
Mälardalen University Press Licentiate Thesis
No.94

Hierarchical Real-Time
Scheduling and
Synchronization

Moris Behnam

October 2008

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright c© Moris Behnam, 2008
ISSN 1651-9256
ISBN 978-91-86135-09-6
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

The Hierarchical Scheduling Framework (HSF) has been introduced to en-
able compositional schedulability analysis and executionof embedded soft-
ware systems with real-time constraints. In this thesis, weconsider a system
consisting of a number of semi-independent components called subsystems,
and these subsystems are allowed to share logical resources. The HSF provides
CPU-time to the subsystems and it guarantees that the individual subsystems
respect their allocated CPU budgets. However, if subsystems are allowed to
share logical resources, extra complexity with respect to analysis and run-time
mechanisms is introduced.

In this thesis we address three issues related to hierarchical scheduling of
semi-independent subsystems. In the first part, we investigate the feasibility of
implementing the hierarchical scheduling framework in a commercial operat-
ing system, and we present the detailed figures of various keyproperties with
respect to the overhead of the implementation.

In the second part, we studied the problem of supporting shared resources
in a hierarchical scheduling framework and we propose two different solutions
to support resource sharing. The first proposed solution is called SIRAP, a
synchronization protocol for resource sharing in hierarchically scheduled open
real-time systems, and the second solution is anenhanced overrun mechanism.

In the third part, we present a resource efficient approach tominimize sys-
tem load (i.e., the collective CPU requirements to guarantee the schedulability
of hierarchically scheduled subsystems). Our work is motivated from a trade-
off between reducing resource locking times and reducing system load. We
formulate an optimization problem that determines the resource locking times
of each individual subsystem with the goal of minimizing thesystem load sub-
ject to system schedulability. We present linear complexity algorithms to find
an optimal solution to the problem, and we prove their correctness.

i

To the memory of my mother

Acknowledgment

This thesis would not been possible without the help of my supervisors Prof.
Mikael Sjödin and Dr. Thomas Nolte and the collaboration with Dr. Insik
Shin. I would like to thank Mikael Sjödin for his advices andinvaluable input
to my research. Thomas, thank you very much for the supporting, encouraging,
helping and always finding time to guide me.

A special thank goes to Insik for all the intensive discussions and fruitful
cooperation. I would like to say how much I have appreciated working with
Thomas, Insik and Mikael, and I have learned a lot from them.

I want to thank the PROGRESSers; Prof. Hans Hansson for his great
leading of the PROGRESS center, and Prof. Ivica Crnkovic, Prof. Christer
Norström, Prof. Sasikumar Punnekkat, Prof. Paul Pettersson, Dr. Jan Gustafs-
son, Dr. Andreas Ermedahl and Dr. Cristina Seceleanu.

Also, I would like to thank Prophs’ers (PROGRESS PhD students) Hüseyin
Aysan, Andreas Hjertström, Séverine Sentilles, FarhangNemati, Aneta Vul-
garakis, Marcelo Santos, Stefan Bygde, Yue Lu and also the new PhD stu-
dents MikaelÅsberg, Jagadish Suryadevara, Aida Causevic. We had a lot of
fun especially when we arranged the social activities and student surprise for
the PROGRESS trips and also when I participated with some of you in PhD
schools and conferences.

Many thanks go to Dr. Damir Isovic for informing me about the PhD posi-
tion and for the very nice recommendation letter that I received from him when
I applied for that position.

I would also like to thank the my colleagues at the departmentfor the nice
time that I had in the department and special thank goes to theadministrative
staff, in particular Harriet Ekwall and Monica Wasell for their help in practical

v

vi

issues.

I would like to express my special gratitude to Dr. Reinder J.Bril at Eind-
hoven University of Technology, for our collaboration and his constructive
comments and discussions.

During my PhD studies, I have participated in 7 conferences,3 PhD schools
and 3 project trips in 7 different countries. Related to this, I would like to
thank Dr. Johan Fredriksson and Dr. Daniel Sundmark for being great travel
companions.

Finally, my deepest gratitude goes to my wife Rasha and my kids Dany and
Hanna for all their support and love.

This work has been supported by the Swedish Foundation for Strategic
Research (SSF), via the research programme PROGRESS.

Moris Behnam
Västerås, October, 2008

Contents

I Thesis 1

1 Introduction 3
1.1 Contributions . 5
1.2 Outline of thesis . 7

2 Background 9
2.1 Real-time systems . 9
2.2 System model . 10

2.2.1 Subsystem model . 10
2.2.2 Task model . 11
2.2.3 Shared resources . 11

2.3 Scheduling algorithms . 11
2.3.1 Online scheduling 12
2.3.2 Offline scheduling 13

2.4 Logical resource sharing . 13
2.4.1 Stack resource policy 14
2.4.2 Resource holding time 14

3 Real-Time Hierarchical Scheduling Framework 17
3.1 Hierarchical scheduling framework 17
3.2 Virtual processor model . 18
3.3 Schedulability analysis . 19

3.3.1 Local schedulability analysis 19
3.3.2 Global schedulability analysis 20

3.4 Subsystem interface calculation 20

vii

viii Contents

4 Hierarchical Scheduling with Resource Sharing 23
4.1 Problem formulation . 23
4.2 Supporting logical resource sharing 25

4.2.1 BWI . 25
4.2.2 HSRP . 26
4.2.3 BROE . 27
4.2.4 SIRAP . 28

4.3 Subsystem interface and resource sharing 28

5 Conclusions 31
5.1 Summary . 31
5.2 Future work . 32

6 Overview of Papers 35
6.1 Paper A . 35
6.2 Paper B . 36
6.3 Paper C . 36
6.4 Paper D . 37

Bibliography 39

II Included Papers 43

7 Paper A:
Towards Hierarchical Scheduling in VxWorks 45
7.1 Introduction . 47
7.2 Related work . 48
7.3 System model . 49
7.4 VxWorks . 50

7.4.1 Scheduling of time-triggered periodic tasks 51
7.4.2 Supporting arbitrary schedulers 52

7.5 The USR custom VxWorks scheduler 52
7.5.1 Scheduling periodic tasks 52
7.5.2 RM scheduling policy 54
7.5.3 EDF scheduling policy 55
7.5.4 Implementation and overheads of the USR 56

7.6 Hierarchical scheduling . 57
7.6.1 Hierarchical scheduling implementation 58
7.6.2 Example . 63

Contents ix

7.7 Summary . 64
Bibliography . 67

8 Paper B:
SIRAP: A Synchronization Protocol for Hierarchical Resource Shar-
ing in Real-Time Open Systems 71
8.1 Introduction . 73
8.2 Related work . 74
8.3 System model . 76

8.3.1 Hierarchical scheduling framework 76
8.3.2 Shared resources . 77
8.3.3 Virtual processor model 77
8.3.4 Subsystem model . 79

8.4 SIRAP protocol . 80
8.4.1 Terminology . 80
8.4.2 SIRAP protocol description 81

8.5 Schedulability analysis . 83
8.5.1 Local schedulability analysis 83
8.5.2 Global schedulability analysis 85
8.5.3 Local resource sharing 86

8.6 Protocol evaluation . 86
8.6.1 WCET within critical section 87
8.6.2 Task priority . 87
8.6.3 Subsystem period . 89
8.6.4 Multiple critical sections 91
8.6.5 Independent abstraction 91

8.7 Conclusion . 94
Bibliography . 95

9 Paper C:
Scheduling of Semi-Independent Real-Time Components:
Overrun Methods and Resource Holding Times 99
9.1 Introduction . 101
9.2 Related work . 102

9.2.1 Hierarchical scheduling 102
9.2.2 Resource sharing . 102

9.3 System model and background 103
9.3.1 Resource sharing in the HSF 103
9.3.2 Virtual processor models 104

x Contents

9.3.3 Stack resource policy (SRP) 105
9.3.4 System model . 106

9.4 Schedulability analysis . 106
9.4.1 Local schedulability analysis 107
9.4.2 Subsystem interface calculation 107
9.4.3 Global schedulability analysis 107

9.5 Overrun mechanisms . 108
9.5.1 Basic overrun . 108
9.5.2 Enhanced overrun 110

9.6 Comparison between basic and enhanced overrun mechanisms 111
9.6.1 Subsystem-level comparison 112
9.6.2 System-level comparison 113

9.7 Computing resource holding time 114
9.8 Summary . 116
Bibliography . 119

10 Paper D:
Synthesis of Optimal Interfaces for Hierarchical Scheduling with
Resources 123
10.1 Introduction . 125
10.2 Related work . 126
10.3 System model and background 127

10.3.1 Virtual processor models 127
10.3.2 System model . 128
10.3.3 Stack Resource Policy (SRP) 129

10.4 Resource sharing in the HSF 130
10.4.1 Overrun mechanism 130
10.4.2 Schedulability analysis 131

10.5 Problem formulation and solution outline132
10.6 Interface candidate generation 134

10.6.1 ICG algorithm . 138
10.7 Interface selection . 140

10.7.1 Description of the ICS algorithm 140
10.7.2 Correctness of the ICS algorithm 143

10.8 Overrun mechanism with payback 149
10.9 Conclusion . 150
Bibliography . 153

I

Thesis

1

Chapter 1

Introduction

Hierarchical scheduling has shown to be a useful approach insupporting modu-
larity of real-time software [1] by providing temporal partitioning among appli-
cations. In hierarchical scheduling, a system can be hierarchically divided into
a number of subsystems that are scheduled by a global (system-level) sched-
uler. Each subsystem contains a set of tasks that are scheduled by a local
(subsystem-level) scheduler. The Hierarchical Scheduling Framework (HSF)
allows for a subsystem to be developed and analyzed in isolation, with its own
local scheduler. At a later stage, using a global scheduler such as Fixed Prior-
ity Scheduling (FPS), Earlier Deadline First (EDF) or Time Division Multiple
Access (TDMA), it allows for the integration of multiple subsystems without
violating the temporal properties of the individual subsystems. The subsystem
integration involves a system-level schedulability test,verifying that all timing
requirements are met. This approach by isolation of tasks within subsystems,
and allowing for their own scheduler, has several advantages including [2]:

• It allows for the usage of the best scheduler (e.g., FPS, EDF or TDMA)
that fit the requirements of each subsystem.

• By keeping a subsystem isolated from other subsystems, and keeping the
subsystem local scheduler, it is possible to re-use a complete subsystem
in a different application1from where it was originally developed.

1Assuming that the timing parameters of the internal tasks ofthe subsystem will not be changed
when the subsystem is re-used in a different application.

3

4 Chapter 1. Introduction

• Hierarchical scheduling frameworks naturally supportconcurrent devel-
opmentof subsystems.

Over the years, there has been a growing attention to HSFs forreal-time
systems. Deng and Liu [3] proposed a two-level hierarchicalscheduling frame-
work for open systems, where subsystems may be developed andvalidated in-
dependently in different environments. Kuo and Li [4] presented schedulabil-
ity analysis techniques for such a two-level framework withthe fixed-priority
global scheduler. Lipari and Baruah [5, 6] presented schedulability analysis
techniques for the EDF-based global schedulers. Moket al. [7, 8] proposed
the bounded-delay virtual processor model to achieve a clean separation in a
multi-level HSF. In addition, Shin and Lee [1] introduced the periodic virtual
processor model (to characterize the periodic CPU allocation behaviour), and
many studies have been proposed on schedulability analysiswith this model
under fixed-priority scheduling [9, 10, 11] and under EDF scheduling [1, 12].
Being central to this thesis, the virtual periodic resourcemodel is presented
in detail in Chapter 3. More recently, Easwaranet al. [13] introduced Ex-
plicit Deadline Periodic (EDP) virtual processor model. However, a common
assumption shared by all above studies is that tasks are independent.

In this thesis we address the challenges of enabling efficient compositional
integration preserving temporal behavior for independently developed semi-
independent subsystems (i.e., subsystems are allowed to synchronize by the
sharing of logical resources) in open systems where subsystems can be devel-
oped independently. Efficient compositional integration means that the system
should require as little CPU-resources as possible, allowing more subsystems
to be integrated in a single processor. Achieving efficient compositional inte-
gration makes the HSF a cost-efficient approach applicable for a wide domain
of applications, including, automotive, automation, aerospace and consumer
electronics.

There have been studies on supporting resource sharing within subsys-
tems [9, 4] and across subsystems [14, 15, 16] in HSFs. Davis and Burns [14]
proposed the Hierarchical Stack Resource Policy (HSRP) supporting global
resource sharing on the basis of an overrun mechanism. The schedulability
analysis associated with the HSRP does not support independent subsystem
development (i.e., when performing schedulability analysis for internal tasks
of a subsystem using HSRP, information about other subsystems should be
provided). Fisheret al. [16] proposed the BROE server in order to handle
sharing of logical resources in a HSF. A detailed description of these proto-
cols and a comparison between our proposed protocol and these protocols is

1.1 Contributions 5

presented in Chapter 4.
Our overall goal of this thesis is to propose a scheduling framework and

synchronization protocols that are able to fulfill the following requirements;

• With acceptable implementation overhead, it should be possible to im-
plement the HSF in commercial real-time operating systems.

• The framework should support sharing of logical resources between sub-
systems while preserving the timing predictability and thereby allowing
for temporal requirements of the system.

• No knowledge about the parameters of other subsystems is required
when developing a subsystem, even in the case when there are depen-
dencies between subsystems (semi-independent subsystems) inherent in
the sharing of logical resources.

• The HSF should use the CPU-resources efficiently by minimizing the
collective CPU requirement (i.e., system load) necessary to guarantee
the schedulability of an entire framework.

1.1 Contributions

The contributions presented in this thesis can be divided into three parts:

Implementation Over the years, there has been a growing attention to HSFs
for real-time systems. However, up until now, those studieshave mainly worked
on various aspects of HSFs from a theoretical point of view. To our knowledge,
there are very few studies that focus on the implementation of HSF, especially
looking at what can be done with commercial operating systems.

We present our work towards a full implementation of the hierarchical
scheduling framework in the VxWorks commercial operating system without
changing or modifying the kernel of the operating system. Moreover, to show
the efficiency of the implementation, we measure the overheads imposed by the
implementation as a function of number of subsystems and number of tasks for
both FPS and EDF local and global schedulers.

Supporting shared resources Allowing tasks from different subsystems to
share logical resources imposes more complexity for the scheduling of sub-
systems. A proper synchronization protocol should be used to prevent unpre-
dictable timing behavior of the real-time system. Since there are dependencies

6 Chapter 1. Introduction

between subsystems though sharing of logical resources, using the protocol
with the HSF should not require any information from other subsystems when
developing a subsystem in order to not violate the requirement of developing
subsystems independently (support open systems).

We present the SIRAP protocol, a novel approach to allow synchroniza-
tion of semi-independent hierarchically scheduled subsystems. We present the
deduction of bounds on the timing behaviour of SIRAP together with accom-
panying formal proofs and we evaluate the cost of using this protocol in terms
of the extra CPU-resources that is required by the usage of the protocol.

In addition to SIRAP, we extend the schedulability analysisof HSRP [14]
so that it allows for independent analysis of individual semi-independent sub-
systems. And also, we propose an enhanced overrun mechanismthat gives two
benefits (compared with the old version of overrun mechanism): (1) it may in-
crease schedulability within a subsystem by providing CPU allocations more
efficiently, and (2) it can even accept subsystems which developed their timing
requirements without knowing that the proposed modified overrun mechanism
would be employed in the system.

Efficient CPU-resources usage As mentioned previously, one of the require-
ments that the proposed framework should provide, is to minimize the system
load. This can be achieved by finding optimal subsystem timing interfaces
(specifies the collective temporal requirements of a subsystem) that minimize
the system load. Supporting shared resources across subsystems produces in-
terference among subsystems which imposes more CPU demandsfor each sub-
system and makes the problem of minimizing the system load more complex.

We identify a tradeoff between reducing the time that a subsystem can
block other subsystems when accessing a shared resource (locking time which
is a part of subsystem timing interface) and decreasing the system load. Se-
lecting the optimal subsystem interface for a subsystem requires information
from other subsystems that the subsystem will interact with. However, the re-
quired information may not be available during the development stage of the
subsystem and in this case we may not be able to select the optimal interface.
To solve the problem of selecting an optimal interface for each subsystem, we
propose a two-step approach towards the system load minimization problem.
In the first step, a set of interface candidates, that have a potential to produce
an optimal system load, is generated for each subsystem in isolation. In the
second step, one interface will be selected for each subsystem from its own
candidates to find the minimum resulting system load. We provide one algo-
rithm for each step and we also prove the correctness and the optimality of the

1.2 Outline of thesis 7

provided algorithms formally.

1.2 Outline of thesis

The outline of this thesis is as follows: in Chapter 2 we explain and define the
basic concepts for real-time systems and the terms that willbe used throughout
this thesis and in addition we present the system model. In Chpater 3 we de-
scribe the hierarchical scheduling framework and the associated schedulability
analysis assuming that the subsystems are fully independent. In Chapter 4 we
address the problem of allowing dependency through sharinglogical resource
between subsystem and we present some solutions for this problem. In Chapter
5 we present our conclusion and suggestions for future work.We present the
technical overview of the papers that are included in this thesis in Chapter 6
and we present these papers in Chapters 7-10.

Chapter 2

Background

In this chapter we present some basic concepts concerning real-time systems,
as well as some methods that will be used in the next chapters.

2.1 Real-time systems

A real-time system is a computing system whose correctness relies not only on
the functionality, but also on timeliness, i.e., the systemshould produce correct
results at correct instances of time. Real-time systems areusually constructed
using concurrent programs calledtasksand each task is supposed to perform
a certain functionality (for example reading a sensor value, computing output
values, sending output values to other tasks or devices, etc). A real-time task
should complete its execution before a predefined time called deadline.

Real-time tasks can be classified according to their timing constraint to ei-
ther hard real-time tasks orsoft real-time tasks. For hard real-time tasks, all
tasks should complete their execution before their deadlines otherwise a catas-
trophic consequence may occur. However, for soft real-timetasks, it is accept-
able that deadlines are missed which may degrade the system performance, for
example consider a mobile phone where missing some deadlines will decrease
the quality of the sound. Many systems contain a mix of hard and soft real-time
tasks.

A real-time task consists of an infinite sequence of activities called jobs,
and depending on the way of task triggering, real-time tasksare modeled as
either anaperiodic taskor asporadic taskor aperiodic task:

9

10 Chapter 2. Background

• Aperiodic tasks are triggered at arbitrary times, with no known minimum
inter-arrival time.

• Sporadic tasks have known minimum inter-arrival time.

• Periodic tasks have a fixed inter-arrival time called period.

Depending on the task model, each task is characterized by timing parame-
ters including task period (periodic task), worst case execution time, deadline,
etc.

2.2 System model

In this thesis we focus on scheduling of a single node. Each node is modeled
as a systemS which consists of one or more subsystemsSs ∈ S. The schedul-
ing framework is a two-level hierarchical scheduling framework as shown in
Fig 2.1. During run-time, the system level scheduler (Global scheduler) selects
which subsystem that will access the CPU-resources.

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 2.1: Two-level hierarchical scheduling framework with resource shar-
ing.

2.2.1 Subsystem model

A subsystemSs consists of a task set and a scheduler. Once a subsystem is
assigned the processor, the corresponding local schedulerwill select which

2.3 Scheduling algorithms 11

task that will be executed. Each subsystemSs is associated with a periodic
processor model (abstraction)Γs(Ps, Qs), wherePs andQs are the subsys-
tem period and budget respectively. This abstractionΓs(Ps, Qs) specifies the
collective temporal requirements of a subsystem and it is used as an interface
between the subsystem and the global scheduler (we refer to this abstraction as
subsystem timing interface).

2.2.2 Task model

In this thesis, we consider a deadline-constrained sporadic hard real-time task
modelτi(Ti, Ci, Di, {ci,j}) whereTi is a minimum separation time between
its successive jobs,Ci is a worst-case execution time requirement for one job,
Di is a relative deadline (Ci ≤ Di ≤ Ti) by which each job must have finished
its execution. Each task is allowed to access one or more logical resources and
each elementci,j in {ci,j} is a critical section execution timethat represents
a worst-case execution time requirement within a critical section of a global
shared resourceRj .

2.2.3 Shared resources

The presented hierarchical scheduling framework allows sharing of logical re-
source between tasks in a mutually exclusive manner. To access a resource
Rj , a task must first lock the resource, and when the task no longer needs the
resource it is unlocked. The time during which a task holds a lock is called a
critical section time. Only one task at a time may be inside a critical section
corresponding to a specific resource. A resource that is usedby tasks in more
than one subsystem is denoted aglobal shared resource. A resource only used
within a single subsystem is alocal shared resource. We are concerned only
with global shared resources and will simply denote them by shared resources.

2.3 Scheduling algorithms

In a single processor, the CPU can not be assigned to more thanone task to be
executed at the same time. If a set of tasks are ready to execute then a schedul-
ing criterion should be used to define the execution order of these tasks. The
scheduling criterion uses a set of rules defined by a scheduling algorithm to
determine the execution order of the task set. If all tasks complete their execu-
tion before their deadlines then the schedule is called a feasible schedule and

12 Chapter 2. Background

the tasks are said to be schedulable. If the scheduler permitother tasks to inter-
rupt the execution of the running task (task in execution) before completing of
its execution then the scheduling algorithm is called a preemptive algorithm,
otherwise it is called a non-preemptive scheduling algorithm.

Real-time scheduling algorithms fall in two basic categories; online sched-
ule and off-line schedule [17].

2.3.1 Online scheduling

For online scheduling, the order of task execution is determined during run-
time according to task priorities. The priorities of tasks can be static which
means that the priorities of tasks will not change during run-time. This type
of scheduling algorithm is called Fixed Priority Scheduling (FPS) and both
Rate Monotonic (RM) scheduling [18] and Deadline Monotonic(DM) [19]
use this type of scheduling. The task priorities can be dynamic which means
that they can change during run-time, and Earlier Deadline First (EDF) [18] is
an example of such scheduler.

RM and DM scheduling algorithms In RM, the priorities of the tasks are
assigned according to their periods; the priority of a task is proportional to the
inverse of the task period such that the task with shorter period will have higher
priority than the tasks with longer period. The priority of atask is fixed during
the run time. The RM scheduling algorithm assumes that tasksperiods equals
to tasks deadlines. Another FPS algorithm is DM which is similar to RM but
the priority depends on the task relative deadlines insteadof periods.

The schedulability analysis for each task using RM or DM is asfollows [20];

∀τi ∈ Γ, 0 < ∃t ≤ Di dbf(i, t) ≤ t. (2.1)

whereΓ is the set of tasks that will be scheduled andDi is the relative deadline
of the taskτi anddbf(i, t) is evaluated as follows;

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
Ck, (2.2)

whereCi is the worst case execution time of the taskτi andTi is the task period
andHP(i) is the set of tasks with priority higher than that ofτi.

2.4 Logical resource sharing 13

EDF scheduling algorithm In this scheduling algorithm, the task that has
earlier deadline among all tasks that are ready to execute, will execute first. The
priority of the task is dynamic and can be changed during run-time depending
on the deadline of the task instant and other released tasks ready for execution.
The schedulability test for a set of tasks that use EDF is shown in Eq. (2.3) [21]
which includes the case when task deadlines are allowed to beless than or equal
to task periods.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋
· Ci ≤ t (2.3)

2.3.2 Offline scheduling

In offline scheduling, a schedule is created before run-time. The scheduling
algorithm can take into consideration the timing constrains of real-time tasks
such as execution time, deadline, precedence relation (if atask should execute
always before another task), etc. The resulting execution sequence is stored
in a table and then dispatched during run-time. Finding a feasible schedule
using offline scheduling should be done up to the hyper-period (LCM) of task
periods, and then, during the run-time, this hyper-period is repeated regularly.

2.4 Logical resource sharing

A resourceis any software structure that can be used by a task to advanceits
execution [22]. For example a resource can be a data structure, flash memory,
a memory map of a peripheral device. If more than one task use the same
resource then that resource is calledshared resource. The part of task’s code
that uses a shared resource is called critical section. Whena job enters a criti-
cal section (starts accessing a shred resource) then no other jobs, including the
jobs of higher priority tasks, can access the shared resource until the access-
ing job exits the critical section (mutual exclusion method). The reason is to
guarantee the consistency of the data in the shared resourceand this type of
shared resource is called nonpreemptable resource. For preemptive scheduling
algorithms, sharing logical resources cause a problem calledpriority inversion.
The priority inversion problem happen when a job with high priority wants to
access a shared resource that is currently accessed by another lower priority
job, so the higher priority job will not be able to preempt thelower priority
job. The higher priority job will be blocked until the lower priority job release

14 Chapter 2. Background

the shared resource. The time that the high priority job willbe blocked can be
unbounded since other jobs with intermediate priority thatdo not access the
shared resource can preempt the low priority job while it is executing inside
its critical section. As a result of the priority inversion problem, the higher
priority job may miss its deadline. A proper protocol shouldbe used to syn-
chronize the access to the shared resource in order to bound the waiting time of
the blocked tasks. Several synchronization protocols, such as the Priority In-
heritance Protocol (PIP) [23], the Priority Ceiling Protocol (PCP) [24] and the
Stack Resource Policy (SRP) [25], have been proposed to solve the problem
of priority inversion. We will explain the SRP protocol in details, a protocol
central for this thesis, suitable for RM, DM, and EDF scheduling algorithms.

2.4.1 Stack resource policy

To describe how SRP [25] works, we first define some terms that are used with
SRP.

• Preemption level. Each taskτi has a preemption level which is a static
value and proportional to the inverse of task relative deadlineπi = 1/Di,
whereDi is a relative deadline of taskτi.

• Resource ceiling. Each shared resourceRj is associated with a resource
ceiling which equal to the highest preemption level of all tasks that use
the resourceRj ; rcj = max{πi|τi accessesRj}.

• System ceiling. System ceiling is a dynamic parameter that change dur-
ing execution. The system ceiling is equal to the currently locked highest
resource ceiling in the system. If at any time there is no accessed shared
resource then the system ceiling would be equal to zero.

According to SRP, a jobJi generated by taskτi can preempt the currently
executing jobJk only if Ji is a higher-priority job ofJk and the preemption
level of τi is greater than the current subsystem ceiling.

2.4.2 Resource holding time

For a set of tasks that uses the SRP protocol, the duration of time that a taskτi

locks a shared resource, is calledresource holding time[26, 27] which equals to
the maximum task execution time inside a critical section plus the interference
(preemption inside the critical section) of higher priority tasks that have pre-
emption level greater than the ceiling of locked resource. The resource holding

2.4 Logical resource sharing 15

time can be computed depending on the scheduling algorithm in use, as shown
below;

Under FPS scheduling the resource holding timehj of a shared resource
Rj is [26];

WFPS
j (t) = cxj +

n∑

k=rcj+1

d
t

Tk

e · Ck, (2.4)

wherecxj is the maximum worst-case execution time inside the critical section
of all tasks that access resourceRj andn is the number of tasks.

The resource holding timehj is the smallest positive timet∗ such that

WFPS
j (t∗) = t∗. (2.5)

Under EDF scheduling the resource holding timehj of a shared resource
Rj is [27];

WEDF
j (t) = cxj +

n∑

k=rcj+1

(
min

(⌈ t

Tk

⌉
,
⌊Di − Dk

Tk

⌋
+ 1

))
· Ck, (2.6)

The resource holding timehj is the smallest positive timet∗ such that

WEDF
j (t∗) = t∗. (2.7)

An algorithm to decrease the resource holding time without violating the
schedulability of the system under the same semantics as that of SRP, was pre-
sented in [26, 27]. The algorithm works as follows; it increases the resource
ceiling of each shared resource to the next higher value (higher preemption
level than the ceiling of the resource) in steps and in each step it checks if
the schedule is still feasible or not. If the schedule is feasible then it contin-
ues increasing the ceiling of the resource until either the schedule becomes
infeasible or the ceiling of the task equals to the maximum preemption level.
The minimum resource holding time of a resourceRj is obtained when its
resource ceiling equal to the maximum preemption level of the task set. Note
that the resource holding time is a very important parameterfor the hierarchical
scheduling framework, as will be shown in Chapter 4.

Chapter 3

Real-Time Hierarchical
Scheduling Framework

In this chapter, we will describe the HSF assuming that all tasks are fully inde-
pendent, i.e., tasks are not allowed to share logical resources. While in the next
chapter we will consider the problem of accessing global shared resources.

3.1 Hierarchical scheduling framework

One of the important properties that the HSF can provide is the isolation be-
tween subsystems during design time and run-time such that the subsystems are
separated functionally for fault containment and for compositional verification,
validation and certification. The HSF guarantees independent execution of the
subsystems and it prevents one subsystem from causing a failure of another
subsystem through providing the CPU-resources needed for each subsystem.

Each subsystem specifies the amount of CPU-resources that are required to
schedule all internal tasks through its timing interface. And the global sched-
uler will provide the required CPU-resources for all subsystems as specified by
the timing interfaces of the subsystems.

In the following sections, we will explain how to evaluate the subsystem
timing interface and also show how to verify whether the global scheduler
can supply the subsystems with required resources using global schedulabil-
ity analysis.

Given a subsystem timing interface, it is required to check if the interface

17

18 Chapter 3. Real-Time Hierarchical Scheduling Framework

can guarantee that all hard real-time tasks in the subsystemwill meet their
deadlines using this interface. This check is done by applying local schedula-
bility analysis. But before presenting the local schedulability analysis, we will
explain the virtual processor resource model which will be used in the local
schedulability analysis.

3.2 Virtual processor model

The notion of real-time virtual processor (resource) modelwas first introduced
by Mok et al. [7] to characterize the CPU allocations that a parent node pro-
vides to a child node in a hierarchical scheduling framework. TheCPU supply
of a virtual processor model refers to the amount of CPU allocations that the
virtual processor model can provide. Thesupply bound functionof a virtual
processor model calculates the minimum possible CPU supplyof the virtual
processor model for a time interval lengtht.

Shin and Lee [1] proposed the periodic virtual processor model Γ(P, Q),
whereP is a period (P > 0) andQ is a periodic allocation time (0 < Q ≤ P).
The capacityUΓ of a periodic virtual processor modelΓ(P, Q) is defined as
Q/P . The periodic virtual processor modelΓ(P, Q) is defined to characterize
the following property:

supplyΓ

(
kP, (k + 1)P

)
= Q, wherek = 0, 1, 2, . . . , (3.1)

where the supply functionsupplyRs
(t1, t2) computes the amount of CPU allo-

cations that the virtual processor modelRs provides during the interval[t1, t2).
For the periodic modelΓ(P, Q), its supply bound functionsbfΓ(t) is de-

fined to compute the minimum possible CPU supply for every interval lengtht
as follows:

sbfΓ(t) =






t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,
(3.2)

wherek = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
. Here, we first note that an interval

of lengtht may not begin synchronously with the beginning of periodP . That
is, as shown in Figure 3.1, the interval of lengtht can start in the middle of
the period of a periodic modelΓ(P, Q). We also note that the intuition of
k in Eq. (3.2) basically indicates how many periods of a periodic model can

3.3 Schedulability analysis 19

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Figure 3.1: The supply bound function of a periodic virtual processor model
Γ(P, Q) for k = 3.

overlap the interval of lengtht, more precisely speaking, the interval of length
t− (P −Q). Figure 3.1 illustrates the intuition ofk and how the supply bound
functionsbfΓ(t) is defined fork = 3.

3.3 Schedulability analysis

This section presents the schedulability analysis of the HSF, starting with local
schedulability analysis needed to calculate subsystem interfaces, and finally,
global schedulability analysis.

3.3.1 Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a taskτi under EDF
scheduling [28], i.e.,

dbfEDF(i, t) =
⌊ t + Ti − Di

Ti

⌋
· Ci. (3.3)

The local schedulability condition under EDF scheduling isthen ([1])

20 Chapter 3. Real-Time Hierarchical Scheduling Framework

∀t > 0
∑

τi∈Γ

dbfEDF(i, t) ≤ sbf(t), (3.4)

LetdbfFP(i, t) denote the demand bound function of a taskτi under FPS [20],
i.e.,

dbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (3.5)

whereHP(i) is the set of tasks with higher priorities than that ofτi. The local
schedulability analysis under FPS can then easily be extended from the results
of [25, 1] as follows:

∀τi, 0 < ∃t ≤ Di dbfFP(i, t) ≤ sbf(t). (3.6)

3.3.2 Global schedulability analysis

The global scheduler schedules subsystems in a similar way as scheduling sim-
ple real-time periodic tasks. The reason is that we are usingthe periodic re-
source model to abstract the collective timing temporal requirements of sub-
systems, so the subsystem can be modeled as a simple periodictask where the
subsystem period is equivalent to the task period and the subsystem budget is
equivalent to the task execution time. Depending on the global scheduler (if it
is EDF, RM or DM), it is possible to use the schedulability analysis methods
used for scheduling periodic tasks (presented in section 2.3) in order to check
the global schedulability.

3.4 Subsystem interface calculation

Using HSF, a subsystemSs is assigned fraction of CPU-resources which equals
to Qs/Ps. It is required to decrease the required CPU-resources fraction for
each subsystem as much as possible without affecting the schedulability of its
internal tasks. By decreasing the required CPU-resources for all subsystems,
the overall CPU demand required to schedule the entire system (system load)
will be decreased, and by doing this, more applications can be integrated in a
single processor.

To evaluate the minimum CPU-resources fraction required for a subsystem
Ss and givenPs, let calculateBudget(Ss, Ps) denote a function that calculates

3.4 Subsystem interface calculation 21

the smallest subsystem budgetQs that satisfies Eq. (3.4) and Eq. (3.6). Hence,
Qs = calculateBudget(Ss, Ps). The function is a searching function simi-
lar to the one presented in [1] and the resulting subsystem timing interface is
(Ps, Qs).

Chapter 4

Hierarchical Scheduling with
Resource Sharing

In this chapter we extend the HSF that was presented in the previous chapter
and allow tasks from different subsystems to share global resources. We are
concerned only with global shared resources while managingof local shared
resources can be done by using several existing synchronization protocols such
as PIP, PCP, and SRP (see [9, 14, 4] for more details).

First, we explain the problem of supporting logical resources followed by
discussing some solutions. Later, we show the effect of supporting sharing
of global shared resources on the system load required to schedule the entire
system.

4.1 Problem formulation

When a task access a shared resource, all other tasks that want to access the
same resource will be blocked until the task that is accessing the resource re-
leases it. To achieve a predictable real-time behaviour, the waiting time of
other tasks that want to access a locked shared resource should be bounded.
The traditional synchronization protocols such as PIP, PCPand SRP that are
used with non-hierarchical scheduling, can not without modification, handle
the problem of sharing global resources in hierarchical scheduling framework.
To explain the reason, suppose a taskτj that belongs to a subsystemSI is hold-
ing a logical resourceR1, the execution of the taskτj can be preempted while

23

24 Chapter 4. Hierarchical Scheduling with Resource Sharing

��� �� ���� �	

��
�
�������� ��������� �� ����

�������� �	 � � !" �	
��
�
���#�$�%$ ��������� ���� �	&'(�()* �(��
��
�
���+�,-.�/, ��������� �0
12 34356789: 8:;8<3 =>1? 34356789: 8:;8<3 =>

Figure 4.1: Task preemption while running inside a criticalsection.

τj is executing inside the critical section of the resourceR1 (see Fig 4.1) due
to the following reasons:

1. Inter subsystem preemption, a higher priority taskτk within the same
subsystem preempts the taskτj .

2. Intra subsystem preemption, a ready taskτc that belongs to a subsys-
tem SP preemptsτj when the priority of subsystemSP is higher than
the priority of subsystemSI .

3. Budget expiry inside a critical section, if the budget of the subsystem
SI expires, the taskτj will not be allowed to execute until the budget of
its subsystem will be replenished at the beginning of the next subsystem
periodPI .

The PIP, PCP and SRP protocols can only solve the problem caused by task
preemption within a subsystem (case number1) since there is a direct relation-
ship between the priorities of tasks within the same subsystem. However, if
tasks are from different subsystems (intra task preemption) then priorities of
tasks belonging to different subsystems are independent ofeach other, which
make these protocols not suitable to be used directly to solve this problem.
One way to solve this problem is by using the protocols PIP, PCP and SRP be-
tween subsystems such that if a task that belongs to a subsystem lock a global
resource, then this subsystem blocks all other subsystems where their internal
tasks want to access the same global shared resource.

4.2 Supporting logical resource sharing 25

Another problem of directly applying PIP, PCP and SRP protocols is that of
budget expiry inside critical section. The subsystem budget QI is said toexpire
at the point when one or more internal (to the subsystem) tasks have executed
a total ofQI time units within the subsystem periodPI . Once the budget is
expired, no new tasks within the same subsystem can initiateexecution until
the subsystem’s budget is replenished. This replenishmenttakes place in the
beginning of each subsystem period, where the budget is replenished to a value
of QI .

Budget expiration can cause a problem, if it happens while a taskτj of a
subsystemSI is executing within the critical section of a global shared resource
R1. If another taskτm, belonging to another subsystem, is waiting for the same
resourceR1, this task must wait untilSI is replenished soτj can continue to
execute and finally release the lock on resourceR1. This waiting time exposed
to τm can be potentially very long, causingτm to miss its deadline.

4.2 Supporting logical resource sharing

Several mechanisms have been proposed to enable resource sharing in hier-
archical scheduling framework. These mechanisms use different methods to
handle the problem of bounding the waiting time of other tasks that are waiting
for a shared resource. Most of them use the SRP protocol to synchronize access
to a shared resource within a subsystem to solve the problem of inter subsystem
preemption, and they also use SRP among subsystems to solve the problem of
intra subsystem preemption. Note that the effect of using SRP with both local
and global scheduling should be considered during the schedulability analysis.

In general, solving the problem of budget expiry inside a critical section is
based on two approaches;

• Adding extra resources to the budget of each subsystem to prevent the
budget expiration inside a critical section.

• Preventing a task from locking a shared resource if its subsystem does
not have enough remaining budget.

The following sections explain these mechanisms in detail.

4.2.1 BWI

The BandWidth Inheritance protocol (BWI) [29] extends the resource reserva-
tion framework to systems where tasks can share resources. The BWI approach

26 Chapter 4. Hierarchical Scheduling with Resource Sharing

uses (but is not limited to) the CBS algorithm together with atechnique that is
derived from the Priority Inheritance Protocol (PIP). According to BWI, each
task is scheduled through a server, and when a task that executed inside lower
priority server blocks another task executed in higher priority server, the block-
ing task will be added to the higher priority server. When thetask releases the
shared resource, then it will be discarded from the high priority server. For
schedulability analysis, each server should be characterized by an interference
time due to adding lower priority tasks in the server. This approach is suitable
for systems where the execution time of a task inside critical section can not
be evaluated. In addition, the scheduling algorithm does not require any prior
knowledge about which shared resources that tasks will access nor the arrival
time of tasks. However, BWI is not suitable for systems that consist of many
hard real-time tasks. The reason is that the interference (that includes the sum-
mation of the execution times inside the critical section) from the lower priority
tasks will be added to the budget of a hard real-time task server to guarantee
that the task will not miss its deadline. Hence, BWI becomes pessimistic in
terms of CPU-resources usage for hard real-time tasks.

4.2.2 HSRP

The Hierarchical Stack Resource Policy (HSRP) [14] extendsthe SRP proto-
col to be appropriate for hierarchical scheduling frameworks with tasks that
access global shared resources. HSRP is based on the overrunmechanism
which works as follows: when the budget of a subsystem expires and the sub-
system has a jobJi that is still locking a global shared resource, the jobJi

continues its execution until it releases the locked resource. When a job access
a global shared resources its priority is increased to the highest local priority to
prevent any preemption during the access of shared resourcefrom other tasks
that belong to the same subsystem. SRP is used in the global level to syn-
chronize the execution of subsystems that have tasks accessing global shared
resources. Each global shared resource has a ceiling equal to the maximum
priority of subsystems that has a task accessing that resource. Two versions of
the overrun mechanisms have been presented; 1) The overrun mechanism with
payback which works as follows, whenever overrun happens ina subsystem
Ss, the budget of the subsystem will be decreased by the amount of the over-
run time in its next execution instant. 2) In the second version which is called
overrun mechanism without payback, no further actions willbe taken after the
event of an overrun. Selecting which of these two mechanismsthat can give
better results in terms of task response times depends on thesystem param-

4.2 Supporting logical resource sharing 27

eters. The presented schedulability analysis does not support composability,
disallowing independent analysis of individual subsystems since information
about other subsystems is needed in order to apply the schedulability analysis
for all tasks. In addition, HSRP does not provide a complete separation be-
tween the local and the global schedulers. The local scheduler should inform
the global scheduler to let the server continue executing when a budget expiry
inside a critical section problem happens and then the localscheduler should
inform the global scheduler when its task releases the global shared resource.

4.2.3 BROE

The Bounded-delay Resource Open Environment (BROE) server[16] extends
the Constant Bandwidth Server (CBS) [30] in order to handle the sharing of
logical resources in a HSF. The BROE server is suitable for open systems
since it allows for each application to be developed and validated indepen-
dently. For each application, the maximum CPU-resources demand is char-
acterized by server speed, delay tolerance (using the bounded-delay resource
partition [7]) and resource holding time. These parameterswill be used as an
interface between the application and the system schedulerso that the system
scheduler will schedule all servers according to their interface parameters. The
interface parameters will also be used during the admissioncontrol of new
applications to check if there is enough CPU-resources to run this new appli-
cation on the processor. The BROE server uses the SRP protocol to arbitrate
access to global shared resources and in order to prevent thebudget expiration
inside critical section problem, the application performsa budget check before
accessing a global shared resource. If the application has sufficient remaining
budget then it allows its task to lock the global resource otherwise it postpones
its current deadline and replenishes its budget (accordingto certain rules that
guarantee the correctness of the CBS servers execution) to be able to lock and
release the global resource safely. Comparing the BROE server with HSRP,
BROE does not need more resources to handle the problem of budget expiry in
the global level while HSRP may require more resources sinceit uses an over-
run mechanism and the overrun time should be taken into account in the global
scheduling. However, the only scheduling algorithm that issuitable for the
presented version of the BROE server is EDF which is one of thelimitations of
this approach. In addition, in [16], the authors didn’t explain how to evaluate
the value of the resource holding time for BROE server (the authors left this
issue to a future submission) and how this value may affect the CPU-resources
usage locally and globally.

28 Chapter 4. Hierarchical Scheduling with Resource Sharing

4.2.4 SIRAP

The Subsystem Integration and Resource Allocation Policy (SIRAP) [15] pro-
tocol supports subsystem integration in the presence of shared logical resources.
SIRAP can be used in an open systems. It uses a periodic resource model to ab-
stract the timing requirements of each subsystem. Each subsystem is character-
ized by its period and budget and resource holding time and itis implemented
as a simple periodic server. SIRAP uses the SRP protocol to synchronize the
access to global shared resources in both local and global scheduling. SIRAP
applies a skipping approach to prevent the budget expiration inside critical sec-
tion which works as follows; when a job wants to enter a critical section, it
enters the critical section at the earliest instant such that it can complete the
critical section before the subsystem budget expires. Thiscan be achieved by
checking the remaining budget before granting the access tothe global shared
resources, if there is sufficient remaining budget then the job enters the critical
section. If there is insufficient remaining budget, the local scheduler delays
the critical section entering of the job until the next subsystem budget replen-
ishment. Comparing SIRAP and BROE, both provide better isolation between
the global and the local schedulers than HSRP since they solve the problem
of budget expiry inside a critical section locally. However, using HSRP, it is
not required to include the resource holding time in the interface of subsystems
during run-time and its required only for schedulability analysis while the re-
source golding times are required during run-time for SIRAPand BROE. Both
SIRAP and BROE do not need extra resources in the global scheduling level.
The SIRAP protocol needs extra resources in the local level scheduling when
it increases the resource demand of the subsystem and for BROE it is not clear
since the way of evaluating resource holding time was not presented. Another
difference between BROE and SIRAP is that the SIRAP protocoluses FPS as
a global scheduling algorithm and can be easily adapted to include local and
global EDF while BROE can only work with EDF as a global scheduler.

4.3 Subsystem interface and resource sharing

Supporting shared resources across subsystems produces interference among
subsystems which imposes more CPU demands for each subsystem. In the
local schedulability analysis and because of using SRP locally, the blocking
times should be added to the maximum resources demand side inEq. (3.4) and
Eq. (3.6) and this will increase the minimum required subsystem budgetQs.
In the global level and because of using SRP between subsystems, the block-

4.3 Subsystem interface and resource sharing 29

ing time (resource holding time1) that a subsystem may block other subsys-
tems should be added to the global schedulability analysis.So for the global
schedulability analysis the subsystem interface should include in addition to
the subsystem period and budget, the maximum resource holding time for each
global shared resource that the internal tasks of the subsystem may access.
One way to decrease the amount of information of subsystem interface needed
for global schedulability analysis, can be by considering that the subsystem
will access all global resources, then it is required to provide the maximum re-
source holding time of all internal tasks that access the global shared resources.
The subsystem timing interface of a subsystemSs for this case is (Ps, Qs, Hs)
whereHs is the maximum resource holding time of all internal tasks ofSs that
access global shared resources. Finally the extra CPU demand that is required
to solve the problem of budget expiry inside the critical section depends on the
used mechanism.

As mentioned previously, a subsystem can be blocked in accessing a global
shared resource, if there is another subsystem locking the resource at the mo-
ment. Such blocking imposes more CPU demands, resulting in an increase of
the system load. Therefore, subsystems can reduce their resource holding time,
for example, using the mechanism presented in [26, 27] by increasing the re-
source ceiling of the global shared resources locally inside the subsystems, in
order to potentially reduce the blocking of other subsystems towards decrease
of the system load. However, we have found that decreasing the value of re-
source holding times may increase the required budget of thesame subsystem
Qs and it may increase the system load.

1In paper D we use the term resource locking time instead of resource holding time to remove
any confusion since the term resource holding time was firstly presented in the context of non-
hierarchical scheduling.

Chapter 5

Conclusions

5.1 Summary

We have implemented a HSF in a commercial operating system (VxWorks)
without changing the kernel of the operating system. Each subsystem has been
implemented using periodic servers. As most commercial real-time operating
system, VxWorks does not support the periodic activation oftasks. In order to
enable periodic activations of tasks and servers, we have used a timer and an
interrupt service rutin. We have measured the overhead of the implementation
and the results shows that a hierarchical scheduling framework can effectively
achieve the clean separation of subsystems in terms of timing interference (i.e.,
without requiring any temporal parameters of other subsystems) with reason-
able implementation overheads.

We have also investigated the problem of supporting sharingof logical re-
sources and we have presented a novel Subsystem Integrationand Resource
Allocation Policy (SIRAP), which is a synchronization protocol providing tem-
poral isolation between subsystems that share logical resources. Furthermore,
we have formally proven key features of SIRAP such as bounds on delays for
accessing shared resources. Also we have provided schedulability analysis for
tasks executing in the subsystems; allowing for use of hard real-time applica-
tions within the SIRAP framework. Naturally, the flexibility and predictability
offered by SIRAP comes with some costs in terms of overhead. We have eval-
uated this overhead through a comprehensive simulation study.

In addition, we have proposed new overrun mechanisms based on the ap-
proach presented in [14], for hierarchical scheduling frameworks, that can be

31

32 Chapter 5. Conclusions

used in the domain of open systems. We have presented both independent
local schedulability analysis as well as global schedulability analysis for the
proposed overrun mechanism as well as the existing basic overrun. We have
presented analysis of when one overrun mechanism is better than the other and
the results indicate that in the general case it is not trivial to evaluate which
overrun mechanism that is better than the other.

We have focused on assigning the CPU-resources to subsystems in an ef-
ficient way such that the resulting system load will be as low as possible. We
introduced a tradeoff between decreasing the resource locking time and the
system load, and we presented a two-step approach to explorethe intra and
inter-subsystem aspects of the tradeoff efficiently, towards determining opti-
mal subsystem interfaces constituting the minimum system load.

5.2 Future work

The work presented in this thesis has left and opened some issues that would
be interesting to be investigated in the future. Some of the issues that will be
presented are general and some others are specific for each paper.

Starting from general issues, in this work we assume that a system is ex-
ecuted in a single processor while many real-time applications are distributed
into several processors that communicate through some communication net-
work. Also, complementing single processor systems, othersystems are exe-
cuted in a multi-processor or multi-core architecture. It will be interesting to
extend the HSF include the distributed systems and multi-processor systems.

We would also like to include the subsystem context-switch in the schedu-
lability analysis and check whether using non-preemptive global scheduling
can be more efficient than preemptive scheduler in terms of CPU-resources
usage. Note that a subsystem context-switch has more overhead than a task
context-switch because if a subsystem gets preempted be another subsystem
then the scheduler should remove the first subsystem and all its associated
tasks and add the higher priority subsystem with all ready tasks that belong
to the second subsystem, which takes longer time and could beexpensive.

Another interesting work will be on supporting shared resources in multi-
level hierarchical scheduling frameworks since we only consider a two-level
hierarchical scheduling framework. Also we would like to consider other re-
source models such as the EDP resource model [13]. Finally itis important to
test our framework with real applications by doing case studies.

5.2 Future work 33

Paper A In the next stage of the implementation of the HSF, we intend to
implement synchronization protocols in hierarchical scheduling frameworks,
e.g., using SIRAP [15] and HSRP [14]. In addition, our futurework includes
supporting sporadic tasks in response to specific events such as external in-
terrupts. We also plan to support soft aperiodic tasks in an efficient way to
increase the quality of service of the soft tasks. Moreover,we intend to ex-
tend the implementation to make it suitable for more advanced architectures
including multi-core processors.

Paper B Future work includes investigating the effect of the context-switch
overhead on subsystem utilization together with the subsystem period and the
maximum value ofhi.

Paper C Future work includes finding the exact schedulability analysis for
the enhanced overrun mechanism, since the presented analysis merely gives
upper bound. We would like to include the development of local and global
schedulability analysis for Fixed Priority Scheduling (FPS), as the current re-
sults only consider Earliest Deadline First (EDF). Anotherinteresting issue is
to compare the implementation of the enhanced overrun mechanism with other
synchronization mechanisms such as BWI [29], BROE server [16] and SIRAP
[15].

Paper C In this paper, we considered only Fixed Priority Scheduling(FPS),
and we plan to extend our work to EDF scheduling. Furthermore, our future
work includes generalizing our framework to other synchronization protocols
such as BROE server [16] and SIRAP [15].

Chapter 6

Overview of Papers

6.1 Paper A

Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg, Reinder J. Bril,
Towards Hierarchical Scheduling on top of VxWorks, In Proceedings of the4th

International Workshop on Operating Systems Platforms forEmbedded Real-
Time Applications (OSPERT’08), pages 63-72, Prague, CzechRepublic, July,
2008.

Summary Over the years, we have worked on hierarchical scheduling frame-
works from a theoretical point of view. In this paper we present our initial
results of the implementation of our hierarchical scheduling framework in a
commercial operating system VxWorks. The purpose of the implementation
is twofold: (1) we would like to demonstrate feasibility of its implementation
in a commercial operating system, without having to modify the kernel source
code, and (2) we would like to present detailed figures of various key properties
with respect to the overhead of the implementation. During the implementation
of the hierarchical scheduler, we have also developed a number of simple task
schedulers. We present details of the implementation of Rate-Monotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, we present the design
of our hierarchical scheduling framework, and we discuss our current status in
the project.

35

36 Chapter 6. Overview of Papers

My contribution The results of this paper was based on the results of a mas-
ter project under the supervision of Moris Behnam.

6.2 Paper B

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin,SIRAP: A Synchro-
nization Protocol for Hierarchical Resource Sharing in Real-Time Open Sys-
tems, In Proceedings of the7th ACM & IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279-288, Salzburg, Austria, Octo-
ber, 2007.

Summary This paper presents a protocol for resource sharing in a hierar-
chical real-time scheduling framework. Targeting real-time open systems, the
protocol and the scheduling framework significantly reducethe efforts and er-
rors associated with integrating multiple semi-independent subsystems on a
single processor. Thus, our proposed techniques facilitate modern software de-
velopment processes, where subsystems are developed by independent teams
(or subcontractors) and at a later stage integrated into a single product. Using
our solution, a subsystem need not know, and is not dependenton, the tim-
ing behaviour of other subsystems; even though they share mutually exclusive
resources. In this paper we also prove the correctness of ourapproach and
evaluate its efficiency.

My contribution The basic idea of this paper was suggested by Moris Behnam.
The work was done in cooperation with Moris and Insik Shin, and Moris was
responsible for the evaluation part of the paper and he was also involved in the
schedulability analysis.

6.3 Paper C

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Nolin,Scheduling of Semi-
Independent Real-Time Components: Overrun Methods and Resource Holding
Times, In Proceedings of the13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’08), IEEE Industrial Electronics
Society, Hamburg, Germany, September, 2008.

6.4 Paper D 37

Summary The Hierarchical Scheduling Framework (HSF) has been intro-
duced as a design-time framework enabling compositional schedulability anal-
ysis of embedded software systems with real-time properties. In this paper a
system consists of a number of semi-independent componentscalled subsys-
tems. Subsystems are developed independently and later integrated to form
a system. To support this design process, our proposed methods allow non-
intrusive configuration and tuning of subsystem timing behaviour via subsys-
tem interfaces for selecting scheduling parameters. This paper considers two
methods to handle overruns due to resource sharing between subsystems in the
HSF. We present the scheduling algorithms for overruns and their associated
schedulability analysis, together with analysis that shows under what circum-
stances one or the other overrun method is preferred. Furthermore, we show
how to calculate resource-holding times within our framework.

My contribution The paper is based on an idea of Insik Shin but Moris has
done most of the work including the schedulability analysisfor enhanced over-
run mechanism and the comparison between the enhanced and the basic over-
run mechanism, as well as the simplified equation to evaluatethe resource
holding times with the required proofs.

6.4 Paper D

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Nolin,Synthesis of Opti-
mal Interfaces for Hierarchical Scheduling with Resources, In Proceedings of
the29th IEEE International Real-Time Systems Symposium (RTSS08),IEEE
Press, Barcelona, Spain, December, 2008, (to be appear).

Summary This paper presents algorithms that (1) facilitate system indepen-
dent synthesis of timing-interfaces for subsystems and (2)system-level selec-
tion of interfaces to minimize CPU load. The results presented are developed
for hierarchical fixed-priority scheduling of subsystems that may share logical
recourses (i.e., semaphores). We show that the use of sharedresources results
in a tradeoff problem, where resource locking times can be traded for CPU
allocation, complicating the problem of finding the optimalinterface config-
uration subject to schedulability. This paper presents a methodology where
such a tradeoff can be effectively explored. It first synthesizes a bounded set
of interface-candidates for each subsystem, independently of the final system,
such that the set contains the interface that minimizes system load for any given

38 Chapter 6. Overview of Papers

system. Then, integrating subsystems into a system, it findsthe optimal selec-
tion of interfaces. Our algorithms have linear complexity to the number of
tasks involved. Thus, our approach is highly suitable for adaptable and recon-
figurable systems.

My contribution The paper was based on ideas of Moris and Insik. Moris
was responsible for developing the algorithms and prove their correctness and
optimality formally. Moris was also involved in the discussions and witting of
the other parts of the paper.

Bibliography

[1] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProceedings of the24th IEEE International Real-Time
Systems Symposium(RTSS’03), pages 2–13, Cancun, Mexico, December
2003.

[2] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchi-
cal framework for component-based real-time systems. InComponent-
Based Software Engineering, volume LNCS-3054/2004, pages 253–266.
Springer Berlin / Heidelberg, May 2005.

[3] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open en-
vironment. InProceedings of the18th IEEE International Real-Time Sys-
tems Symposium (RTSS’97), pages 308–319, San Francisco, CA, USA,
December 1997. IEEE Computer Society.

[4] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. InProceedings of the20th IEEE International
Real-Time Systems Symposium (RTSS’99), pages 256–267, Phoenix, AZ,
USA, December 1999. IEEE Computer Society.

[5] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. InProceedings of the6th IEEE Real-
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, Washington DC, USA, May-June 2000. IEEE Computer Society.

[6] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-
application isolation in multiprogrammed hard-real-timeenvironments.
In Proceedings of the21th IEEE International Real-Time Systems Sym-
posium(RTSS’00), pages 217–226, Orlando, FL, USA, December 2000.

39

40 Bibliography

[7] A. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. InProceedings of IEEE Real-Time Technology and Applications
Symposium(RTAS), pages 75–84, Taipei, Taiwan ROC, May 2001.

[8] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In Proceedings of the23th IEEE International Real-Time Systems Sym-
posium (RTSS’02), pages 26–35, Austin, TX, USA, December 2002.

[9] L. Almeida and P. Pedreiras. Scheduling within temporalpartitions:
response-time analysis and server design. InProceedings of the 4th ACM
international conference on Embedded software (EMSOFT ’04), pages
95–103, Pisa, Italy, September 2004.

[10] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. InProceedings of the15th Euromicro Conference on Real-Time
Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003. IEEE
Computer Society.

[11] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the26th IEEE International Real-Time Systems
Symposium (RTSS’05), pages 389–398, Miami Beach, FL, USA, Decem-
ber 2005.

[12] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. InProceedings of the28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, Washington, DC, USA,
December 2007. IEEE Computer Society.

[13] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. InProceedings of the28th IEEE Interna-
tional Real-Time Systems Symposium(RTSS’07), pages 129–138, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[14] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-
ority pre-emptive systems. InProceedings of the27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Rio de
Janeiro, Brazil, December 2006.

[15] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open systems.
In Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), pages 279–288, Salzburg, Austria,
October 2007.

Bibliography 41

[16] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled
resource-sharing open environment. InProceedings of the28th IEEE
International Real-Time Systems Symposium (RTSS’07), pages 83–92,
Washington, DC, USA, December 2007. IEEE Computer Society.

[17] J. A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo.Implications
of classical scheduling results for Real-Time Systems. Technical Report
UM-CS-1993-023, University of Massachusetts, Amherst, June 1993.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment.Journal of the ACM, 20(1):40–61,
January 1973.

[19] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks.Performance Evaluation
(Netherlands), 2(4):237–250, December 1982.

[20] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. In Proceedings
of the20th IEEE International Real-Time Systems Symposium(RTSS’89),
pages 166–171, Santa Monica, CA, USA, December 1989. IEEE Com-
puter Society.

[21] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concern-
ing the preemptive scheduling of periodic, real-time taskson one proces-
sor. Journal of Real-Time Systems, 2:301–324, 1990.

[22] G. Buttazzo.Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications,2nd ed. Springer, 2005.

[23] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task schedulingin distributed
real-time systems. InProceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation IECON87, pages 909–
916, Cambridge, MA, USA, November 1987.

[24] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the9th IEEE International
Real-Time Systems Symposium (RTSS’88), pages 259–269, Huntsville,
AL, USA, December 1988. IEEE Computer Society.

[25] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, March 1991.

[26] M. Bertogna, N. Fisher, and S. Baruah. Static-priorityscheduling and re-
source hold times. InProceedings of the 15th International Workshop on
Parallel and Distributed Real-Time Systems(WPDRTS), pages 1–8, Long
Beach, CA, USA, March 2007.

[27] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking durations in
EDF-scheduled systems. InProceedings of the13th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS’07), pages
91–100, Bellevue, WA, USA, 2007.

[28] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. InProceedings of the11th IEEE
International Real-Time Systems Symposium(RTSS’90), pages 182–190,
Lake Buena Vista, Florida, USA, December 1990. IEEE Computer Soci-
ety.

[29] G. Lipari, G. Lamastra, and L. Abeni. Task synchronization’ in
reservation-based real-time systems.IEEE Transactions on Computers,
53(12):1591–1601, December 2004.

[30] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. InProceedings of the19th IEEE International Real-
Time Systems Symposium (RTSS’98), pages 4–13, Madrid, Spain, Decem-
ber 1998. IEEE Computer Society.

