the maximum preemption level eftdsk set. Note
that the resource holding time is a very important paranietéhe hierarchical
scheduling framework, as will be shown in Chapter 4.






Chapter 3

Real-Time Hierarchical
Scheduling Framework

In this chapter, we will describe the HSF assuming that akgaare fully inde-
pendent, i.e., tasks are not allowed to share logical ressuiVhile in the next
chapter we will consider the problem of accessing globalesheesources.

3.1 Hierarchical scheduling framework

One of the important properties that the HSF can providedsgblation be-
tween subsystems during design time and run-time suchitbattosystems are
separated functionally for fault containment and for cosifional verification,
validation and certification. The HSF guarantees indepetraecution of the
subsystems and it prevents one subsystem from causingueefail another
subsystem through providing the CPU-resources needeadbrsibsystem.

Each subsystem specifies the amount of CPU-resources ¢hvatcprired to
schedule all internal tasks through its timing interfacedAhe global sched-
uler will provide the required CPU-resources for all subbsyss as specified by
the timing interfaces of the subsystems.

In the following sections, we will explain how to evaluatestbubsystem
timing interface and also show how to verify whether the glokcheduler
can supply the subsystems with required resources usirmgigézhedulabil-
ity analysis.

Given a subsystem timing interface, it is required to ché&tke interface

17
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can guarantee that all hard real-time tasks in the subsysiirmeet their
deadlines using this interface. This check is done by apgliocal schedula-
bility analysis. But before presenting the local schediitglanalysis, we will
explain the virtual processor resource model which will lsediin the local
schedulability analysis.

3.2 Virtual processor model

The notion of real-time virtual processor (resource) meds first introduced
by Mok et al. [7] to characterize the CPU allocations that a parent node pr
vides to a child node in a hierarchical scheduling framewdte CPU supply
of a virtual processor model refers to the amount of CPU atioas that the
virtual processor model can provide. Thepply bound functionf a virtual
processor model calculates the minimum possible CPU sugdfpdye virtual
processor model for a time interval length

Shin and Lee [1] proposed the periodic virtual processorehbdP, Q9),
whereP is a period P > 0) and( is a periodic allocation time)(< @ < P).
The capacityUr of a periodic virtual processor modE[( P, Q) is defined as
Q/P. The periodic virtual processor mod&(P, Q) is defined to characterize
the following property:

supplyr (kP, (k +1)P) =Q, wherek=0,1,2,..., (3.1)

where the supply functiosupply »_(t1,t2) computes the amount of CPU allo-
cations that the virtual processor modg| provides during the intervad, , t).

For the periodic moddl'(P, @), its supply bound functiosbfr(t) is de-
fined to compute the minimum possible CPU supply for evemriral length
as follows:

t—(k+1)(P—-Q) iftel(k+1)P-2Q,
sbfp(t) = { (k+1)P—Q), (3.2)
(k—1)Q otherwise

wherek = max ([(t - (P-Q)/P], 1). Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of perfadrhat
is, as shown in Figure 3.1, the interval of lengthan start in the middle of
the period of a periodic modél(P, Q). We also note that the intuition of
k in Eq. (3.2) basically indicates how many periods of a paciododel can
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o)

Figure 3.1: The supply bound function of a periodic virtuebgessor model
I'(P,Q) for k = 3.

overlap the interval of length more precisely speaking, the interval of length
t— (P — Q). Figure 3.1 illustrates the intuition éfand how the supply bound
functionsbifr(¢) is defined fork = 3.

3.3 Schedulability analysis

This section presents the schedulability analysis of thE, ldtrting with local
schedulability analysis needed to calculate subsysteenfates, and finally,
global schedulability analysis.

3.3.1 Local schedulability analysis

Let dbfepr(i, t) denote the demand bound function of a taskinder EDF

scheduling [28], i.e.,

t+1T; — D,
T;

The local schedulability condition under EDF schedulinthisn ([1])

dbfepr(i,t) = L J Nen (3.3)
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Vi>0 ) dbfep(i,t) < sbf(t), (3.4)
T, €l

Letdbfep(i,t) denote the demand bound function of a tasknder FPS [20],
ie.,

dbtrp(ist) = Ci+ 3 [Ti]jck (3.5)

T}, EHP(4)

whereHP(7) is the set of tasks with higher priorities than thatrof The local
schedulability analysis under FPS can then easily be egteftdm the results
of [25, 1] as follows:

V7,0 < 3Jt < D; dbep(i,t) < Sbf(t). (36)

3.3.2 Global schedulability analysis

The global scheduler schedules subsystems in a similar svegheeduling sim-
ple real-time periodic tasks. The reason is that we are ubki@geriodic re-
source model to abstract the collective timing temporalir@ments of sub-
systems, so the subsystem can be modeled as a simple péegisidighere the
subsystem period is equivalent to the task period and theystdm budget is
equivalent to the task execution time. Depending on theallstheduler (if it
is EDF, RM or DM), it is possible to use the schedulability lgses methods
used for scheduling periodic tasks (presented in secti@nir? order to check
the global schedulability.

3.4 Subsystem interface calculation

Using HSF, a subsysteff is assigned fraction of CPU-resources which equals
to Qs/Ps. Itis required to decrease the required CPU-resourcesdrafor
each subsystem as much as possible without affecting tlelskbility of its
internal tasks. By decreasing the required CPU-resouaresllif subsystems,
the overall CPU demand required to schedule the entireray&gstem load)
will be decreased, and by doing this, more applications eaimtegrated in a
single processor.

To evaluate the minimum CPU-resources fraction required Bubsystem
S, and givenpPs, let calculateBudget(Ss, Ps) denote a function that calculates
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the smallest subsystem buddgt that satisfies Eq. (3.4) and Eq. (3.6). Hence,
Qs = calculateBudget(Ss, Ps). The function is a searching function simi-
lar to the one presented in [1] and the resulting subsysteringi interface is

(Ps, Qs)-






Chapter 4

Hierarchical Scheduling with
Resource Sharing

In this chapter we extend the HSF that was presented in thopiechapter
and allow tasks from different subsystems to share glolsaluees. We are
concerned only with global shared resources while managfingcal shared
resources can be done by using several existing synchtmmzaotocols such
as PIP, PCP, and SRP (see [9, 14, 4] for more details).

First, we explain the problem of supporting logical resegrollowed by
discussing some solutions. Later, we show the effect of eujpyy sharing
of global shared resources on the system load required &xatdthe entire
system.

4.1 Problem formulation

When a task access a shared resource, all other tasks thiatonsgtess the
same resource will be blocked until the task that is accgdbia resource re-
leases it. To achieve a predictable real-time behavioerwhiting time of
other tasks that want to access a locked shared resourcle dfbounded.
The traditional synchronization protocols such as PIP, B@# SRP that are
used with non-hierarchical scheduling, can not without ification, handle
the problem of sharing global resources in hierarchicatédahng framework.
To explain the reason, suppose a tasthat belongs to a subsystesi is hold-
ing a logical resourcé;, the execution of the task can be preempted while

23
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[l T; execution inside R,

[] T execution inside R;
Subsystem / i """" T;
(low priority) |

release R,
Subsystem P
(medium priority) ’ 5
4 = P : !
Waiting time
Subsystemn Tm T
(high priority)
Try to lock R, lock R,

Figure 4.1: Task preemption while running inside a crit&adtion.

7; is executing inside the critical section of the resoule(see Fig 4.1) due
to the following reasons:

1. Inter subsystem preemption a higher priority tasky, within the same
subsystem preempts the tasgk

2. Intra subsystem preemption a ready task. that belongs to a subsys-
tem Sp preemptsr; when the priority of subsysterfip is higher than
the priority of subsystens;.

3. Budget expiry inside a critical section if the budget of the subsystem
S1 expires, the task; will not be allowed to execute until the budget of
its subsystem will be replenished at the beginning of the selisystem
period P;.

The PIP, PCP and SRP protocols can only solve the probleneddnystask
preemption within a subsystem (case numbesince there is a direct relation-
ship between the priorities of tasks within the same subgystHowever, if
tasks are from different subsystems (intra task preemptien priorities of
tasks belonging to different subsystems are independesaaf other, which
make these protocols not suitable to be used directly toesthlis problem.
One way to solve this problem is by using the protocols PIF® Bd SRP be-
tween subsystems such that if a task that belongs to a sebsystk a global
resource, then this subsystem blocks all other subsystdrasvtheir internal
tasks want to access the same global shared resource.
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Another problem of directly applying PIP, PCP and SRP proiwis that of
budget expiry inside critical section. The subsystem btgges said toexpire
at the point when one or more internal (to the subsystem}taake executed
a total of Q; time units within the subsystem perid¢f. Once the budget is
expired, no new tasks within the same subsystem can indbegeution until
the subsystem’s budget is replenished. This replenishtakaes place in the
beginning of each subsystem period, where the budget isnispled to a value
of Q;.

Budget expiration can cause a problem, if it happens whikskt; of a
subsystens; is executing within the critical section of a global shareslurce
R,. If another task,,, belonging to another subsystem, is waiting for the same
resourceR;, this task must wait untib; is replenished se; can continue to
execute and finally release the lock on resoutgeThis waiting time exposed
to 7,,, can be potentially very long, causing, to miss its deadline.

4.2 Supporting logical resource sharing

Several mechanisms have been proposed to enable resoargggsh hier-
archical scheduling framework. These mechanisms usereliffenethods to
handle the problem of bounding the waiting time of other sablat are waiting
for a shared resource. Most of them use the SRP protocol thsynize access
to a shared resource within a subsystem to solve the problgneosubsystem
preemption, and they also use SRP among subsystems to lselgeoblem of
intra subsystem preemption. Note that the effect of using &#h both local
and global scheduling should be considered during the sitaleitity analysis.

In general, solving the problem of budget expiry inside &cal section is
based on two approaches;

e Adding extra resources to the budget of each subsystem vemtréhe
budget expiration inside a critical section.

e Preventing a task from locking a shared resource if its sstbay does
not have enough remaining budget.

The following sections explain these mechanisms in detail.

421 BWI

The BandWidth Inheritance protocol (BWI) [29] extends tesaurce reserva-
tion framework to systems where tasks can share resourbe8WI approach
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uses (but is not limited to) the CBS algorithm together witeehnique that is
derived from the Priority Inheritance Protocol (PIP). Aating to BWI, each
task is scheduled through a server, and when a task thatteddaside lower
priority server blocks another task executed in highenfgiserver, the block-
ing task will be added to the higher priority server. Whenttsk releases the
shared resource, then it will be discarded from the highrjtyiserver. For
schedulability analysis, each server should be charaetkhy an interference
time due to adding lower priority tasks in the server. Thigrapch is suitable
for systems where the execution time of a task inside ctieation can not
be evaluated. In addition, the scheduling algorithm doésewguire any prior
knowledge about which shared resources that tasks willsaauer the arrival
time of tasks. However, BWI is not suitable for systems tltatsist of many
hard real-time tasks. The reason is that the interferehegificludes the sum-
mation of the execution times inside the critical sectioaif the lower priority
tasks will be added to the budget of a hard real-time taskes¢ovguarantee
that the task will not miss its deadline. Hence, BWI becomessjmistic in
terms of CPU-resources usage for hard real-time tasks.

4.2.2 HSRP

The Hierarchical Stack Resource Policy (HSRP) [14] extehdsSRP proto-
col to be appropriate for hierarchical scheduling framdwawrith tasks that
access global shared resources. HSRP is based on the owesnlmanism
which works as follows: when the budget of a subsystem eginel the sub-
system has a job; that is still locking a global shared resource, the jfb
continues its execution until it releases the locked resmuVhen a job access
a global shared resources its priority is increased to thledst local priority to
prevent any preemption during the access of shared restrorneother tasks
that belong to the same subsystem. SRP is used in the glolhlttesyn-
chronize the execution of subsystems that have tasks &ugegsbal shared
resources. Each global shared resource has a ceiling eqtis tmaximum
priority of subsystems that has a task accessing that resotiwo versions of
the overrun mechanisms have been presented; 1) The oveethramism with
payback which works as follows, whenever overrun happersssobsystem
Ss, the budget of the subsystem will be decreased by the amdtim¢ @ver-
run time in its next execution instant. 2) In the second wersvhich is called
overrun mechanism without payback, no further actionshéltaken after the
event of an overrun. Selecting which of these two mechantbaiscan give
better results in terms of task response times depends osyttem param-
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eters. The presented schedulability analysis does notosuppmposability,
disallowing independent analysis of individual subsystesimce information
about other subsystems is needed in order to apply the setbddy analysis
for all tasks. In addition, HSRP does not provide a complefmgation be-
tween the local and the global schedulers. The local sceedhbuld inform
the global scheduler to let the server continue executingrvehbudget expiry
inside a critical section problem happens and then the kataduler should
inform the global scheduler when its task releases the gttzaed resource.

4.2.3 BROE

The Bounded-delay Resource Open Environment (BROE) sgr@kextends
the Constant Bandwidth Server (CBS) [30] in order to handégharing of
logical resources in a HSF. The BROE server is suitable f@anogystems
since it allows for each application to be developed anddaetdid indepen-
dently. For each application, the maximum CPU-resourcesate is char-
acterized by server speed, delay tolerance (using the leolidéelay resource
partition [7]) and resource holding time. These parametdide used as an
interface between the application and the system schesailrat the system
scheduler will schedule all servers according to theirfate parameters. The
interface parameters will also be used during the admissomrol of new
applications to check if there is enough CPU-resourcesrdhis new appli-
cation on the processor. The BROE server uses the SRP prtdcadpitrate
access to global shared resources and in order to prevelmitlyet expiration
inside critical section problem, the application perfomrtsudget check before
accessing a global shared resource. If the applicationuféisisnt remaining
budget then it allows its task to lock the global resourcenilise it postpones
its current deadline and replenishes its budget (accondingrtain rules that
guarantee the correctness of the CBS servers executior)dblb to lock and
release the global resource safely. Comparing the BROEs®iith HSRP,
BROE does not need more resources to handle the problem gébexipiry in
the global level while HSRP may require more resources singes an over-
run mechanism and the overrun time should be taken into at@othe global
scheduling. However, the only scheduling algorithm thasugable for the
presented version of the BROE server is EDF which is one dfittitations of
this approach. In addition, in [16], the authors didn’t eiplhow to evaluate
the value of the resource holding time for BROE server (thbas left this
issue to a future submission) and how this value may affecCiAU-resources
usage locally and globally.
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4.2.4 SIRAP

The Subsystem Integration and Resource Allocation Po8tRAP) [15] pro-
tocol supports subsystem integration in the presence oédlagical resources.
SIRAP can be used in an open systems. It uses a periodic cesoodel to ab-
stract the timing requirements of each subsystem. Eaclysids is character-
ized by its period and budget and resource holding time aisdritplemented
as a simple periodic server. SIRAP uses the SRP protocohichsgnize the
access to global shared resources in both local and globatiating. SIRAP
applies a skipping approach to prevent the budget expir&tigide critical sec-
tion which works as follows; when a job wants to enter a aitigection, it
enters the critical section at the earliest instant suchitt@n complete the
critical section before the subsystem budget expires. ddnisbe achieved by
checking the remaining budget before granting the accetggetglobal shared
resources, if there is sufficient remaining budget thendhespters the critical
section. If there is insufficient remaining budget, the Iazheduler delays
the critical section entering of the job until the next sudieyn budget replen-
ishment. Comparing SIRAP and BROE, both provide betteatgm between
the global and the local schedulers than HSRP since theg $bé/problem
of budget expiry inside a critical section locally. Howevesing HSRP, it is
not required to include the resource holding time in therfate of subsystems
during run-time and its required only for schedulabilityalyrsis while the re-
source golding times are required during run-time for SIR¥iE BROE. Both
SIRAP and BROE do not need extra resources in the global athgdevel.
The SIRAP protocol needs extra resources in the local lereduling when
it increases the resource demand of the subsystem and foE BRONot clear
since the way of evaluating resource holding time was nagreed. Another
difference between BROE and SIRAP is that the SIRAP protoses FPS as
a global scheduling algorithm and can be easily adaptedctade local and
global EDF while BROE can only work with EDF as a global scHedu

4.3 Subsystem interface and resource sharing

Supporting shared resources across subsystems prodtexdsreance among
subsystems which imposes more CPU demands for each subsybtethe
local schedulability analysis and because of using SRANp¢he blocking
times should be added to the maximum resources demand dide (8.4) and
Eq. (3.6) and this will increase the minimum required sutesysbudget) ;.
In the global level and because of using SRP between subsystee block-
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ing time (resource holding timgthat a subsystem may block other subsys-
tems should be added to the global schedulability analyisfor the global
schedulability analysis the subsystem interface shoutlide in addition to
the subsystem period and budget, the maximum resourcenlgdldie for each
global shared resource that the internal tasks of the stdrmmymay access.
One way to decrease the amount of information of subsysterface needed
for global schedulability analysis, can be by considerimgf the subsystem
will access all global resources, then it is required to lethe maximum re-
source holding time of all internal tasks that access thieallshared resources.
The subsystem timing interface of a subsystenfor this case isP;, Qs, Hs)
whereH is the maximum resource holding time of all internal tasks ofhat
access global shared resources. Finally the extra CPU dkthahis required
to solve the problem of budget expiry inside the criticaltisgcdepends on the
used mechanism.

As mentioned previously, a subsystem can be blocked in sicgea global
shared resource, if there is another subsystem lockingefmurce at the mo-
ment. Such blocking imposes more CPU demands, resulting incaease of
the system load. Therefore, subsystems can reduce theirroesholding time,
for example, using the mechanism presented in [26, 27] ne&sing the re-
source ceiling of the global shared resources locally engieé subsystems, in
order to potentially reduce the blocking of other subsystémwards decrease
of the system load. However, we have found that decreasmgalue of re-
source holding times may increase the required budget afghee subsystem
Qs and it may increase the system load.

1In paper D we use the term resource locking time instead olres holding time to remove
any confusion since the term resource holding time wasyfigstsented in the context of non-
hierarchical scheduling.






Chapter 5

Conclusions

5.1 Summary

We have implemented a HSF in a commercial operating systexivivks)
without changing the kernel of the operating system. Eabkystem has been
implemented using periodic servers. As most commerciditi@e@ operating
system, VxWorks does not support the periodic activatiotasiks. In order to
enable periodic activations of tasks and servers, we haag aisimer and an
interrupt service rutin. We have measured the overheadedhtplementation
and the results shows that a hierarchical scheduling frariegan effectively
achieve the clean separation of subsystems in terms ofgimiarference (i.e.,
without requiring any temporal parameters of other sulesys) with reason-
able implementation overheads.

We have also investigated the problem of supporting sharimggical re-
sources and we have presented a novel Subsystem IntegaatioResource
Allocation Policy (SIRAP), which is a synchronization pwobl providing tem-
poral isolation between subsystems that share logicalress. Furthermore,
we have formally proven key features of SIRAP such as boundietays for
accessing shared resources. Also we have provided schéitykanalysis for
tasks executing in the subsystems; allowing for use of heatitrme applica-
tions within the SIRAP framework. Naturally, the flexibyliand predictability
offered by SIRAP comes with some costs in terms of overheadh&@Ve eval-
uated this overhead through a comprehensive simulatialy.stu

In addition, we have proposed new overrun mechanisms bastteap-
proach presented in [14], for hierarchical scheduling fauorks, that can be
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used in the domain of open systems. We have presented batpendent
local schedulability analysis as well as global schedlitgtanalysis for the
proposed overrun mechanism as well as the existing basicusveWe have
presented analysis of when one overrun mechanism is bettetie other and
the results indicate that in the general case it is not tridavaluate which
overrun mechanism that is better than the other.

We have focused on assigning the CPU-resources to subsystean ef-
ficient way such that the resulting system load will be as lewassible. We
introduced a tradeoff between decreasing the resourcéniptkne and the
system load, and we presented a two-step approach to expiatra and
inter-subsystem aspects of the tradeoff efficiently, talsatetermining opti-
mal subsystem interfaces constituting the minimum systed.|

5.2 Future work

The work presented in this thesis has left and opened somesiskat would
be interesting to be investigated in the future. Some ofgkeds that will be
presented are general and some others are specific for gaeh pa

Starting from general issues, in this work we assume thasgesyis ex-
ecuted in a single processor while many real-time appboatare distributed
into several processors that communicate through some coication net-
work. Also, complementing single processor systems, aihstems are exe-
cuted in a multi-processor or multi-core architecture. ilt e interesting to
extend the HSF include the distributed systems and mubitgssor systems.

We would also like to include the subsystem context-switctine schedu-
lability analysis and check whether using non-preemptioba scheduling
can be more efficient than preemptive scheduler in terms &f-@RBources
usage. Note that a subsystem context-switch has more @gtthan a task
context-switch because if a subsystem gets preempted hbesirsmbsystem
then the scheduler should remove the first subsystem ants aksociated
tasks and add the higher priority subsystem with all readiggtdhat belong
to the second subsystem, which takes longer time and cowddpEnsive.

Another interesting work will be on supporting shared reses in multi-
level hierarchical scheduling frameworks since we onlysider a two-level
hierarchical scheduling framework. Also we would like tonsmler other re-
source models such as the EDP resource model [13]. Finadlyritportant to
test our framework with real applications by doing caseistid
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Paper A In the next stage of the implementation of the HSF, we intend t
implement synchronization protocols in hierarchical sthimg frameworks,
e.g., using SIRAP [15] and HSRP [14]. In addition, our futwek includes
supporting sporadic tasks in response to specific events asiexternal in-
terrupts. We also plan to support soft aperiodic tasks infacient way to
increase the quality of service of the soft tasks. Moreower,jntend to ex-
tend the implementation to make it suitable for more advdrazehitectures
including multi-core processors.

Paper B Future work includes investigating the effect of the coaxitch
overhead on subsystem utilization together with the subsyperiod and the
maximum value of;.

Paper C Future work includes finding the exact schedulability asislfor
the enhanced overrun mechanism, since the presented iamalyely gives
upper bound. We would like to include the development of leeal global
schedulability analysis for Fixed Priority Scheduling &Pas the current re-
sults only consider Earliest Deadline First (EDF). Anotimeresting issue is
to compare the implementation of the enhanced overrun méshavith other
synchronization mechanisms such as BWI [29], BROE sen&jrdthd SIRAP
[15].

Paper C In this paper, we considered only Fixed Priority Schedu(ifgS),
and we plan to extend our work to EDF scheduling. Furthermaowe future
work includes generalizing our framework to other synclration protocols
such as BROE server [16] and SIRAP [15].






Chapter 6

Overview of Papers

6.1 PaperA

Moris Behnam, Thomas Nolte, Insik Shin, Mikaéi;berg, Reinder J. Bril,
Towards Hierarchical Scheduling on top of VxWarksProceedings of thé¢'"
International Workshop on Operating Systems Platform&fobedded Real-
Time Applications (OSPERT’08), pages 63-72, Prague, CRagbublic, July,
2008.

Summary Over the years, we have worked on hierarchical schedulargdr
works from a theoretical point of view. In this paper we préseur initial
results of the implementation of our hierarchical scheduframework in a
commercial operating system VxWorks. The purpose of thdémpntation
is twofold: (1) we would like to demonstrate feasibility & implementation
in a commercial operating system, without having to modify kernel source
code, and (2) we would like to present detailed figures obwarkey properties
with respect to the overhead of the implementation. Dultiregiinplementation
of the hierarchical scheduler, we have also developed a auoflsimple task
schedulers. We present details of the implementation af-Rainotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, wespnt the design
of our hierarchical scheduling framework, and we discusscatrent status in
the project.
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My contribution  The results of this paper was based on the results of a mas-
ter project under the supervision of Moris Behnam.

6.2 PaperB

Moris Behnam, Insik Shin, Thomas Nolte, Mikael NolBIRAP: A Synchro-
nization Protocol for Hierarchical Resource Sharing in R&ane Open Sys-
tems In Proceedings of th&® ACM & IEEE International Conference on
Embedded Software (EMSOFT'07), pages 279-288, Salzbuigtria, Octo-

ber, 2007.

Summary This paper presents a protocol for resource sharing in ahier
chical real-time scheduling framework. Targeting realdiopen systems, the
protocol and the scheduling framework significantly redineeefforts and er-
rors associated with integrating multiple semi-independeibsystems on a
single processor. Thus, our proposed techniques faeiliatdern software de-
velopment processes, where subsystems are developeddpeimdent teams
(or subcontractors) and at a later stage integrated intoghesproduct. Using
our solution, a subsystem need not know, and is not depermderthe tim-
ing behaviour of other subsystems; even though they shareathuexclusive
resources. In this paper we also prove the correctness adppnoach and
evaluate its efficiency.

My contribution  The basic idea of this paper was suggested by Moris Behnam.
The work was done in cooperation with Moris and Insik Shird doris was
responsible for the evaluation part of the paper and he vgasmafolved in the
schedulability analysis.

6.3 PaperC

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nol®¢heduling of Semi-
Independent Real-Time Components: Overrun Methods aralResHolding
Times In Proceedings of the3t" IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA'08), IEEE Inimlas Electronics
Society, Hamburg, Germany, September, 2008.
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Summary The Hierarchical Scheduling Framework (HSF) has been-intro
duced as a design-time framework enabling compositiomedaability anal-
ysis of embedded software systems with real-time propertie this paper a
system consists of a number of semi-independent componaihsl subsys-
tems. Subsystems are developed independently and ladgrated to form
a system. To support this design process, our proposed deetilow non-
intrusive configuration and tuning of subsystem timing lvéta via subsys-
tem interfaces for selecting scheduling parameters. Tégiepconsiders two
methods to handle overruns due to resource sharing betwbsystems in the
HSF. We present the scheduling algorithms for overruns bhen &ssociated
schedulability analysis, together with analysis that shawder what circum-
stances one or the other overrun method is preferred. Fortdre, we show
how to calculate resource-holding times within our framewo

My contribution  The paper is based on an idea of Insik Shin but Moris has
done most of the work including the schedulability analjsisenhanced over-
run mechanism and the comparison between the enhancedeabddic over-
run mechanism, as well as the simplified equation to evaltieeaesource
holding times with the required proofs.

6.4 PaperD

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Noli@ynthesis of Opti-
mal Interfaces for Hierarchical Scheduling with ResourdasProceedings of
the 29*" IEEE International Real-Time Systems Symposium (RTSSE&BE
Press, Barcelona, Spain, December, 2008, (to be appear).

Summary This paper presents algorithms that (1) facilitate systahepen-
dent synthesis of timing-interfaces for subsystems angy&em-level selec-
tion of interfaces to minimize CPU load. The results presérire developed
for hierarchical fixed-priority scheduling of subsystermattmay share logical
recourses (i.e., semaphores). We show that the use of stesm@arces results
in a tradeoff problem, where resource locking times can aedel for CPU
allocation, complicating the problem of finding the optinmaterface config-
uration subject to schedulability. This paper presents thaumlogy where
such a tradeoff can be effectively explored. It first synidtesa bounded set
of interface-candidates for each subsystem, independeinthe final system,
such that the set contains the interface that minimizegsykiad for any given
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system. Then, integrating subsystems into a system, it fir@eptimal selec-
tion of interfaces. Our algorithms have linear complexiythe number of
tasks involved. Thus, our approach is highly suitable famdble and recon-
figurable systems.

My contribution The paper was based on ideas of Moris and Insik. Moris
was responsible for developing the algorithms and provie toerectness and
optimality formally. Moris was also involved in the disci@ss and witting of
the other parts of the paper.
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