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Abstract  

 

 

 

 

With the advent of huge multicore processors, complex hardware, intermingled networks and huge disk 

storage capabilities the programs that are used in the system and the code which is written to control 

them are increasingly getting large and often much complicated. There is increase in need of a 

framework which tracks issues, debugs the program, helps to analyze the reason behind degradation of 

system and program performance. Another big concern for deploying such a framework in complex 

systems is to the footprint of the framework upon the setup. LTTng project aims to provide such an 

effective tracing and debugging toolset for Linux systems. Our work is to measure the effectiveness of 

LTTng in a Multicore Environment and evaluate its affect on the system and program performance. We 

incorporate Control and Data Flow analysis of the system and the binaries of LTTng to reach for a 

conclusion. 
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Thesis Summary  

 

 

The Goal of the thesis is to analyze the performance of LTTng kernel and Userspace tracer in a multicore 

environment under various load configurations. Control and Data Flow analysis of the system and the 

application binaries is carried out to evaluate the performance measurements of the tracing tool. With 

Control Flow analysis, we annotate source code of application binaries, measure the internal CPU cycles 

usage, perform a call graph analysis to draw a picture about the necessary calls made by the program 

and the tool during testing. Data Flow analysis helps us to find out the memory performances of the 

tracing utility and its memory leaks under different load configurations. 

The experiments we performed in course of finding the efficiency of LTTng kernel tracer and the 

userspace tracer are: 

¶ Experiment 1 ς Determination of load configuration parameters for System Under Test (SUT) 

¶ Experiment 2 ς Measuring the efficiency of LTTng Kernel Tracer 

¶ Experiment 3 ς Measuring the efficiency of LTTng Userspace Tracer 

¶ Experiment 4 ς Measuring the impact on System as well as Traced Application when LTTng 

Kernel Tracer and Userspace Tracer are executed together 

¶ Experiment 5 ς Running load program and tbench on LTTng Kernel with Non Overwrite and 

Flight Recorder tracing modes 

¶ Experiment 6 ς Running UST tracing on load and tbench program each instrumented with 10 

markers under different load configurations 

¶ Experiment 7 ς Running the Kernel tracer with the help of Valgrind under various load 

configurations generated by load program (system load) and tbench (process and network load) 

¶ Experiment 8 ς Running the load and tbench application instrumented with 10 markers under 

UST (Userspace Tracing) with the help of Valgrind 

The findings from these experiments have enabled us to conclude on the following points: 

¶ The impact of LTTng kernel tracer on kernel operations against vanilla kernel is 1.6% 

¶ There is almost negligible difference between the performances of LTTng kernel tracer in Non 

Overwrite mode and in Flight Recorder mode 

¶ The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on 

the performance of the userspace application against the original copy of the applications 

without markers 

¶ The impact of UST on userspace applications marginally increase with the increase in the 

number of instrumentations compiled in, though the pattern of increase for all load 

configurations are not similar 
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¶ LTT Control and Trace Daemon have minimal cache miss and Branch Misprediction rate in order 

of 10-4 percent 

¶ Branch Mispredictions of both LTTng Kernel Tracer and UST decreases significantly with increase 

in load. Memory handling thus becomes more efficient with load increase 

¶ LTT kernel Tracing Daemon is much more memory efficient than UST Daemon 

¶ Memory loss though is of insignificant number but is more for UST tracing. UST also has problem 

of not freeing a chunk of memory after completion of execution 

¶ The impact of LTTng kernel tracer and UST together is quite similar to LTTng kernel tracer and 

there is no additional impact on the percentage of CPU cycles needs to perform kernel 

operations 
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1. Introduction  

 

 

 

 

Ericsson as a company is rapidly growing in telecom sector with deployment of advanced technologies 

and increase in its user base. Slowly due to the pressure of the industry and hunger for more 

performance, Ericsson has moved into multicore processors and PowerPC architectures. Multicore 

architectures help to reduce footprint through virtualization, replacing many small processor boards and 

packing it into one slot and thus giving better and higher performance per slot and much more value for 

ƳƻƴŜȅΦ Lƴ ŀ ƘǳƎŜ ƳǳƭǘƛŎƻǊŜ ǎȅǎǘŜƳΣ ƛǘΩǎ ƻŦǘŜƴ ŘƛŦŦƛŎǳƭǘ ǘƻ ǘǊŀŎƪ ǇǊƻōƭŜƳǎΣ ƛǎǎǳŜǎ ŀƴŘ ǇŜǊŦƻǊƳŀƴŎŜ 

ŘŜƎǊŀŘŀǘƛƻƴǎΦ aŀƴȅ ǇǊƻōƭŜƳǎ ƻŎŎǳǊ ƻƴƭȅ ƻƴŎŜ ŀƴŘ Řƻ ƴƻǘ ǊŜǇŜŀǘ ƛǘǎ ōŜƘŀǾƛƻǊΣ ŀƴŘ ƛǘΩǎ ŀ Ǉŀƛƴ ŦƻǊ ǘƘŜ 

developers to look for it in large multiprocessor and multicore systems. LTTng provides a highly efficient 

set of tracing tools for Linux which is used for resolving performance issues and troubleshooting 

problems. Ericsson is in need for such a tool ǿƘƛŎƘ Ŏŀƴ ƘŜƭǇ ƛǘΩǎ developers to backtrack and debug the 

problems and errors in the system. The research question catered in our thesis is to test the efficiency of 

LTTng as a kernel and userspace tracer in a multicore environment. As even nanoseconds of delay can 

cause performance degradations for telecommunication systems, we need to gauge the footprint of 

LTTng over a multicore system and in case the tool has pretty low overhead, Ericsson can deploy it  on 

the system for helping its developers to effectively backtrack the performance loopholes. 
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1.1 Organization of Thesis  

 

The thesis document is organized in several chapters: 

The chapter Problem Formulation introduces the problem statement of our thesis work. Then it 

divides the problem into several sub-problems and finally tries to offer a solution to the bigger problem 

by solving the smaller problems. 

The chapter Background provides the background knowledge on the technologies on which our 

thesis work is based. It explains the basics of tracing and then provides an insight of embedded systems 

and multicore systems. Then it provides detailed information about LTTng kernel and userspace tracer 

architecture and functionality. Finally this chapter wraps up with the description of the lab environment 

on which our experiments have been executed. 

The chapter Related Work starts off with an overview of our goal. Then it explains our search 

methodology. Finally, it concentrates on citation of the previous work done that was useful to us to 

proceed in the correct direction and helped us making the correct decisions throughout our thesis work. 

It also describes similar work done in past. 

The chapter Experiment Setup describes in detail the use of technologies in our experiments. 

These technologies include the hardware and software configurations and tools, utilities and scripts 

used to perform the experiments. 

The chapter Experiment Methodology describes the experiment methods in detail that are to be 

performed on LTTng kernel tracer and userspace tracer. 

The chapter Results presents the analysis of results that are obtained by performing the 

experiments mentioned in the experiment methodology chapter. 

The chapter Discussion mainly focuses upon the constraints of experiments executed and the 

issues faced during the research period. The issues discussed concentrates upon the unavailability of 

tools and time limitation of the thesis standing as the main barriers. Last part of the Discussion aims to 

evaluate the benefits of this research to the community and the industry. 

The chapter Conclusion focuses on the important findings from the experiments performed in 

course of this research work and tries to draw a conclusion from the findings. 

The chapter Future Work throws light on the possibilities of continuing our research work. These 

also include extending our research by overcoming the limitations we faced. 

The references are organized in the final chapter called References. 
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2. Problem Formulation 

 

 

 

 

This chapter introduces the problem statement of our thesis work. Then it divides the problem into 

several sub-problems and finally tries to offer a solution to the bigger problem by solving the smaller 

problems. 

 

 

List of technical terms 

LTTng Linux Trace Toolkit Next Generation 

TCF Target Communication Framework 
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2.1 Problem Statement  

 

Modern day systems are becoming more complex which invites the need of an effective and high 

performance trace mechanism. LTTng being developed as a next generation tracing utility for Linux 

supports both kernel space and user space tracing and claims to perform high performance tracing with 

a very low overhead on the system. LTTng has the capability to dump the trace data either to the disk or 

to the network. 

The primary question that our research is going to address is: 

How efficient is LTTng as a kernel as well as userspace tracer on a multicore environment? 

 

 

2.2 Problem Analysis  

 

¢ƻ ǉǳŀƴǘƛŦȅ ǘƘŜ ŜŦŦƛŎƛŜƴŎȅ ƻŦ ǘǊŀŎƛƴƎ ǳǘƛƭƛǘȅ ƛǘΩǎ ǾŜǊȅ necessary to size down the fingerprints of the tool on 

the system or on the other applications running in it. To measure the fingerprint on the system various 

data and control flow analysis on LTTng modules should be carried out. This will help us to get a broader 

picture for the fingerprint involving details of how it affected the system or the user programs. 

Thus the first and preliminary refinement of our research question stands as: 

1. How does LTTng affect the control flow and data flow in kernelspace as well as userspace on a 

multicore environment?  

LTTng has a trace viewer called LTTV which helps to view the trace generated by LTTng in a GUI 

environment thus helping the end user to view the system trace effectively with control flow charts and 

resource viewers. For multicore AMP systems the efficiency of LTTng can be increased if the tracing can 

be controlled remotely from another system and also if it can stream the trace over network effectively. 

Thus our research question can be refined to the below question: 

2. How to efficiently stream the trace data for multicore systems to remote host (Eclipse)? 

Eclipse team is in process to develop LTTng integration tool.  
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The above mentioned sub problems are elaborated below which ultimately leads us to the final aim of 

the thesis. 

 

¶ How does LTTng affect the control flow and data flow in kernelspace as well as userspace on a 

multicore environment? 

Control Flow analysis involves the use of a profiler to scan through the function and system calls of the 

events in the multicore environment. Data Flow study on the events focus on the Cache Behavior and 

Data Path analysis. All together these both help us to reach to the conclusion regarding the effect of 

LTTng on a multicore system. 

 

¶ How to efficiently stream the trace data for multicore systems to remote host (Eclipse)? 

The general approach will be to use a network protocol called Target Communication Framework (TCF) 

for streaming the trace data to Eclipse. We will measure the efficiency of LTTng in streaming huge 

amount of trace data, gathered from different cores, over the network to Eclipse. The results will enable 

us to narrow down on an optimal architecture to stream the LTTng trace on a multicore system. 

 

The results of the sub-problems will enable us to comment on the efficiency of LTTng as a kernel as well 

as userspace tracer on multicore environment. 

All the above discussion on the problem statement and analysis marks the need of a brief 

background study on tracing, embedded systems, multicore environment, LTTng, Control Flow and Data 

Flow analysis. We also discuss in the forthcoming Related Work chapter about similar work and 

experiments carried out by other researchers and also some other useful work which helps us to get a 

correct direction to proceed forward with our study and analysis. 

 

 

 

 

 

 

 

 



Page | 19  
 

3. Background 

 

 

 

 

This chapter provides the background knowledge on the technologies on which our thesis work is based. 

It explains the basics of tracing and then provides an insight of embedded systems and multicore 

systems. Then it provides detailed information about LTTng kernel and userspace tracer architecture 

and functionality. Finally this chapter wraps up with the description of the lab environment on which our 

experiments have been executed. 

 

 

List of technical terms 

PC Personal Computer 

ASIP Application Specific Instruction Set 

ASIC Application Specific Integrated Circuit 

CPU Central Processing Unit 

I/O Input / Output 

AC Alternating Current 

DMA Direct Memory Access 

GPP General Purpose Processor 

AMP Asymmetric Multiprocessing  

SMP Symmetric Multiprocessing 

LTTng Linux Trace Toolkit Next Generation 

UST Userspace Tracer 

LTTV LTT Viewer 

RCU Read Copy Update 

OMAP Open Multimedia Application Platform 

MIPS Microprocessor without Interlocked Pipeline Stages 

NMI Non-Maskable Interrupt 

PID Process ID 

GUI Graphical User Interface 

IBM International Business Machine 
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3.1 Tracing  

 

Tracing is a mechanism to identify and analyze the behavior of a system. Tracing is a technique of 

recording low level events that frequently occur in a system along with the timestamps and attributes of 

the events [SHE99]. A tool that performs tracing on a system is known as tracer. A tracer records a huge 

number of events that occur in a system in a period of time and generates large amounts of data known 

as traces. The size of a trace may vary from a few megabytes to several gigabytes [LTT10]. 

A tracer generally records operating system kernel events that include [LTT10]: 

¶ Interrupt Requests 

¶ System Calls 

¶ Scheduling Activities 

¶ Network Activities 

A tracer may also be capable of recording events that are generated by an application. 

Equally important is to present the trace data in a meaningful way to the user. A trace analyzer 

or trace viewer is an application that produces graphs and statistics from the trace data generated by 

the tracer [LTT10]. 

Tracing helps in the following activities [LTT10][SHE99]: 

¶ Debugging: A tracer helps to identify performance bugs and bottlenecks in complex parallel 

systems and real time systems. 

 

¶ Monitoring: A tracer helps to maintain and analyze statics of events and their timestamps, 

attributes and flow of control from one event to another. These data may be utilized in a lot of 

different activities. 

Tracing a system involves the following steps [SHE99]: 

¶ Instrumentation: Instrumentation is the modification of source code of an application where 

instructions are added to the program that helps to generate trace data. 

 

¶ Measurement: Recording different aspects of execution of an application such as resources 

consumed, mapping of these resources to the application routines and statements. 

 

¶ Analysis: Analysis of the performance data that is generated in the subsequent phases of 

instrumentation and measurement. 
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3.2 Embedded Systems 

 

As technology is climbing new heights we need more and more systems which are standalone and can 

work without human intervention. An embedded system is a microprocessor-base system that is built to 

control a function or range of functions and is not programmed by the end user in the same way that a 

PC [Sér02]. Often embedded systems also handle time critical applications which require utmost time 

precision. It can respond, monitor and control the external environment using sensors and actuators and 

is based upon application level processors. One of the major considerations when designing an 

embedded system is the consumption of power, which should always be less whether it is battery driven 

or wall powered. Manufacturing cost is an important aspect to be maintained during design of 

Embedded Systems. 

 

3.2.1 Classes of Embedded Systems 

Embedded Systems can be typically categorized into two different subclasses [NR98]. They are: 

¶ Embedded Controllers: Embedded Controllers are those which are dedicated to control 

particular functions and are thus reactive to external environmental events. Control systems 

react to external stimuli by changing its internal state and producing desired result. Home 

appliances can be cited as a example for Embedded Controllers. 

¶ Embedded Data Processing Systems: Embedded data processing systems are also called 

transformational systems as they are dedicated to communication and data processing. They 

are data flow dominated real time systems that execute a special function within a predefined 

time window. These systems require much higher performance than the embedded controllers 

and thus require powerful microprocessors like ASIP (Application Specific Instruction Set) and 

circuits like ASIC (Application Specific Integrated Circuit). Audio/Video Application and Wireless 

Communicators can be cited a example for this 

 

3.2.2 Challenges in Embedded Systems Design 

In case of design requirements embedded systems face several challenges [Sér02][Tam05]. They are: 

1) Physical size and weight restrictions: It varies greatly with the application. The high 

performance processing systems tends to be much larger and heavier than the slower systems. 

At system level design higher cache memory needs bigger circuit boards and at CPU level the 

board size increases if there is increase in number of pines. 
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2) Performance: The main performance metrics are instructions per second, interrupt response 

characteristics, context switching overhead and I/O performance. 

3) Power Consumption: It should always be low in case of battery driven equipments. For direct 

AC powered systems the power consumption should be kept minimal to reduce heat generation 

or increase of cooling requirements. 

4) Cost of the embedded system: Manufacturing cost includes cost of components and assembly. 

Non-recurring engineering cost which includes personnel and other cost of system designing. 

5) Reliability: Embedded systems can be subjected to extreme operative conditions like in military 

or automotive sectors. The embedded system should be properly functional at extreme 

conditions and deliver results within its time boundaries. 

 

3.2.3 Real Time Architecture Constraints  

Embedded systems have two important performance rules to be maintained, predictability and 

determinacy. In many occasions embedded systems work in real time environments in which it must 

finish operation by certain deadlines failing to which can cause major disasters or in some cases 

degradation of performance. There are many architectural features which are considered as 

inappropriate for hard real time embedded systems [KP90][Sér02] and are discussed below -  

Cache Memory provides the biggest source of unpredictability and non-determinacy. The 

problem is with scheduling the instruction cache misses because the time required to process a cache 

miss is a magnitude slower than processing a cache hit. If smaller percentage of cache miss is present 

during the execution, it dedicatedly reduces the speed of operation. Thus hard real time embedded 

system hardware is designed with fast static memory chip that renders cache management hardware 

superfluous. There is also dependability on the variable execution time of the instructions, as depending 

upon the input data, different instruction sets take variable number of clock cycles for the execution. 

With write buffers CPU can perform write operation to the memory without waiting for the memory 

cycle to occur. Processor must be stalled in case the write buffer overflows and there are no subsequent 

free bus cycles. There should also be additional stalls in case the memory read corresponds to a memory 

location that is yet to be updated by the write buffer. The interaction which takes place between cache 

misses, write buffer and data fetching causes loss of both predictability and determinacy of the 

Embedded System. 

Interrupt Response Latency increases with deep instruction pipelines. An instruction takes several clock 

cycles to pass through pipelines and perform its job. The pipeline also needs some handling of delays in 

memory access or data dependencies which results in either software generated instructions 

rearrangement or hardware generated pipeline halts which results in unpredictability and non-

deterministic behavior. Multiple instructions can be issued in a single clock cycle by the microprocessor. 

The number of instructions that can be issued together depends on the type of instructions, the 
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available hardware resources and execution history of the program. Thus these all factors make it very 

difficult to calculate single instruction executed time. 

Branch Target Buffers is a mechanism in which the program execution history is used for caching 

instructions at branch targets for faster access. Branch target buffers are used with the context of 

branch prediction strategies in which compiler guesses which branch is to be taken by the instruction 

causing to fetch the next instruction or branch goal before the outcome of the ongoing instruction. The 

challenge occurs to calculate the branch completion time as it depends on the matching of branch target 

buffer value and the compiler guess.  

Prefetch Queues affects the predictability of an operation because the time required for completion of 

the instruction cycle is solely determined by the fact that whether the preceding instructions were slow 

enough to allow the Prefetch queue to accumulate new instructions. Thus to determine execution time 

of one instruction cycle, it is required to determine the clock (depends upon data dependent path, cache 

misses etc) for several preceding instruction cycles so that there are free memory cycles or not for the 

Prefetch queue to fill. 
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3.3 Multicore Systems  

 

In the computer industry, the customers always expect faster and more powerful systems. There is a 

persistent need of increase in performance in the computer industry, be it embedded systems or 

desktop computing.  

Multicore processing comes into the picture as a key to continuous improvement of 

ǇŜǊŦƻǊƳŀƴŎŜ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ŎƻƴǎǳƳŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎΦ ¢ƘŜ ŎƻǇŜ ǳǇ ǿƛǘƘ ǘƘŜ ŎƻƴǎǳƳŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎ 

is a real challenge not only for the semiconductor industry but also for the software industry. 

 

3.3.1 Migration from Single Core to Multicore  

The multicore systems can increase the performance of multi-threaded applications significantly by 

increasing the processing power but with a relatively low latency. The migration from single core 

systems to multicore systems requires considerable changes to the system as well as to software. 

Therefore, the factors that have driven the semiconductor industry to migrate from single core to 

multicore systems should be worth the additional work that is required to be done. 

The most prominent driving factors [SLES09] for the migration from single core to multicore are: 

¶ Performance 

A way to increase the performance of a single core system is to increase the core frequency. 

But, pushing up the core frequency does not always increase the performance of the system in 

the same proportion. The techniques like parallelism and pipelining does not always scale with 

the frequency. It is not always easy for a single core processer to handle Parallel Processing 

timeline issues. If the frequency of the core does not match with frequency of off-chip memory 

and I/O subsystems the core may have to wait for the off-chip busses to transfer data. This 

particular phenomenon is called memory wall.  

¶ Power Consumption 

The power consumption for a core to operate is proportional to the frequency of the core. 

Therefore, doubling the frequency of a core to gain performance increases the power 

consumption by four times. The equation presented below shows the relation between power 

and frequency. 

ὴέύὩὶὧὥὴὥὧὭὸὥὲὧὩ ὺέὰὸὥὫὩ ὪὶὩήόὩὲὧώ 
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To overcome the processor and off-chip memory and I/O subsystems frequency lag, large fast 

on-chip caches have been implemented which increases power consumption. An efficient 

cooling system will consume power, whereas if the generated heat is substantially less the core 

can reside even without a cooling mechanism. 

¶ Simplicity in Design 

Multicore architecture enables less complicated or no cooling mechanisms and better 

performance with smaller caches. These contribute to simpler board design rather than 

increasing the frequency of a single core. 

¶ Cost 

Multicore architecture enables less complicated or no cooling mechanisms and better 

performance with smaller caches. These contribute to comparatively lesser costs rather than 

increasing the frequency of a single core. 

 

3.3.2 Parallelism in Multicore Processing  

Parallelism is an important feature for modern day computing. Most of the modern systems are 

equipped with parallelism. The different types of parallelism [SLES09] that are implemented in multicore 

processing are: 

¶ Bit Level Parallelism 

¶ Instruction Level Parallelism 

¶ Data Parallelism 

¶ Task Parallelism 

Bit Level Parallelism enables the hardware to operate on larger data. For example, if an 8-bit 

core is performing computation on a 16-bit data, it will need two instruction cycles to complete the 

computation. Therefore by increasing the word length from 8 to 16 will enable the processor to do the 

computation in one instruction cycle. Currently we have 64-bit word length to perform computation on 

large data in a single instruction cycle. 

Instruction Level Parallelism is the method of identifying the instructions that does not depend 

on one another and processing them simultaneously. 

Data Parallelism is the technique of processing multiple data in a single instruction cycle. In 

multicore architecture, performance improvement depends on different cores being able to work on the 

data at the same time. 

Task Parallelism is the method to distribute the applications, processes and threads to different 

units for processing. 
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3.3.3 Types of Multicore  

The multicore systems can be categorized into two distinct types based on the core topology [SLES09]: 

Homogeneous Multicore System 

A homogeneous multicore system consists of identical cores that execute the same instruction set. 

 

Figure 4.1: Homogeneous Multicore Environment 

 

Heterogeneous Multicore System 

A heterogeneous system consists of cores that are not identical. Here, different types of cores execute 

different instruction sets. 

 

 

Figure 4.2: Heterogeneous Multicore Environment 

The multicore systems can be categorized into the following types based on the memory topology 

[SLES09]: 
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Distributed Memory Multicore System 

In distributed memory multicore systems each core has a private memory. The communication between 

the cores takes place over a high speed network. 

 

 

 

 

 

Figure 4.3: Distributed Memory Multicore Environment 

 

Shared Memory Multicore System 

In shared memory multicore systems there is a common memory which is shared by all cores in the 

system. 

 

 

 

Figure 4.4: Shared Memory Multicore Environment 

 

Hybrid Memory Multicore System 

In hybrid memory multicore systems there is a common memory which is shared across all cores in the 

system. Each core also has its own private memory as well. 

 

 

 

 

  

Figure 4.5: Hybrid Memory Multicore Environment 
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3.3.4 Inter -core Communication  

In a multicore system it is very important for the individual cores to communicate within themselves. In 

most multicore systems the cores can be connected to each other with the help of high speed buses or 

coherent communication fabric [SLES09]. 

 The common network topologies in which the cores can be interconnected are bus, mesh, ring 

or crossbar. The cores may also share caches or memory as a part of inter-core communication. 

 

3.3.5 Multicore Design Approaches  

The multicore system architecture focuses mostly on data and task parallelism. Multicore design 

approaches vary depending on the data management and handling of tasks [SLES09]. They are: 

¶ Asymmetric Multiprocessing (AMP) 

¶ Symmetric Multiprocessing (SMP) 

In asymmetric multiprocessing design each core operates independently and performs 

dedicated tasks. Each core has its own logically or physically separated memory and can run operating 

systems independent of the other cores. The operating system running on different cores communicate 

with a help of hypervisor. The cores can either be homogeneous or heterogeneous in type. 

In symmetric multiprocessing design all the cores share the same memory, operating system and 

other resources. The operating system takes care of the distribution and tasks and resources across the 

cores. The cores should be homogenous in type in order to support symmetric multiprocessing. 

 

3.3.6 Problems in Multicore Systems  

However, a few problems still exist in multicore systems [MUC09]. The memory performance does not 

match the core performance thus creating a bottleneck, which results in starvation of cores. It is not 

easy to create algorithms having independent tasks to execute on different cores simultaneously. 
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3.4 LTTng 

 

3.4.1 Overview  

LTTng is an effective tracing platform that has been developed to take over its previous version, the 

Linux Trace Toolkit [LTT00]. The LTTng Project provides effective kernel space and user space tracing 

solutions for Linux platforms for performance monitoring and debugging. The LTTng Project comprises 

of the following tracing tools [LTT10]: 

¶ LTTng Kernel Tracer 

¶ LTTng Userspace Tracer (UST) 

¶ LTT Viewer (LTTV) 

 

3.4.2 Features of LTTng 

LTTng was developed keeping in mind the requirements that a new generation tracing application 

should provide [DD06]. The most distinctive features [LTT10] sported by the latest release of LTTng are: 

¶ Integrated tracing of kernel space and user space: LTTng provides a way of tracing the kernel as 

well as the applications that are present in the user space simultaneously. The LTTng userspace 

tracer can be used along with the kernel tracer for effective debugging and performance 

monitoring. 

¶ High performance yet Low Impact: LTTng provides effective tracing probes without any system 

calls and a good instrumentation coverage for kernel tracing that helps to get a detailed analysis 

of the performance of the system. LTTng has very low observer effect on the traced system. This 

is essentially done using userspace RCU, atomic data structures to have really lockless 

algorithms and cache optimization. Inactive instrumentation has almost negligible performance 

impact on the system. Active instrumentation points have a very low performance impact. 

¶ Timestamp precision: LTTng provides effective clock synchronization technique for maintaining 

timestamp precision for events. 

¶ Security: LTTng has been designed keeping in mind that it has to be deployed in Linux 

production systems where security is an issue. The flow of data between kernel and userspace 

might not be acceptable in production environment. Therefore, use of per-CPU buffers for 

reading and writing by kernel or a user process keeps it fit for use in production environment. 

¶ Portable: LTTng is portable to various system architectures. The latest release of LTTng kernel 

tracer supports x86-32, x86-64, PowerPC 32/64, ARMv7 OMAP3, MIPS, sh, sparc64, s390. The 

latest release of LTTng userspace tracer supports x86-32 and x86-64. 
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¶ Scalable: The LTTng tracer supports multiple CPU cores and a wide range of CPU frequencies 

with very little impact in performance. 

¶ Flexible and extensible: LTTng provides the flexibility to add custom instrumentation. It also 

provides an easy to use interface for trace analysis which is also extensible for adding new 

functionalities for trace analysis. 

¶ Reentrancy: LTTng provides complete NMI-reentrancy to ensure that NMI nesting does not 

cause deadlocks in the system. 

 

3.4.3 LTTng Tracer Architecture  

To perform extensive analysis of traces the trace data is extracted from the kernel. The tracing process 

has been divided into two phases, tracing phase and post processing phase [DES09]. Between the 

tracing phase and the post processing phase, Input/output represents the extraction of trace data to 

disk or network. Figure 4.6 presents the LTTng architecture with the two phases. 

 

Figure 4.6: LTTng Tracer Architecture [DES09] 
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 The tracing phase is carried out in the target system, which uses processor, memory and I/O 

resources. Initially the kernel is patched by inserting the instrumentation in the kernel. When the kernel 

reaches an instrumentation point, it verifies if the instrumentation point is activated, it calls the tracing 

probes attached to that instrumentation site. The probes write the trace event data into circular buffers 

in a synchronized manner. Trace data can be extracted in two different modes [DES09]: 

¶ Flight Recorder Mode: Trace data is not extracted when the circular buffers are full. Eventually, 

when the trace is stopped that latest data in the buffers is extracted. This mode of tracing in 

called flight recorder mode. 

¶ Non-Overwrite Mode: Trace data is extracted whenever the circular buffers are full. Therefore, 

trace data is not lost. This mode of tracing is called non-overwrite mode. 

I/O operations required to write the trace data to the disk or network are costly, therefore not done by 

the probes. There are specialized threads for performing the I/O operations. It can be done while the 

tracing is being done as well as when the trace session is over. 

 To minimizŜ ǘƘŜ ŜŦŦŜŎǘ ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ǿƘƛƭŜ ŜȄǘǊŀŎǘƛƴƎ ƭŀǊƎŜ ŀƳƻǳƴǘ ƻŦ ǘǊŀŎŜ Řŀǘŀ 

a zero-copy approach has been taken at LTTng design level while data extraction. A zero-copy approach 

ensures that no trace data is copied between memory locations in the tracing phases. This also ensures 

an effective use of memory bandwidth. 

The recording of the events in the post processing phase is done by collecting a timestamp value 

from the traced processor and then the probe writes the timestamp value to the event header. The 

timestamp is a time-source that is synchronized between all the traced processors.  

 The tracing phase and post processing phase may be performed in the same environment or it 

might be in different environments. Therefore, the trace output is a self described binary file for easy 

extraction and portability. 

 

3.4.4 LTTng Design 

The kernel code can be instrumented in two ways: 

¶ Static Instrumentation at source code level using Linux kernel markers and tracepoints 

¶ Dynamic instrumentation using Kprobes 

When an active instrumented code is reached during the execution of the kernel, the LTTng probe is 

called. The probe reads the trace session and writes the events into channels. Figure 4.7 portrays the 

different components of LTTng kernel tracer and their interactions [DES09]. 
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Figure 4.7: LTTng Tracer Components [DES09] 

Trace Session: A trace session consists of the trace configuration and a set of channels that are to be 

used by the trace session. A trace session can have several channels attached to it. The trace 

configuration consists of the following data: 

¶ Trace session is active or not 

¶ The event filters to be applied 

Channel: A channel is an information pipe between the writer and the reader. It acts a buffer to 

transport data efficiently. A channel consists of one buffer per CPU eliminate false sharing and at the 

same time having a cache locality. A few properties can be configured at the time of trace session 

creation. The configurable properties of channels are: 
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¶ Tracing mode 

¶ Buffer size 

¶ Buffer flush period 

A channel in turn is composed of several sub-buffers and in each sub-buffer slots are reserved by the 

LTTng probes to write the event data into them. The lttd  extracts each sub-buffer separately to the disk 

or network. The components of a channel are displayed in Figure 4.8. 

Slot: A slot is a part of sub-buffer reserved for exclusive write access by the LTTng probe. The data 

written by the probe to each slot is the sub-buffer header, event header or payload. 

 

Figure 4.8: LTTng Channel Components [DES09] 

DebugFS: DebugFS is a virtual file system which provides an interface to extract data from kernelspace 

to userspace. The trace session and channel data structures are represented as DebugFS virtual files so 

that lttctl  and lttd  can interact with them. 

 

lttctl:  The command-line application lttctl  is an interface that interacts with the DebugFS in order to 

control the kernel tracing. The lttctl  is responsible for the following: 

¶ Configuration of the trace session before tracing is started 

¶ Start tracing 

¶ Stop tracing 

 

lttd:  The userspace daemon lttd  is responsible to interact with the DebugFS an extract the channels data 

to disk or network. The lttd  does not have in interaction with the trace session directly. 
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3.4.5 LTTng Userspace Tracer  

LTTng provides a highly efficient kernel tracer but lacks a userspace tracer with similar performance. The 

LTTng userspace tracer (UST) is basically ported from the LTTng static kernel tracer to userspace, and is a 

work in progress. 

 

3.4.5.1 UST Architecture  

The userspace tracer has the following design level goals that should reflect in its architecture 

[FDD09]: 

¶ UST is completely independent of the kernel tracer during trace time. The UST trace and the 

kernel trace can be correlated during the analysis time. 

¶ UST is completely reentrant 

¶ UST supports tracing of event handlers and multithreaded applications in userspace. 

¶ To achieve better performance and low impact UST does not have system calls. 

¶ UST employs zero-copy, therefore data is never copied. 

¶ UST is able to trace code in executables as well as shared libraries 

¶ The instrumentation point whether it is a marker or a tracepoint, should support unlimited 

number of arguments. 

¶ UST does not require any compiler or linker support to generate trace data. 

¶ UST produces a compact and coherent trace format for analysis. 

 

Figure 4.9 shows the architecture of UST: 

 

Figure 4.9: UST Architecture [FDD09] 
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3.4.5.2 UST Libraries  

The programs must be linked with two libraries in order to get traced. The libraries are [FDD09]: 

¶ Userspace tracing library ς libust 

¶ Userspace RCU library ς liburcu 

 

3.4.5.3 Time Synchronization  

The LTTng userspace tracer does on have any dependency on the LTTng kernel tracer or vice versa 

[FDD09]. However, in order to do a combined analysis of the userspace and kernel traces it is necessary 

that the event timestamps of both the traces should be from the same time-source. The UST currently 

runs only on x86_32, x86_64 and ppc32 architectures [FDD09]. 

 

3.4.5.4 UST Data Collection 

A userspace process called ustd collects data for all the processes that are being traced. The ustd opens 

a socket named ustd in the same directory as the traced application and wait for the command to collect 

the traced data from a certain buffer for a PID. On command ustd creates a consumer thread that 

eventually writes the trace data into the trace file [FDD09]. 

 

3.4.6 LTT Viewer (LTTV)  

The LTT Viewer is a common GUI based trace analysis tool for kernel tracer as well as userspace tracer. 

LTTV is a trace viewer and is independent of LTTng tracer. It can open and filter traces based on different 

plugins.  

 As LTTV is easily extensible, developers can extend the functionality of LTTV by developing 

plugins. To get better performance results LTTV is written in C and uses glib and GTK graphical library. 

 

3.4.7 Use of LTTng 

LTTng has been used by some organizations for debugging and performance monitoring. IBM used 

LTTng successfully to solve some of their distributed filesystem related issue. Autodesk used LTTng to 

solve some real time issues in their application development. Siemens used LTTng to do some internal 

debugging and performance monitoring. The Linux distributions Montavista, Wind River, STLinux and 

Suse have included LTTng in their package [LTT10]. 
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3.4.8 How to use LTTng? 

LTTng kernel tracer has good instrumentation coverage, which are basically code changes to insert 

LTTng probes into a kernel. Therefore, the LTTng instrumentation set is distributed as a kernel patch 

series. LTTng has the flexibility to build the kernel instrumentation inside the kernel as well as build 

them as modules. Another package called ltt -control contains the lttctl  and the lttd  userspace 

applications needed for tracing. 

 LTTng userspace tracer comes as a package called ust that installs userspace tracer in a system. 

The ust package depends on the userspace-rcu library, which has to be installed before the ust package. 

 LTTV acts as a trace viewer and analyzer for both LTTng kernel and userspace trace files. LTTV 

comes as a separate lttv package and does not have any dependency on LTTng kernel or userspace 

tracer. But the lttv depends on the trace format the LTTng tracer produces. Therefore, the lttv package 

should be compatible with the LTTng kernel and userspace tracer trace format to be able to view trace 

files. 
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3.5 Control and Data Flow Analysis  

 

3.5.1 Control Flow Analysis  

In the context of this thesis report we define control flow as the order or pattern in which the 

application program calls or executes various other applications or snippets of code (like functions and 

procedures). Control Flow analysis helps to optimize the work flow execution of application programs 

and to determine functions and system calls which takes more amount of time [LPGF08]. If the 

execution of any program is getting more delayed than usual, the control flow analysis can easily help to 

find out the reason for the delay. For the whole system and the running application programs the 

control flow analysis can be done by a system profiler who takes time based samples of all the 

applications depending upon its footprint on the system and displays it at the end of sampling. From 

such sampling we can generate call graph which diagrammatically represents the functions and the 

system calls that the application made during its time of execution.  

An example of a call graph which gets generated during the program execution is shown in Figure 4.10. 

 

Figure 4.10: Example of Call Graph 

The call graph in Figure 4.10 shows how the application program tbench makes calls to functions and 

programs during its sample run. We can also see how much time is spent in each of the functions and 
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system calls. We can either optimize the program checking in which function it spends more time and 

refractor it or otherwise can trace the delay of execution of the particular application program. 

 

3.5.2 Data Flow Analysis  

Data Flow analysis also helps to optimize the program to run better and faster than usual with effective 

use of system and memory. By annotating the source code of the application program we can get the 

lines of code which are using more number of CPU cycles and thus can be modified. One of the biggest 

performance measurement criteria in a multicore system is effective usage of memory and the CPU 

resources [ACU09]. The reason behind a line of code taking more CPU cycles can be improper memory 

management, irresponsible cache usage or improper data structures being used. Thus with certain tools 

we can gauge the usage of cache, rectify the temporal and spatial locality problem, hide the latencies 

involved in memory access and thus adding more Prefetch instructions. Increasing the cache line 

utilization of an application program decreases its execution timings and thus optimizes it further. We 

know that different ways of data representation and data access pattern can affect the performance of 

an application program. Thus Data and Control Flow analysis detects issues in application source code 

and also helps in optimizing the source program.  

An example of annotated source code of an application program is shown in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Example of Annotated Source 

The annotated source code provides the details of how many samples were taken for the particular line 

of code and its percentage of the total samples for that line. If the sample count for a particular 

line/block of code is more then it shows that it spends more CPU cycles than other lines of code. 

               :  while (1) {  

               :      kill(child, SIGSTOP);  

     1 2.8e - 05 :      usleep((100 -  load_percent) * 1000);  

     4 1.1e - 04 :      kill(child, SIGCONT);  

     7 2.0e - 04 :      usleep(load_percent * 1000);  

    10 2.8e - 04 :      end = (long) time(NULL);  

               :      sec = (end -  start);  

               :      //printf("%d \ n",sec);  

     1 2.8e - 05 :      if(sec >= duration)  

               :       break;  

               :      counter++;  

               :  }  

               :  /* never here at this moment */  

               :  printf("sending SIGTERM to the child \ n");  

               :  kill(child, SIGTERM);  

               :  printf("loops execut ed = %d \ n", counter);  

               :   

               :    } else if (child == 0) {  

               :  /*  

               :   * child process  

               :   */  

               :  while (1) {  

    66  0.0019 :      if (syscall) {  

               :   getpid();  

               :      }  

3560000 99.9958 :  }  
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4. Related Work 

 

 

 

 

This chapter starts off with an overview of our goal. Then it explains our search methodology. Finally, it 

concentrates on citation of the previous work done that was useful to us to proceed in the correct 

direction and helped us making the correct decisions throughout our thesis work. It also describes 

similar work done in past. 

 

List of technical terms 

LTTng Linux Trace Toolkit Next Generation 

I/O Input / Output 

CPU Central Processing Unit 

RCU Read Copy Update 

ASCI Accelerated Strategic Computing Initiative 

RAM Random Access Memory 

SATA Serial Advanced Technology Attachment 

RPM Revolutions Per Minute 

GB Gigabyte 
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4.1 Overview  

 

LTTng comes with a set of efficient tracing tools for Linux which helps in solving performance and 

debugging issues involving multi threads and processes. LTTng aims to provide low disturbance and 

architecture neutral tracing tools which helps to track the pains in the system without involving much 

overhead. 

Our goal mainly focuses on effectively gauging the fingerprint of LTTng as a tracing tool in a 

multicore Environment. There have been quite similar researches undergone before in getting either the 

effectiveness of tracing or the efficiency of LTTng in different architectures and environments which are 

described and explained in this chapter. 

 

 

4.2 Search Methodology  

 

LTTng was developed by Mathieu Desnoyers and was presented in his PhD thesis [DES09], so his thesis 

was the base for searching all the initial papers relating to LTTng and various other tracers which are 

there at present in the Linux Systems. The [LTT10] carries lots of invaluable papers from various 

conferences and journals which are somehow related to LTTng. As the thesis goal involved us to 

ŘŜǘŜǊƳƛƴŜ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƳŜŀǎǳǊŜǎ ŦƻǊ [¢¢ƴƎ ƛƴ ŀ ƳǳƭǘƛŎƻǊŜ ŜƴǾƛǊƻƴƳŜƴǘΣ ǎƻ ǘƘŜ άƳǳƭǘƛŎƻǊŜ ǎȅǎǘŜƳέ 

keyword search in Databases like IEEE and ACM gave us a lot of results and references to scientific 

ƧƻǳǊƴŀƭǎΦ ²Ŝ Ǝƻǘ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ǘƘŜ vƻǊLvϰ tплул aǳƭǘƛŎƻǊŜ ǇǊƻŎŜǎǎƻǊ ōƻŀǊŘ ŦǊƻƳ ǘƘŜ 

ƳŀƴǳŦŀŎǘǳǊŜǊΩǎ ǿŜōǎƛǘŜ ǿƘƛŎƘ ŎƻƴǘŀƛƴŜŘ ŘƻŎǳƳŜƴǘǎ ŜȄǇƭŀƛƴƛƴƎ ǘƘŜ ǿƘƻƭŜ ǎǘǊǳŎǘǳǊŜ ŀƴŘ ŦŜŀǘǳres of 

P4080. Our next objective was to do Control Flow and Data Flow Analysis of the System and LTTng 

respectively and thus we went through the details of what those terms actually meant and what are the 

ŘŜǘŀƛƭǎ ǘƘŀǘ Ŏŀƴ ōŜ ŦƻǳƴŘ ƻǳǘ ŦǊƻƳ ǘƘŀǘΦ YŜȅǿƻǊŘ ά/ƻƴǘǊƻƭ Cƭƻǿ !ƴŀƭȅǎƛǎέ ŀƴŘ ά5ŀǘŀ Cƭƻǿ !ƴŀƭȅǎƛǎέ ǿƘŜƴ 

ǎŜŀǊŎƘŜŘ ƛƴ DƻƻƎƭŜ {ŎƘƻƭŀǊ ϰ ƭŜŀŘ ǘƻ ƳǳƭǘƛǇƭŜ ǇŀǇŜǊǎ ƭŜŀŘƛƴƎ ǘƻ ŜƛǘƘŜǊ L999 ƻǊ !/a ƻǊ ŘƛŦŦŜǊŜƴǘ 

university Lecture sessions. The Cited papers in those papers also contained the tools for doing Control 

and Data Flow Analysis and from there we got profiling tools like OProfile, TAU, Gprof, Valgrind and 

many others in which we chose OProfile for Control Flow based upon the results and its effectiveness of 

working in different architectures. The other part of our thesis goal focuses in Streaming of the LTTng 

Trace to Eclipse over the TCF Framework. We got research material regarding TCF Framework from 

Google Scholar ϰ which pointed us to Eclipse website and LTT Tools plugin page. All the scientific 

research papŜǊǎ ŀƴŘ ōƻƻƪǎ ǊŜŦŜǊǊŜŘ ǘƻ ƘŜǊŜ ŀǊŜ ŦǊƻƳ DƻƻƎƭŜ {ŎƘƻƭŀǊ ϰΣ L999 ŀƴŘ !/a 5ŀǘŀōŀǎŜǎΦ 
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4.3 State of the Art  

 

LTTng was developed by Mathieu Desnoyers as his PhD project and his PhD dissertation [DES09] shows 

how he tested LTTng performance for different load conditions on different type of architectures and 

compared it with the existing tracer tools. He took the load simulator tools like dbench (Disk load) and 

tbench (Network Load) to get the scalability of the tracer in multicore environments and benchmarking 

tool lmbench to measure the tracing effect on important system components like system calls and traps. 

Running 8 tbench clients with warm up of 120 seconds and execution time of 600 seconds revealed that 

tracing had very low impact on the overall performance with the network load on a 100Mb/s network 

card. During the test for scalability it was noticed that tbench linearly increases its workload in absence 

of tracing and LTTng tracing overhead was linearly maintaining same line with increase in processors 

thus showing that the overhead being totally independent on the number of processors. The dbench 

tests showed that disk throughput gets affected in heavy I/O workloads in tracer non-overwrite mode. 

In non-overwrite mode the tracer suffers from a lot of event loss than normal. lmbench tests showed 

that how the performance of the system get affected by a tracer running in the background. Results 

from lmbench proved that the instrumented code portions and paths suffered from more overhead 

than normal. All the existing tracers are compared with the performance results of LTTng and it shows it 

has quite low overhead and affect on the system performance than the other tracing tools. 

Before that in 2006 performance of LTTng was determined by Mathieu Desnoyers and Michel 

Dagenais with micro and macro benchmarks [DD06].  The test was conducted on a 3 GHz Intel Pentium 4 

without hyper threading and CPU clock calibrated to 3,000.607 MHz.  For micro benchmarks kernel 

probe tests are done, without enabling interrupts. Results suggested that LTTng probe points do not 

increase the latency measure as they work without disabling the interrupts. The LTTng scheduler time 

gets affected due to the instrumentation as it needs the disabling of preemption on RCU list which is 

used for control. With macro benchmarks the time spent in the lttd and in the probe site was measured 

on application of variable loads on the system. Under kernel tracing it was found out that during high 

and medium load scenarios CPU time utilized by the tracing varies from 1.54 % to 2.28 % [DD06]. In user 

space tracing gcc application was instrumented and it showed an execution time variation. It execution 

time was 1.73 % more than the normal runtime. 2 % of the CPU time is taken by LTTng in case of a high 

workload to the system. 

During December 2006 there was a study conducted by Kathryn Mohror and Karen L. Karavanic 

to find out the tracing overhead on the High Performance Linux clusters. The experiment setup was 

designed with three contexts; firstly execution times of execution of applications that contained 

instrumentation and wrote file to the disk. Secondly, executions having trace instrumentations but the 

trace file was not written to the disk and the Third condition involved no instrumentation and normal 

execution of a program [MLK06]. The tracing overhead was also measured due to scaling the number of 

processors. Execution time was compared by ASCI Purple Benchmark SMG2000. TAU was the main 

tracing tool and PerfTrack was the software used for collecting results. In the results of the experiment it 



Page | 42  
 

was found that the overhead of writing the trace data to disk was nearly 27 % of the normal execution 

time. Also the execution time of the application depended on the trace buffer size, as if it was larger the 

memory used by the buffer and the amount of time required to flush that off, largely varied. When the 

number of processors were increased it was seen that the overhead due to the was quite interrelated 

with the number of events generated in the whole trace session, though the overhead of writing trace 

ōǳŦŦŜǊ ǘƻ ǘƘŜ Řƛǎƪ ŘƛŘƴΩǘ ƘŀŘ ƳǳŎƘ ǊŜƭŀǘƛƻƴ ǿƛǘƘ ǘƘŜ ƛƴŎǊŜŀǎŜ ƛƴ ƴǳƳōŜǊ ƻŦ ŜǾŜƴǘǎΦ 

During 2008 there was another study conducted by Parisa Heidari, Mathieu Desnoyers and 

Michel Dagenais to measure the overhead caused due to tracing and virtualization in a system [HDD08]. 

The experiment was setup considering 3 scenarios in which the one related to tracing was the impact 

caused by LTTng observed on a Domain 0 (Linux running over Xen), Domain U (one or more virtual 

system) and a normal system in 4 different scenarios ς LTTng not compiled in the kernel, compiled in 

kernel but disabled the markers, flight recorder mode active, fully active with trace data being written to 

the disk. The tests were grouped into two parts one consisting of original application creating system 

stress (compiling, archiving, compression) and other part was standard benchmarks which simulates the 

load (dbench). The whole experiment was carried out in a machine having Intel Pentium 4, 3GHz hyper 

threaded processor, 2 GB RAM and a single 320 GB 7200 RPM SATA.  The results showed that the cost 

associated with tracing is less than 3 % which when compared with the correctness, compactness and 

completeness of the information collected was a very small amount of disturbance. In the scenario 

when LTTng was compiled in but the probe was disabled, it caused a very less impact. LTTng without 

loading the probes fast completes the test but the difference is smaller and lesser than standard 

deviation. There is a effect of less than 2 % in the performance scale when probes are not loaded and 

less than 5 % deviation in performance when the trace is written by LTTng [HDD08]. There was no 

impact on scheduling or real time response as LTTng uses atomic operations. 

  During late 2009 Pierre-Marc Fournier, Mathieu Desnoyers and Michel Dagenais gauged the 

performance of UST and also compared it with the performance of DTrace on an equivalent tracing task 

[FDD09]. The tests were conducted on a cache hot dual quad-core Xeon 2 GHz with a RAM of 8GB. 

DTrace was run under Solaris environment. The command, 

ὪὭὲὨ Ⱦόίὶ  ὶὩὫὩὼ  ΩȢzὥΩȢ            [FDD09] 

was run 60 times. This regular expression was chosen to prove malloc / free activity and they were also 

instrumented. The UST performance was measured with and without instrumentation compiled in. The 

difference in the two measures came to much less significant value. When the probes were connected 

but there was no tracing then there was a slight increase in the execution timing. With Tracing on the 

cost/event was found to be approximately 698 ns [FDD09].  The LTTng and UST together have a cost per 

events 7 times lower than that of DTrace. 
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5. Experiment Setup 

 

 

 

 

This chapter describes in detail the use of technologies in our experiments. These technologies include 

the hardware and software configurations and tools, utilities and scripts used to perform the 

experiments. 

 

 

List of technical terms 

LTTng Linux Trace Toolkit Next Generation 

AMD Advanced Micro Devices, Inc. 

DDR Double Data Rate 

SDRAM Synchronous Dynamic Random Access Memory 

I/O Input / Output 

CPU Central Processing Unit 

SMP Symmetric Multiprocessing 

L2 cache Level 2 cache 
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5.1 System Configuration  

 

The first step is to configure the system on which we should run our experiments. System configuration 

consists of two parts: 

¶ Hardware Configuration 

¶ Software Configuration 

 

5.1.1 Hardware Configuration  

The hardware on which we performed our experiments is an x86 ōŀǎŜŘ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ ǇǊƻŎŜǎǎƻǊ 

desktop. The specifications of the system are: 

¶ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ ǿƛǘƘ ŦƻǳǊ 64 bit Q9550 SMP cores operating at frequency 2.83 GHz 

¶ 3 GB of DDR2 SDRAM operating at frequency 667 MHz 

¶ 100 Mbps Ethernet 

 

5.1.2 Software Configurat ion  

The ōŀǎŜŘ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ 5Ŝǎƪtop has been running openSUSE 11.2 Desktop Linux operating 

system with dual kernels. One of the kernels are kernel version 2.6.33.2 patched with LTTng 0.211 

instrumentation set built as loadable modules. Therefore, unless the LTTng modules are loaded using 

modprobe the LTTng instrumentation set will remain dormant. The other kernel is kernel version 

2.6.31.5 without LTTng instrumentation in it. 

 Apart from the LTTng kernel patch series, the application package ltt -control version 0.84 has 

been installed in the system to control the tracing activity. Userspace tracer has also been installed in 

the system by installing the packages userspace-rcu and ust version 0.4.3 

 LTT Viewer has been installed in the system to view the trace files, by installing the lttv package 

version 0.12.31, according to the compatible trace format. 
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5.2 Tools and Utilities  

 

5.2.1 Load Generation Tools  

The tools described under this section generate various types of load on the system and in varying 

amount. The purpose of using these tools in our experiment is to apply varying amount of load in the 

test system. 

 

5.2.1.1 load  

The load is a command line program written in C, which can generate specified amount of load on a 

single CPU core for a specific period of time.  

Usage: 

 

load is executed with 20% CPU load for 180 seconds. 

Output: 

 

 

 

 

 

5.2.1.2 tbench  

The tbench is a command line utility that can generate network and process load by simulating similar 

socket calls as done by the Samba daemon during a Net Bench run in real environment. The tbench 

utility has two components: 

¶ tbench_srv: The tbench_srv is the server utility that listens to tbench client connections 

 

¶ tbench: The tbench utility which has the capability of spawning multiple clients to connect to 

the tbench_srv 

Usage: 

 

tbench_srv is executed and waiting for tbench clients to run. 

romik@linux - 2t0w:~> tbench_srv  

waiting for connections  

romik@linux - 2t0w:~> gcc ïg ïo load load.c  

romik@linux - 2t0w:~> ./load ïl 50 ït 180  

generating CPU load : 20 %  

running for 180 seconds  

sending SIGTERM to the child  

loops executed = 1789  
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tbench is executed for a time span of 5 seconds with 5 clients for tbench_srv running in localhost. 

Output: 

 

 

 

 

 

 

 

 

 

5.2.2 System Activity Measurement Tools  

The tools described under this section are used to record the activity of the system related to CPU, 

memory, I/O and other parameters. The purpose of using these tools in our experiment is to record and 

analyze the activity and performance of the system. 

 

5.2.2.1 Sysstat 

Sysstat is a set of utilities that can monitor and record system activities that can be used to measure 

system performance. The tools present in the Sysstat package are sar, sadf, iostat, mpstat, pidstat, sa1 

and sa2.  

 The utilities we used to capture various system activities are: 

romik@linux - 2t0w:~> tbench - t 5 5  localhost  

dbench version 4.00 -  Copyright Andrew Tridgell 1999 - 2004  

 

Running for 5 seconds with load '/usr/local/share/client.txt' and minimum warmup 1 secs  

0 of 5 processes prepared for launch   0 sec  

5 of 5 processes prepared for launch   0 sec  

releasin g clients  

   5     14603   226.10 MB/sec  execute   1 sec  latency 11.225 ms  

   5     23155   227.33 MB/sec  execute   2 sec  latency 7.511 ms  

   5     31630   227.18 MB/sec  execute   3 sec  latency 11.902 ms  

   5     40197   228.05 MB/sec  execute   4 se c  latency 8.037 ms  

   5  cleanup   5 sec  

   0  cleanup   5 sec  

Operation      Count    AvgLat    MaxLat  

 ----------------------------------------  

 NTCreateX      36535     0.097     8.020  

 Close          26932     0.084    11.663  

 Rename          1546     0.107     2.934  

 Unlink          7291     0.096     8.132  

 Qpathinfo      33225     0.096     7.894  

 Qfi leinfo       5823     0.085     2.981  

 Qfsinfo         6042     0.085     2.905  

 Sfileinfo       2958     0.086     2.988  

 Find           12839     0.097    10.371  

 WriteX         18078     0.236    11.887  

 ReadX          57510     0.108    11.761  

 LockX            120     0.085     0.206  

 UnlockX          120     0.089     0.209  

 Flush           2540     0.085     0.344  

 

Throughput 228.048 MB/sec  5 clients  5 procs  max_latency=11.902 ms  
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¶ sar: The sar utility collects and saves the system activity information. It includes information 

about CPU, memory, I/O, interrupts, disk and other parameters. 

Usage: 

 

sar is executed to run 3 times at an interval of 2 seconds, output statistics to file sysdata and display CPU 

activity information. 

Output: 

 

 

 

 

¶ sadf: The sadf utility is used to export the data collected by sar in multiple human readable 

formats such as CSV, XML etc. 

Usage: 

 

sadf is executed to read information from file sysdata (created by sar) and display CPU activity 

information. 

Output: 

 

 

 

 

5.2.3 Control Flow and Data Flow Analysis Tools  

The tools described under this section are useful for control flow analysis of a system or an application. 

These tools are basically profilers and utilities to generate call graphs. The purpose of using these tools 

in our experiment is to generate profiling data, annotations and call graphs that will help us in control 

flow analysis of the system or a binary compiled with debug information. 

 

linux - 2t0w:~ # sar - u - o sysdata 2 3  

Linux 2.6.33.2 - 0.1 - desktop (linux - 2t0w)         04/21/10        _i686_  (2 CPU)  

 

20:46:29        CPU     %user     %nice   %system   %iowait    %steal     %idle  

20:46:31        all      4.27      0.00      1.07      0.00      0.00     94.67  

20:46:33        all      5.91      0.00      2.06      0.77      0.00     91.26  

20:46:35        all      6.22      0.00      2.24      0.50      0.00     91.04  

Average:        all      5.49      0.00      1.80      0.43      0.00     92.28  

linux - 2t0w:~ # sadf - d sysdata --  - u 

# hostname;interval;timestamp;CPU;%user;%nice;%system;%iowait;%steal;%idle  

linux - 2t0w;2;2010 - 04- 21 18:46:31 UTC;- 1;4.27;0.00;1.07;0.00;0.00;94.67  

linux - 2t0w;2;2010 - 04- 21 18:46:33 UTC; - 1;5.91;0.00;2.06;0.77;0.00;91.26  

linux - 2t0w;2;2010 - 04- 21 18:46:35 UTC; - 1;6.22;0.00;2.24;0.50;0.00;91.04  
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5.2.3.1 OProfile  

OProfile is the most commonly used system-wide profiler for Linux based systems. It is capable of 

profiling all running code in the system with very little overhead. The OProfile package consists of a 

kernel driver, a daemon and several profile analysis tools. OProfile supports collection of data from 

various hardware performance counters. Therefore, applications, shared libraries, kernel modules, 

kernel as well as software and hardware interrupt handlers can be profiled using OProfile. OProfile 

supports a wide range of architecture from 32 and 64 bit x86 to PowerPC, MIPS, ARM etc. In a work, 

OProfile is a useful utility to determine performance bottlenecks within a system. opcontrol is used to 

control the profiler and opreport is used to extract the profiled data. 

Usage: 

 

 

 

 

Start OProfile. 

 

 

Dump profile data or stop OProfile. 

Output: 

 

 

 

 

 

 

 

 

opreport output (clipped). 

linux - 2t0w:~ # opcontrol -- reset  

linux - 2t0w:~ # opcontrol -- vmlinux=/usr/src/linux - 2.6.33.2/vmlinux -- separate=lib --

callgraph=32  

linux - 2t0w:~ # opcontrol -- start                                                                 

Using default event: CPU_CLK_UNHALTED:100000:0:1:1                                               

Using 2.6+ OProfile kernel interface.                                                            

Reading module info.                                                                             

Using log file /var/lib/oprofile/samples/oprofiled.log                                           

Daemon start ed.                                                                                  

Profiler running.  

linux - 2t0w:~ # opcontrol -- dump 

linux - 2t0w:~ # opcontrol -- shutdown  

Stopping profiling.                 

Killing daemon.  

CPU: AMD64 processors, speed 800 MHz (estimated)                              

Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a unit mask of 0x00 (No 

unit mask) count 100000  

CPU_CLK_UNHALT...|                                                                                                  

  samples|      %|                                                                                                  

------------------                                                                                                   

    17675 38.9463 vmlinux                                                                                           

     8649 19.0578 kdeinit4                                                                                          

        CPU_CLK_UNHALT...|                                                                                          

          samples|      %|                                                                                          

        ------------------                                                                                           

             4050 46.8262 libQtGui.so.4.5.3                                                                         

             1220 14.1057 libQtCore.so.4.5.3                                                                        

             1155 13.3541 libc - 2.10.1.so                                                                            

              503  5.8157 libkonsoleprivate.so                                                                      

              392  4.5323 libX11.so.6.2.0                                                                           

              196  2.266 2 libglib - 2.0.so.0.2200.1                                                                   

              195  2.2546 libpthread - 2.10.1.so                                                                      

              160  1.8499 libplasma.so.3.0.0                                                                        

              133  1.5378 libkdeui.so.5.3.0                                                                         

              113  1.3065 libxcb.so.1.1.0  
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 In our experiments for Control Flow analysis we have used OProfile with the performance 

counter event CPU_CLK_UNHALT and with libraries separated. The CPU_CLK_UNHALT event gives the 

number of CPU clock cycles outside the halt state of CPU which implies the amount of time spent by a 

binary image while execution. We have also generated call graphs of binary images using OProfile 

[PZWSS07].  

In our experiments for Data Flow Analysis we have used OProfile with two performance counter 

events LII_MISSES and INST_RETIRED_ANY_P and with the libraries separated [PZWSS07]. Caches are 

high speed memories placed closest to the CPU. It takes less number of CPU cycles to fetch data stored 

in cache memory rather than the main memory. Therefore, performance will increase if the cache 

misses decreases. The LII_MISSES event gives the number of L2 cache misses for a particular binary 

image while execution. Branch prediction is an important technique to achieve parallelism in multicore 

systems. Branch prediction is a technique to predict and process instructions for a particular branch 

even before the decision is made. In case of a branch misprediction the processed instructions have to 

be retired. The event INST_RETIRED_ANY_P helps us determine the number of times branch 

mispredictions have happened for a particular binary image while execution [PRA03]. 

 

5.2.3.2 Valgrind  

Valgrind is a tool suite consisting of debugging and profiling tools. It consists of utility Memcheck 

(Memory leak Checker), Cachegrind (Cache Profiler), Callgrind (Cachegrind with Callgraphs), Massif 

(Heap Profiler) and Helgrind (Thread debugger) [VAL10]. In our experiments we use Memcheck, which 

detects the memory errors in programs during runtime. Memcheck mainly has 4 different kinds of 

Memory checking [SN05]:  

¶ It tracks addressability of each byte of memory getting updated with the information of whether 

the memory is free or allocated. 

¶ It keeps a note of all heaps which gets allocated with malloc () and new, so that it can detect 

leaking of memory at program termination time. 

¶ Lǘ ŎƘŜŎƪǎ ǘƘŀǘ ǎǘǊŎǇȅ όύ ŀƴŘ ƳŜƳŎǇȅ όύ ŘƻŜǎƴΩǘ ƘŀǾŜ ǎŀƳŜ ƳŜƳƻǊȅ ōƭƻŎƪǎ ŀǎ ŀǊƎǳƳŜƴǘǎΦ 

¶ It performs definedness checking which ensures the definedness of every data bit in memory 

and registers. 

Usage: 

 

 

 

 

linux - 2t0w:~ # valgrind -- tool=memcheck  -- leak - check=full -- trace - children=yes -- show-

reachable=yes - v lttctl - C - w /tmp/trace trace  
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Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our experiments of Data Flow, Memcheck is used here to detect memory leaks in LTTng 

YŜǊƴŜƭ ŀƴŘ ¦ǎŜǊǎǇŀŎŜ ǘǊŀŎŜǊΦ ²Ŝ ŀǊŜ ǳǎƛƴƎ ǘƘŜ ƻǇǘƛƻƴ ά-- leak - check=full έ to get a full report of any 

ǘȅǇŜǎ ƻŦ ƳŜƳƻǊȅ ƭŜŀƪǎ ŦǊƻƳ ǘƘŜ ǇǊƻƎǊŀƳΦ ¢ƘŜ ŀǊƎǳƳŜƴǘ ά-- trace - children=yes έ  is used to track any 

forked program from the main program, so that the Memcheck utility can even show memory leaks of 

ŦƻǊƪŜŘ ŎƘƛƭŘ ǇǊƻƎǊŀƳǎΦ ¢ƘŜ ƻǘƘŜǊ ǘǿƻ ŀǊƎǳƳŜƴǘǎ ά-- show- reachable=yes έ ŀƴŘ ά- vέ ŀǊŜ ǳǎŜŘ ǘƻ ƎŜǘ ƳƻǊŜ 

detailed report about memory mismanagement of the application program. 

 

==3531== Memcheck, a memory error detector  

==3531== Copyright (C) 2002 - 2009, and GNU GPL'd, by Julian Seward et al.  

==3531== Using Valgrind - 3.5.0 and LibVEX; rerun with - h for copyright info  

==3531== Command: lttctl - C - w /tmp/trace - o channel.all.overwrite=1 trace  

==3531==  

-- 3531 --  Valgrind options:  

-- 3531 --     -- tool=memcheck  

-- 3531 --     -- leak - check=full  

-- 3531 --     -- trace - children=yes  

-- 3531 --     -- show- reachable=yes  

-- 3531 --     - v  

-- 3531 --  Contents of /proc/version:  

-- 3531 --    Linux version 2.6.33.2 - Lttng0.203 (root@linux - ambr) (gcc version 4.4.1 [gcc - 4_4 -

branch revision 150839] (SUSE Linux) ) #3 SMP Wed May 5 17:15:59 CEST 2010  

-- 3531 --  REDIR: 0x40cad00 (rindex) redirected to 0x4027840 (rindex)  

-- 3531 --  REDIR: 0x40ca260 (index) redirected to 0x40278d0 (index)  

-- 3531 --  REDIR: 0x40ca970 (strlen) redirected to 0x4027c00 (strlen)  

-- 3531 --  REDIR: 0x40cca20 (memcpy) redirected to 0x4028080 (memcpy)  

-- 3531 --  REDIR: 0x40ca440 (strcpy) redirected to 0x4027c60 (strcpy)  

-- 3531 --  REDIR: 0x40c7050 (malloc) redirected to 0x4026c07 (malloc)  

-- 3531 --  REDIR: 0x40ca3d0 (strcmp) redirected to 0x4027f20 (strcmp)  

-- 3531 --  REDIR: 0x40ca0b0 (strcat) redirected to 0x4 0279c0 (strcat)  

-- 3531 --  REDIR: 0x40cc550 (mempcpy) redirected to 0x4028d10 (mempcpy)  

-- 3531 --  REDIR: 0x40cf510 (strchrnul) redirected to 0x4028cc0 (strchrnul)  

-- 3531 --  REDIR: 0x40c6f70 (free) redirected to 0x4026821 (free)  

==3531== 152 bytes in 17 blocks are definitely lost in loss record 1 of 5  

==3531==    at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)  

==3531==    by 0x40CA6C0: strdup (in /lib/libc - 2.10.1.so)  

==3531==    by 0x4051297: lttctl_set_channel_enable (liblttctl.c:472 )  

==3531==    by 0x8049E1F: main (lttctl.c:631)  

==3531==  

==3531== 152 bytes in 17 blocks are definitely lost in loss record 2 of 5  

==3531==    at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)  

==3531==    by 0x40CA6C0: strdup (in  /lib/libc - 2.10.1.so)  

==3531==    by 0x4051117: lttctl_set_channel_overwrite (liblttctl.c:536)  

==3531==    by 0x8049E49: main (lttctl.c:637)  

==3531==  

==3531== 284 bytes in 1 blocks are still reachable in loss record 3 of 5  

==3531==    at 0x4026C8C: malloc  (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)  

==3531==    by 0x8049346: parst_opt (lttctl.c:238)  

==3531==    by 0x80496DA: main (lttctl.c:425)  

==3533==  

==3533== HEAP SUMMARY: 

==3533==     in use at exit: 0 bytes in 0 blocks  

==3533==   total heap  usage: 0 allocs, 0 frees, 0 bytes allocated  

==3533==  

==3533== All heap blocks were freed --  no leaks are possible  

==3533==  

==3533== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 4)  
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5.2.3.3 gprof2dot.py  

The gprof2dot.py is a Python script that can convert the call graph output from different profilers into a 

dot graph.  It supports different profilers such as gprof, OProfile, callgrind, sysprof and others. The script 

has dependencies on Python and Graphviz to run. 

Usage: 

 

 

Output: 

 

Figure 5.1: tbench call graph output 

 We have used gprof2dot.py to convert OProfile generated call graphs into dot graphs for better 

understanding and comparison. 

 

 

 

linux - 2t0w:~ #  opreport image:/usr/local/bin/dbench - cgf | gprof2dot.py - f oprofile | dot -

Tpng - o output.png  
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5.3 Test System Setup 

 

5.3.1 Tools Setup 

The different tools mentioned in the previous section are used to set up the test system. Figure 5.2 

describes how the different tools are used in combination in Test System Setup. 

 

Figure 5.2: Test System Setup 

The system runs LTTng tracer which comprises of the kernel tracer and the userspace tracer. The 

tools load and tbench are used to generate load on the system in different configurations while the 
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tracing in on or off. The system activity is recorded by sar utility of the SYSSTAT tools bundle, and the 

sadf utility from the same bundle converts the sar generated data into human readable form and stores 

the data in the disk. The system is also profiled using a system wide profiler called OProfile. It stores the 

system profile data and the source annotations of binary files in the disk. These profile data and source 

annotations are used for Control Flow Analysis and Data Flow Analysis of the traced system. OProfile 

passes the control flow information to a call graph generation script named Gprof2dot.py that generates 

visual call graphs from the control flow information. It saves the call graphs to the disk. 

 

5.3.2 Load Configuration  

Two different types of load generators have been used to generate load on the test system.  

The load program generates specified amount of CPU load on a single core. Therefore for a 

fourςcore processor, four instances of the load program have to be executed. The load program is a 

program written in C language and generates CPU load by forking child processes continuously. The 

source code of the load program has been provided in Appendix B. 

The tbench utility produces process and network load on the test system. In our experiments tbench is 

run on the loopback interface adapter with a standard of 10 clients. The amount of load on the system is 

varied by varying the throughput data rate of tbench clients. 

Table 5.1 describes the load configuration for the experiments to be performed: 

Configuration Load Generator Load Level Load % 

CNF-01 Load Low 20 

CNF-02 Load Medium 50 

CNF-03 Load High 90 

CNF-04 Tbench Low 30 

CNF-05 Tbench Medium 50 

CNF-06 Tbench High 80 

Table 5.1: Load Configuration 

 

5.3.3 Test Automation  

 

The experiments are automated with the help of shell scripts. These shell scripts are responsible for 

running the tools and utilities in proper order and recording all the test data in the disk for analysis at a 

later period. 
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5.3.4 Performance Measurement  

Various criteria have been measured in order to judge the performance of LTTng kernel trace and 

userspace tracer in a 4-core SMP system under various load configurations. Performance measurement 

has been done in system level, program level and function level. Following are the different criteria for 

performance measurement. 

System Level Performance Measurement 

¶ CPU usage by a user program 

¶ CPU usage due to system activities 

¶ CPU usage due to I/O waits 

Program Level Performance Measurement 

¶ Percentage of CPU cycles needed for an image execution 

¶ Percentage of L2 cache misses 

¶ Percentage of retired instructions 

¶ Percentage of memory leaks 

Function Level Performance Measurement 

¶ Call Graph analysis 

¶ Source annotation evaluation 

 

5.3.5 Result Analysis  

The results obtained from the experiments are stored in the disk in form of system activity data, 

OProfile data, VALGRIND memory report, call graphs and source annotations. These result data provide 

a valuable input for system level, program level and function level performance measurement. 

 The system level performance measurement includes analyzing and comparing percent CPU 

utilization for user programs, system and I/O waits. The program level performance measurement 

includes CPU cycles needed for execution, L2 cache misses, memory leaks while execution and the 

retired instructions while branch mispredictions for a binary image. The function level performance 

measurement includes call graph analysis and source annotation evaluation for percent CPU cycles at 

instruction level. The program level and function level performance measurement comprise the Control 

Flow and Data Flow Analysis. 

The results analysis will help us to zero down on the efficiency of the LTTng kernel tracer and userspace 

trace on a multicore SMP system. Figure 5.3 presents the different phases of result analysis. 
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Figure 5.3: Result Analysis 
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6. Experiment Methodology 

 

 

 

 

This chapter describes the experiment methods in detail that are to be performed on LTTng kernel 

tracer and userspace tracer. 

 

 

List of technical terms 

LTTng Linux Trace Toolkit Next Generation 

UST Userspace Tracer 

SUT System Under Test 

CFG Control Flow Graph 

CPU Central Processing Unit 
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6.1 Load Configuration  

 

6.1.1 Experiment 1 ɀ Determination of l oad configuration  parameters 

for System Under Test (SUT) 

Objective ς Setting up the parameters for load configurations as described in Table 6.1 in chapter 

Experiment Setup. These load configurations are to be used in forthcoming experiments. 

Explanation ς For the Control Flow and the Data Flow analysis the idea is to generate a substantial load 

in the whole system. For the determination of low, medium and high load of CPU, the idle time of the 

CPU will be collected by the sar utility of SYSTAT bundle. Table 6.1 shows the desired percentage of idle 

time for each low, medium and high load configurations of the CPU. 

Configuration of LOAD CPU Idle Time (%) 

Low 67-100 

Medium 33-66 

High 0-32 

                                                                    Table 6.1: Load Configuration 

The load program generates specified percentage of load on a single CPU core. As the system under test 

has four SMP cores, 4 instances of load program is executed simultaneously in vanilla kernel to generate 

the specified percentage of CPU load on the system. The total number of clients that will be required for 

tbench (network load) is kept fixed at 10 and by running the tbench (in loopback) in a fresh vanilla kernel 

with controlled throughput. Table 6.2 provides the details of six different load configurations to be 

determined. 

Utility  Instances/Clients Target CPU Idle Time (%) Load Configuration 

load 4 80 CNF-01 

load 4 50 CNF-02 

load 4 10 CNF-03 

tbench 10 70 CNF-04 

tbench 10 50 CNF-05 

tbench 10 20 CNF-06 

Table 6.2: Load Configurations to be determined 

After the determination of the load configuration parameters, Control and Data Flow analysis are done 

on empty vanilla kernel and kernel compiled with LTTng with variation of different parameters thus 

differentiating between their usages of CPU cycles. 

 

 



Page | 58  
 

6.2 Control Flow Analysis  

 

6.2.1 Experiment 2  ɀ Measuring the efficiency of LTTng Kernel Tracer  

Objective ς Measuring the efficiency of LTTng kernel tracer for different load configurations. Detailed 

program level and function level performance analysis is to be performed on the gathered results. 

Explanation ς The OProfile tool is used to get the Control Flow parameters in the whole system with 

different load configurations. The opcontrol command is run with kernel image and separate libraries as 

the argument (to get the control flow of any process inside the libraries) to get the appropriate opreport 

depicting the CPU cycles spent by each of the functions and binaries. The CPU usage is also collected 

during the load generation with the help of sar tool. This experiment helps us to determine the CPU 

activity of the system having upon different load configurations along with a generalized sample report 

of individual CPU cycles used by separate functions of binaries under varied load. OProfile was run with 

the CPU_CLK_UNHALTED hardware performance counter to get the actual CPU time spend by the 

binaries and source annotations. OProfile output was fed into a python script to generate control flow 

graphs for LTT Daemon. Table 6.3 describes all the test cases to be executed. To get better results all 

test cases are run 3 times. 

Test Case Kernel Markers LTTng Armed Tracing Tracing Mode Load Configuration 

T1 Vanilla Off No Off NA CNF-01, CNF-04 

T2 Vanilla Off No Off NA CNF-02, CNF-05 

T3 Vanilla Off No Off NA CNF-03, CNF-06 

T4 Instrumented Off No Off NA CNF-01, CNF-04 

T5 Instrumented Off No Off NA CNF-02, CNF-05 

T6 Instrumented Off No Off NA CNF-03, CNF-06 

T7 Instrumented On No Off NA CNF-01, CNF-04 

T8 Instrumented On No Off NA CNF-02, CNF-05 

T9 Instrumented On No Off NA CNF-03, CNF-06 

T10 Instrumented On Yes Off NA CNF-01, CNF-04 

T11 Instrumented On Yes Off NA CNF-02, CNF-05 

T12 Instrumented On Yes Off NA CNF-03, CNF-06 

T13 Instrumented On Yes On Non Overwrite CNF-01, CNF-04 

T14 Instrumented On Yes On Non Overwrite CNF-02, CNF-05 

T15 Instrumented On Yes On Non Overwrite CNF-03, CNF-06 

T16 Instrumented On Yes On Flight Recorder CNF-01, CNF-04 

T17 Instrumented On Yes On Flight Recorder CNF-02, CNF-05 

T18 Instrumented On Yes On Flight Recorder CNF-03, CNF-06 

                                                                Table 6.3: Test Cases for Experiment 2  
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6.2.2 Experiment 3  ɀ Measuring the efficiency of LTTng Userspace 

Tracer  

Objective ς Measuring the efficiency of LTTng userspace tracer for different load configurations. 

Detailed program level and function level performance analysis is to be performed on the gathered 

results. The effect of the number of instrumentations is also measured. 

Explanation ς The Profiling tools are having same configurations for all the experiments. For this 

experiment the UST is installed on vanilla kernel and load and tbench are freshly compiled with UST 

instrumentation inside. The profiler is started after running the load generating programs with the 

instrumentation ON/OFF. The profiler (OProfile) gathers sample generating opreport which shows the 

CPU cycles usage at program level, the annotations of the source files of UST and load generation 

programs with the time spend in the CPU and the call graph which helps into digging deep regarding the 

reason of the overhead (if any). Overall system overhead is also measured. The experiment helps in 

determining that either or not User Space Tracing Instrumentation has an overhead on the execution 

time of the binary and also on the system performance. Table 6.4 shows the test cases executed for this 

experiment. All test cases are repeated 3 times to get better results. To determine the effect of the 

number of instrumentations all the test cases are repeated with 1, 5 and 10 instrumentation(s) compiled 

in the source code of both load and tbench. 

Test Case Kernel UST Markers Tracing Load Configuration 

T1 Vanilla Off Off CNF-01, CNF-04 

T2 Vanilla Off Off CNF-02, CNF-05 

T3 Vanilla Off Off CNF-03, CNF-06 

T4 Vanilla On Off CNF-01, CNF-04 

T5 Vanilla On Off CNF-02, CNF-05 

T6 Vanilla On Off CNF-03, CNF-06 

T7 Vanilla On On CNF-01, CNF-04 

T8 Vanilla On On CNF-02, CNF-05 

T9 Vanilla On On CNF-03, CNF-06 

Table 6.4: Test Cases for Experiment 3 

 

6.2.3 Experiment 4  ɀ Measuring the impact on System as well as 

Traced Application when LTTng Kernel Tracer and Userspace 

Tracer are executed together  

Objective ς This experiment aims to find out the overhead in the system and the instrumented 

application in case LTTng kernel tracing and userspace Tracing is both running together and the 

application binaries are instrumented with UST markers. 
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Explanation ς In an LTTng installed kernel we already have tested all variations to test the overhead of 

LTTng kernel tracing in Experiment 2. In this case we also install UST (Userspace Tracing) in the LTTng 

patched kernel and instrument the UST markers in the binaries. With all combination of LTTng tracing 

along with UST instrumentation we take a set of test cases for which we generate an annotated source 

code for LTT Daemon and UST Daemon. We get overall sample report showing the CPU cycles taken in 

all the possible conditions by LTTng binaries and UST binaries. There is also control flow graph of the 

binaries helping us to find the effect of LTTng kernel tracer on UST and vice versa, and also the effect of 

both on the system and the traced application. Table 6.5 provides the test cases to be executed for this 

experiment. All test cases are executed 3 times to get better results. As we are running userspace tracer 

we have repeated all test cases with 1, 5 and 10 UST markers compiled in with the userspace 

applications to find out the impact of increasing number of instrumentations as well.  

Test Case Kernel Kernel Tracing Tracing Mode UST Load Configuration 

T1 Instrumented On Non Overwrite On CNF-01, CNF-04 

T2 Instrumented On Non Overwrite On CNF-02, CNF-05 

T3 Instrumented On Non Overwrite On CNF-03, CNF-06 

T4 Instrumented On Flight Recorder On CNF-01, CNF-04 

T5 Instrumented On Flight Recorder On CNF-02, CNF-05 

T6 Instrumented On Flight Recorder On CNF-03, CNF-06 

Table 6.5: Test Cases for Experiment 4 
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6.3 Data Flow Analysis  

 

6.3.1 Experiment 5  ɀ Running load program and tbench on LTTng 

Kernel with Non Overwrite and Flight R ecorder tracing modes  

Objective ς The objective of this experiment is to find out any LII cache misses or branch misprediction 

of LTT Control module or the LTT daemon during tracing when there is a low, medium and high load 

generated on the system by a child forking program load and process and network load generated by 

the benchmarking utility tbench. This is an effort to make the tracer run through different type of loads 

and check the internal memory allocation issues for the LTT Control and Daemon modules. 

Explanation ς In LTTng kernel we use load program and tbench to generate low, medium and high load 

according to the load configuration matrix of Experiment 1. We start the LTTng kernel tracer in Non 

overwrite and Flight recorder tracing modes one after the other and use OProfile Hardware Events 

LII_MISSES and INST_RETIRED_ANY_P to sample LTT Control and LTT Daemon to find out respective 

Cache Misses and Branch Mispredictions in it. All the experiments are controlled by automated script 

which initially triggers the load program under different load configuration and then starts OProfile 

sampling and LTTng Kernel Tracer parallely. The trace gets destroyed after 180 sec when the load 

program ends. For tbench also the same process is followed where the trace gets destroyed after the 

completion of tbench. Table 6.6 provides all test cases for this experiment. 

Test Case Kernel Tracing Mode Load Configuration 

T1 LTTng Non Overwrite CNF-01, CNF-04 

T2 LTTng Non Overwrite CNF-02, CNF-05 

T3 LTTng Non Overwrite CNF-03, CNF-06 

T4 LTTng Flight Recorder CNF-01, CNF-04 

T5 LTTng Flight Recorder CNF-02, CNF-05 

T6 LTTng Flight Recorder CNF-03, CNF-06 

Table 6.6: Test Cases for Experiment 5 

 

6.3.2 Experiment 6 ɀ Running UST tracing on load and tbench 

program each instrumented with 10 markers under different 

load configurations  

Objective ς The aim of this experiment is to find out any L2 cache misses or branch misprediction of UST 

daemon and UST Libraries during userspace tracing when there is a low, medium and high load 

generated on the process and network by the benchmarking utility tbench and on the system by the 

load program. The tests are done under various load circumstances to gauge the memory management 

efficiency of the UST Daemon and the Libraries during Userspace tracing. 
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Explanation ς In plain vanilla kernel the program load and tbench are instrumented with 10 markers 

and are recompiled for current experiment use.UST Tracer triggers Load program and tbench are again 

triggered to generate the respective loads in the system according to the load generation matrix. An 

automated script is fired which triggers OProfile sampling with hardware counters same as Experiment 

5. After 180 sec UST tracer dumps the trace file for both load and tbench program and the OProfile 

sampling also ends. Table 6.7 represents the test cases for this experiment. 

Test Case Kernel Tracing Load Configuration 

T1 Vanilla UST CNF-01, CNF-04 

T2 Vanilla UST CNF-02, CNF-05 

T3 Vanilla UST CNF-03, CNF-06 

                                                             Table 6.7: Test Cases for Experiment 6 

 

6.3.3  Experiment 7 ɀ Running the Kernel tracer with the help of 

Valgrind under various load configurations generated by load 

program (system load) and tbench (proce ss and network load)  

Objective ς The experiment aims to find out the memory leaks with the help of Valgrind tool within LTT 

Control module during its run under different load configurations generated by load and tbench.  

Explanation ς In LTTng kernel we use load and tbench program one after the other to generate 

necessary load configurations in the system. We use the Memcheck utility of the Valgrind tool under the 

arguments of complete memory leak check and tracing of forked programs turned on. The usage detail 

of the tool is explained in the tools section of the Experiment Setup chapter. The Valgrind tool starts the 

Kernel Tracer in both Non Overwrite and in Flight Recorder tracing modes. After the load and tbench 

program completes the execution the trace is destroyed to get the Valgrind memory report. The report 

generated by Valgrind helps to get down to the functional level of instruction which is responsible for 

memory leaks in the LTT Control application (lttctl ). Table 6.8 shows the test cases involved in the above 

experiment. 

Test Case Kernel Tracing Mode Valgrind Tool Load Configuration 

1 LTTng Non Overwrite Memcheck CNF-01, CNF-04 

2 LTTng Non Overwrite Memcheck CNF-02, CNF-05 

3 LTTng Non Overwrite Memcheck CNF-03, CNF-06 

4 LTTng Flight Recorder Memcheck CNF-01, CNF-04 

5 LTTng Flight Recorder Memcheck CNF-02, CNF-05 

6 LTTng Flight Recorder Memcheck CNF-03, CNF-06 

Table 6.8: Test Cases for Experiment 7 
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6.3.4 Experiment 8 ɀ Running the load and tbench application 

instrumented with 10 markers under UST (Userspace Tracing) 

with the help of Valgrind  

Objective ς The objective of this experiment is to run UST Tracing on the load and tbench applications 

instrumented with 10 markers with the help of Valgrind Memcheck tool. This experiment will give us the 

detailed report of any memory leak issues faced by UST tracer under different load configurations. 

Explanation ς In fresh vanilla kernel we instrument the tbench and load with 10 markers and recompile 

it. We run the UST tracing on the instrumented load and tbench programs with Memcheck utility of 

Valgrind tool. The argument of tracing of forked programs are disabled for this experiment as it is not 

able to recognize the system call made by the forked child programs inside usttrace (Userspace Tracer) 

utility. After the load and tbench ends after its stipulated duration the Valgrind report gets generated. 

The reports generated by Valgrind are more detailed and drills down to functional level of the 

application program, i.e. we will get the line numbers of the application program which is responsible 

for the memory leaks. Table 6.9 shows the set of test cases designed for the experiment. 

Test Case Kernel Tracing Valgrind Tool Load Configuration 

T1 Vanilla UST Memcheck CNF-01, CNF-04 

T2 Vanilla UST Memcheck CNF-02, CNF-05 

T3 Vanilla UST Memcheck CNF-03, CNF-06 

Table 6.9: Test Cases for Experiment 8 
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7. Results 

 

 

 

 

This chapter presents the analysis of results that are obtained by performing the experiments 

mentioned in the experiment methodology chapter. Detailed Results have been presented in Appendix 

A. 
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7.1 Load Configuration  

 

7.1.1 Load Configuration parameters for System Under Test (SUT) 

Experiment 1 enabled us to determine the load configuration parameters for the load generation 

utilities. Table 7.1 provides the parameters for different load configurations for load utility. 

Load Configuration Instances Specified Load (%) Execution Time (s) Average CPU Usage (%) 

CNF-01 4 20 180  21.16 

CNF-02 4 50 180 50.53 

CNF-03 4 90 180 89.52 

Table 7.1: Results for Load Configuration of load utility 

Table 7.2 provides the parameters for different load configurations for tbench utility. 

Load Configuration Clients Specified Data Rate Execution Time (s) Average CPU Usage (%) 

CNF-03 10 12 180  29.05 

CNF-04 10 31 180 53.45 

CNF-05 10 60.55 180 81.81 

Table 7.2: Results for Load Configuration of tbench utility 

 

From Table 7.1 and Table 7.2 we can observe that the average CPU usages for all load configurations are 

close to the target load described in Table 5.1. Therefore, we can proceed with these load configurations 

for the other experiments. 
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7.2 Control Flow Analysis  

 

7.2.1 Efficiency of LTTng Kernel Tracer with Load utility  

We have identified the performance impact of LTTng Kernel Tracer on the kernel operations of the 

system while the system is under varied amount of stress exerted by the Load utility. The percentage of 

impact has been calculated in terms of percentage of CPU cycles needed for performing kernel 

operations in different scenarios against the percentage of CPU cycles needed for performing kernel 

operations on a vanilla kernel. Table 7.3 provides the results. 

KERNEL OPERATIONS - LOAD 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Instrumented -0.01 0.62 0.42 0.34 

Markers On 0.04 0.62 0.45 0.37 

LTTng Armed 0.07 0.71 0.41 0.40 

Non Overwrite 0.34 0.81 0.53 0.56 

Flight Recorder 0.29 0.86 0.53 0.56 

Table 7.3: Impact of LTTng kernel tracer on kernel operations (Load) 

Graph 7.1 presents the impact of LTTng kernel tracer on kernel operations with Load utility executing in 

various configurations. 

 

Graph 7.1: Impact of LTTng kernel tracer on kernel operations (Load) 

From Graph 7.1 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing 
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the load utility, low load having the least impact, high in between and medium load having the most 

impact. The percentage impact on kernel operations, calculated by measuring the percentage of CPU 

cycles needed, ranges between 0.25% to 0.85% with tracing on with almost negligible difference 

between non overwrite and flight recorder modes and average impact near 0.56%. 

 

7.2.2 Efficiency of LTTng Kernel Tracer with Tbench utility  

We have identified the performance impact of LTTng Kernel Tracer on the kernel operations of the 

system while the system is under varied amount of process and network load exerted by the Tbench 

utility. The percentage of impact has been calculated in terms of percentage of CPU cycles needed for 

performing kernel operations in different scenarios against the percentage of CPU cycles needed for 

performing kernel operations on a vanilla kernel. Table 7.4 provides the results. 

KERNEL OPERATIONS - TBENCH 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Instrumented -0.21 0.49 -1.20 -0.31 

Markers On -0.41 0.05 -1.25 -0.54 

LTTng Armed -0.52 0.52 -0.82 -0.27 

Non Overwrite 2.45 3.34 1.89 2.56 

Flight Recorder 2.24 3.43 2.43 2.70 

Table 7.4: Impact of LTTng kernel tracer on kernel operations (Tbench) 

Graph 7.2 presents the impact of LTTng kernel tracer on kernel operations with Tbench utility executing 

in various configurations. 

 

Graph 7.2: Impact of LTTng kernel tracer on kernel operations (Tbench) 
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From Graph 7.2 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing 

in non overwrite and flight recorder modes. Here, the impact varies with the amount of load exerted by 

the tbench utility, high load having the least impact, low in between and medium load having the most 

impact. The percentage impact on kernel operations ranges between 1.85% to 3.45% with tracing on 

with almost negligible difference between non overwrite and flight recorder modes, the average impact 

with tracing on being approximately near 2.6%. 

 

7.2.3 Efficiency of LTTng Kernel Tracer  

The efficiency of LTTng kernel tracer is determined by calculating the average percentage CPU cycles 

needed for kernel operations between the load generators load and tbench. The averaged results are 

displayed in Table 7.5. 

KERNEL OPERATIONS - AVERAGE 

Load 
Configuration 

% CPU Cycles AVERAGE 
%IMPACT Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Instrumented -0.11 0.56 -0.39 0.02 

Markers On -0.19 0.34 -0.40 -0.08 

LTTng Armed -0.23 0.62 -0.21 0.06 

Non Overwrite 1.40 2.08 1.21 1.56 

Flight Recorder 1.27 2.15 1.48 1.63 

Table 7.5: Impact of LTTng kernel tracer on kernel operations (Average) 

Graph 7.3 presents the impact of LTTng kernel tracer on kernel operations in low, medium and high load 

configurations. 

 

Graph 7.3: Average Impact of LTTng kernel tracer on kernel operations for different load configurations 
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From Graph 7.3 we can observe the effect of instrumented kernel, markers on, LTTng armed and tracing 

in non overwrite and flight recorder modes. Here, the impact varies with the amount of load, high and 

low load performing similarly and medium load having the most impact. The percentage impact on 

kernel operations ranges between 1.2% and 2.15%, the average impact being near 1.5%. Graph 7.4 

provides the average impact on kernel operations for all scenarios of LTTng kernel tracer. 

 

Graph 7.4: Average Impact of LTTng Kernel Tracer 
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LTTD - LOAD 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Non Overwrite 0.0003 0.0000 0.0000 0.0001 

Flight Recorder 0.0005 0.0001 0.0001 0.0002 

Table 7.6: Footprint of LTTD (Load) 

LTTD - TBENCH 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Non Overwrite 0.0002 0.0001 0.0002 0.0002 

Flight Recorder 0.0002 0.0004 0.0003 0.0003 

Table 7.7: Footprint of LTTD (Tbench) 

From the data in Table 7.6 and Table 7.7 we can identify that LTTD has very less footprint within the 

ǎȅǎǘŜƳ ŀƴŘ ŘƻŜǎ ƴƻǘ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ōȅ ŀƴȅ ƳŜŀƴǎΦ ¢ŀōƭŜ 7.8 provides the average 

results for the footprint of LTTD in terms of percentage of CPU cycles needed for execution of LTTD. 

LTTD - AVERAGE 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Non Overwrite 0.0003 0.0001 0.0001 0.0001 

Flight Recorder 0.0004 0.0003 0.0002 0.0003 

Table 7.8: Footprint of LTTD (Average) 

From Table 7.8 we can see that LTTD has almost negligible footprint on both Non Overwrite mode and 

Flight Recorder mode. We have already seen that both the modes have almost similar amount of impact 

ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜrformance, but still LTTD takes more CPU cycles in flight recorder mode than in Non 

Overwrite mode. 

 

7.2.5 Call Graph Analysis for LTTng Kernel Tracer  

In our experiment we have generated call graphs for LTTng kernel tracer those help us to know in which 

libraries and functions are explored by the LTTng kernel tracer in course of its execution. We have 

identified the libraries and the respective functions where the LTTng kernel tracer spends time. 

 Table 7.9 provides the list of libraries and functions called during the execution of LTTng kernel 

tracer with the load utility and the average percentage of CPU time spent within the functions. 
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Library Function(s) Average 

ld-2.10.1.so /lib/ld -2.10.1.so 49.61 

libc-2.10.1.so /lib/libc-2.10.1.so 46.97 

liblttd.so.0.0.0 

liblttdvfs_on_read_subbuffer 0.73 

frame_dummy 0.35 

__i686.get_pc_thunk.bx 0.35 

libpthread-2.10.1.so 

pthread_mutex_trylock 0.26 

_init 0.35 

pthread_rwlock_unlock 0.21 

__pthread_diaable_asynccancel 0.21 

__close_nocancel 0.62 

__pthread_initialize_minimal 0.55 

Table 7.9: Libraries and functions for LTTng Kernel Tracer (Load) 

Graph 7.5 displays the average percentage of CPU time spent by LTTng on each function that in turn 

belongs to a library, with load utility. 

 

Graph 7.5: Call Graph Analysis of LTTng Kernel Tracer on Load 
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Library Function(s) Average 

ld-2.10.1.so /lib/ld -2.10.1.so 43.83 

libc-2.10.1.so /lib/libc-2.10.1.so 50.34 

liblttd.so.0.0.0 

liblttdvfs_on_read_subbuffer 0.00 

open_channel_trace_pairs 0.23 

frame_dummy 0.00 

__i686.get_pc_thunk.bx 0.00 

lttd parse_arguments 1.72 

libpthread-2.10.1.so 

pthread_mutex_trylock 0.00 

pthread_mutex_unlock 0.46 

_init 0.00 

sigaction 0.43 

pthread_rwlock_unlock 0.00 

__pthread_disable_asynccancel 0.00 

__reclaim_stacks 1.62 

__close_nocancel 0.00 

__do_global_dtors_aux 0.63 

pthread_create@@GLIBC_2.1 0.37 

__errno_location 0.37 

__pthread_initialize_minimal 0.00 

Table 7.10: Libraries and functions for LTTng Kernel Tracer (Tbench) 

Graph 7.6 displays the average percentage of CPU time spent by LTTng on each function that in turn 

belongs to a library, with tbench utility. 

 

Graph 7.6: Call Graph Analysis of LTTng Kernel Tracer on Tbench 
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From Graph 7.6 we can observe that LTTng kernel tracer spends most of its time in libc and ld standard C 

libraries. It spends only 5.83% of the time in other functions and libraries which includes liblttd. 

Therefore, we can say that as LTTng kernel tracer spends so less time in executing its own 

functions it has so little impact in the systems performance. 

 

7.2.6 Efficiency of LTTng Userspace Tracer with Load utility  

We have identified the performance impact of LTTng Userspace Tracer or UST on the Load utility while 

the system is under varied amount of stress exerted by the Load utility itself. The percentage of impact 

has been calculated in terms of percentage of CPU cycles needed for executing the instrumented Load 

binary in different scenarios against the percentage of CPU cycles needed for executing an original copy 

of the Load binary image. The instrumentation compiled within the Load utility has also been varied as 

1, 5 and 10 instrumentations in order to observe the effect of varying markers as well. Table 7.11, Table 

7.12 and Table 7.13 provides the results for load program compiled with 1, 5 and 10 markers 

respectively. 

LOAD - 1 Marker 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.33 0.30 0.33 0.32 

UST On 0.02 0.26 0.23 0.17 

Table 7.11: Impact of UST on Load with 1 marker 

LOAD - 5 Markers 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.57 0.56 0.18 0.44 

UST On 0.53 0.45 0.33 0.44 

Table 7.12: Impact of UST on Load with 5 markers 

LOAD - 10 Markers 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.47 0.46 0.48 0.47 

UST On 0.50 0.54 0.56 0.53 

Table 7.13: Impact of UST on Load with 10 markers 
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Table 7.14 provides the average data for the impact of UST on varying markers on Load utility executed 

with markers compiled without UST and with UST running, against an original run of the load utility 

without the markers. 

LOAD ς AVERAGE 

Load 
Configuration 

% CPU Cycles AVERAGE 
%IMPACT Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.46 0.44 0.33 0.41 

UST On 0.35 0.42 0.37 0.38 

Table 7.14: Impact of UST on Load (Average) 

From Table 7.14 we can identify that the userspace trace similar to the kernel tracer has very less impact 

on the userspace application. We know, when markers are compiled in, even if UST is not running, the 

control goes to the marker site and returns back. Therefore the impact of the compiled markers on UST 

can be justified. It is seen that UST has an impact of 0.38% on the load application. 

 

7.2.7 Efficiency of LTTng Userspace Tracer with Tbench utility  

We have identified the performance impact of LTTng Userspace Tracer or UST on the Tbench utility 

while the system is under varied amount of stress exerted by the Tbench utility itself. The percentage of 

impact has been calculated in terms of percentage of CPU cycles needed for executing the instrumented 

Tbench binary in different scenarios against the percentage of CPU cycles needed for executing an 

original copy of the Tbench binary image. The instrumentation compiled within the Tbench utility has 

also been varied as 1, 5 and 10 instrumentations in order to observe the effect of varying markers as 

well. Table 7.15, Table 7.16 and Table 7.17 provides the results for Tbench utility compiled with 1, 5 and 

10 markers respectively. 

TBENCH - 1 Marker 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.81 0.57 0.50 0.63 

UST On 0.89 0.49 0.57 0.65 

Table 7.15: Impact of UST on Tbench with 1 marker 
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TBENCH - 5 Markers 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.49 0.56 0.63 0.56 

UST On 0.55 0.54 0.54 0.54 

Table 7.16: Impact of UST on Tbench with 5 markers 

TBENCH - 10 Markers 

Load 
Configuration 

% CPU Cycles 
AVERAGE 

 Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.72 0.47 0.58 0.59 

UST On 0.57 0.49 0.63 0.56 

Table 7.17: Impact of UST on Tbench with 10 markers 

Table 7.18 provides the average data for the impact of UST on varying markers on Tbench utility 

executed with markers compiled without UST and with UST running, against an original run of the 

Tbench utility without the markers. 

TBENCH - AVERAGE 

Load 
Configuration 

% CPU Cycles AVERAGE 
%IMPACT Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.67 0.53 0.57 0.59 

UST On 0.67 0.51 0.58 0.59 

Table 7.18: Impact of UST on Tbench (Average) 

From Table 7.18 it can be seen that both markers and UST has an impact of 0.59% on the Tbench 

application. 

 

7.2.8 Efficiency of LTTng Userspace Tracer  

The efficiency of LTTng userspace tracer is determined by calculating the average percentage impact on 

CPU cycles needed for the execution of the load generators load and tbench. The average is calculated 

from the already averaged data for load and tbench in Table 7.14 and Table 7.18 respectively. The final 

averaged results are displayed in Table 7.19. 
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AVERAGE 

Load 
Configuration 

% CPU Cycles AVERAGE 
%IMPACT Low Load Medium Load High Load 

Original 0.00 0.00 0.00 0.00 

Markers On 0.57 0.49 0.45 0.50 

UST On 0.51 0.46 0.48 0.48 

Table 7.19: Impact of UST on userspace applications (Average) 

Graph 7.7 presents the impact of LTTng userspace tracer on userspace applications in low, medium and 

high load configurations. 

 

Graph 7.7: Impact of UST on userspace applications for different load configurations 

From Graph 7.7 we can observe that there is an impact of both compiled instrumentation as well as the 

userspace tracer on the traced application, but the impact is as low as between 0.45% and 0.51% 

depending on the load configurations. Graph 7.8 shows the average impact of UST on userspace 

applications. 
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Graph 7.8: Average Impact of UST on userspace applications 

From Graph 7.8 we can identify that the LTTng userspace tracer and the compiled markers both have an 

effect of around 0.50% on the performance of the userspace application. 

 Table 7.20 provides the average impact of UST on userspace applications based on the number 

of markers for low, medium and high load configurations. 

AVERAGE 

Markers 
% CPU Cycles AVERAGE 

%IMPACT Low Load Medium Load High Load 

1 0.46 0.38 0.40 0.41 

5 0.54 0.50 0.44 0.49 

10 0.54 0.52 0.60 0.55 

Table 7.20: Impact of UST based on number of markers 

Graph 7.9 represents the impact of the number of markers compiled into the userspace application for 

low, medium and high load configurations. 

0

0.1

0.2

0.3

0.4

0.5

Original Markers On UST On

0.00
0.50 0.48

AVERAGE %IMPACT

AVERAGE %IMPACT



Page | 78  
 

 

Graph 7.9: Impact of UST based on number of markers for different load configurations 

From Graph 7.9 we can observe that the impact of UST on userspace applications marginally increase 

with the increase in the number of instrumentations compiled in, though the pattern of increase for all 

load configurations are not similar.  

Graph 7.10 provides the average impact of UST based on the number of markers. 

 

Graph 7.10: Average Impact of UST based on number of markers 
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From Graph 7.10 we can observe that the percentage impact of UST on the userspace application 

increases with the increase of number of markers. 

 

7.2.9 Footprint of LTTng Userspace Tracer Daemon (USTD)  

Table 7.21 and Table 7.22 records the footprint of LTTng Userspace Tracer Daemon (USTD) in terms of 

percentage of CPU cycles utilized by USTD to operate through the trace sessions for load utility and 

tbench utility respectively for 1, 5 and 10 number of instrumentations in userspace application.  

USTD - LOAD 

Markers 
% CPU Cycles 

AVERAGE 
 Low Load Medium Load High Load 

1 0.0017 0.0007 0.0005 0.0010 

5 0.0018 0.0008 0.0003 0.0010 

10 0.0017 0.0007 0.0005 0.0010 

Table 7.21: Footprint of USTD (Load) 

USTD - TBENCH 

Markers 
% CPU Cycles 

AVERAGE 
 Low Load Medium Load High Load 

1 0.0003 0.0002 0.0002 0.0002 

5 0.0003 0.0002 0.0002 0.0002 

10 0.0003 0.0003 0.0002 0.0003 

Table 7.22: Footprint of USTD (Tbench) 

From the data in Table 7.21 and Table 7.22 we can identify that USTD has very less footprint within the 

ǎȅǎǘŜƳ ŀƴŘ ŘƻŜǎ ƴƻǘ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ōȅ ŀƴȅ ƳŜŀƴǎΦ ¢ŀōƭŜ 7.23 provides the average 

results for the footprint of USTD in terms of percentage of CPU cycles needed for execution of USTD. 

USTD ς AVERAGE 

Markers 
% CPU Cycles 

AVERAGE 
 Low Load Medium Load High Load 

1 0.0010 0.0005 0.0004 0.0006 

5 0.0011 0.0005 0.0003 0.0006 

10 0.0010 0.0005 0.0004 0.0006 

Table 7.23: Footprint of USTD (Average) 

From Table 7.23 we can see that USTD has almost negligible footprint on the system for different load 

configurations or different number of markers. But it is noticeable that the footprint of USTD is not as 

good as compared to the footprint of LTTD. USTD has got a footprint a little higher than LTTD but still is 

ŀƭƳƻǎǘ ƴŜƎƭƛƎƛōƭŜ ǘƻ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΦ 
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Graph 7.11 represents the impact of load on the footprint of USTD. 

 

Graph 7.11: Impact of load on USTD 

From Graph 7.11 we can observe that the footprint of USTD decreases as the load increases in the 

system. Therefore, the performance of USTD gets better with increasing amount of load. 

 Graph 7.12 presents the impact of the number of markers on USTD. 

 

Graph 7.12: Impact of the number of markers on USTD 
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7.2.10 Call Graph Analysis of LTTng Userspace Tracer  

In our experiment we have generated call graphs for LTTng userspace tracer as well those help us to 

know in which libraries and functions are explored by the LTTng userspace tracer in course of its 

execution. We have identified the libraries and the respective functions where the LTTng userspace 

tracer spends time. 

 Table 7.24 provides the list of libraries and functions called during the execution of LTTng 

userspace tracer with the load utility and the average percentage of CPU time spent within the 

functions. 

Library Function(s) Average 

ld-2.10.1.so /lib/ld -2.10.1.so 23.51 

libc-2.10.1.so /lib/libc-2.10.1.so 59.50 

ustd 

__init 0.17 

start_thread 0.38 

start_ustd 0.20 

consumer_thread 0.51 

consumer_loop 0.55 

ustcomm_init_connection 0.38 

ustcomm_connect_app 0.38 

ustcomm_connect_path 0.33 

ustcomm_send_requrst 0.19 

ustcomm_recv_message 0.56 

ustcomm_close_app 0.16 

get_subbuffer 0.21 

put_subbuffer 0.34 

unwrite_last_subbuffer 0.20 

connect_buffer 0.41 

__i686.get_pc_thunk.bx 0.51 

finish_consuming_dead_subbuffer 0.38 

__do_global_dtors_aux 0.44 

send_message_fd 0.66 

recv_message_fd 1.21 

libpthread-
2.10.1.so 

__pthread_enable_asynccancel 1.65 

__pthread_disable_asynccancel 1.50 

__init 0.20 

connect 0.21 

send 0.17 

recv 0.42 

write 0.16 

pthread_create@@GLIBC_2.1 0.86 
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__deallocate_stack 0.34 

__free_stacks 0.17 

pthread_mutex_lock 0.37 

pthread_mutex_unlock_usercnt 0.17 

__pthread_unregister_cancel 0.16 

__pthread_initialize_minimal 0.16 

__pthread_cleanup_push_defer 0.51 

[heap] [heap] 1.44 

Table 7.24: Libraries and functions for LTTng Userspace Tracer (Load) 

Graph 7.13 displays the average percentage of CPU time spent by LTTng on each function that in turn 

belongs to a library, with load utility. 

 

Graph 7.13: Libraries and functions for LTTng Userspace Tracer (Load) 

From Graph 7.13 we can observe that LTTng userspace tracer spends a bulk of time in libc and ld 

standard C libraries. It spends only 16.99% of the time in other functions and libraries which includes 
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Table 7.25 provides the list of libraries and functions called during the execution of LTTng 
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libc-2.10.1.so /lib/libc-2.10.1.so 64.99 

ustd 

__init 0.00 

start_thread 0.00 

start_ustd 1.39 

parse_args 0.69 

consumer_thread 0.00 

consumer_loop 0.00 

ustcomm_init_connection 0.00 

ustcomm_connect_app 0.69 

ustcomm_connect_path 0.00 

ustcomm_send_requrst 0.85 

ustcomm_recv_message 0.00 

ustcomm_close_app 0.00 

get_subbuffer 0.00 

put_subbuffer 0.00 

unwrite_last_subbuffer 0.00 

connect_buffer 0.93 

__i686.get_pc_thunk.bx 0.69 

finish_consuming_dead_subbuffer 0.00 

__do_global_dtors_aux 0.00 

send_message_fd 0.85 

recv_message_fd 0.69 

liburcu-bp.so.0.0.0 rcu_bp_register 1.39 

libpthread-2.10.1.so 

__pthread_enable_asynccancel 3.01 

__pthread_disable_asynccancel 1.60 

__init 0.00 

connect 0.00 

send 0.00 

recv 0.00 

write 0.00 

pthread_create@@GLIBC_2.1 0.00 

__deallocate_stack 0.00 

__free_stacks 0.00 

pthread_mutex_lock 0.00 

pthread_mutex_unlock_usercnt 0.00 

__pthread_unregister_cancel 0.00 

__pthread_initialize_minimal 0.00 

__pthread_cleanup_push_defer 0.00 

[heap] [heap] 0.74 

Table 7.25: Libraries and functions for LTTng Userspace Tracer (Tbench) 
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Graph 7.14 displays the average percentage of CPU time spent by LTTng on each function that in turn 

belongs to a library, with tbench utility. 

 

Graph 7.14: Libraries and functions for LTTng Userspace Tracer (Tbench) 

From Graph 7.14 we can observe that LTTng userspace tracer spends a lot of its time in libc and ld 

standard C libraries. It spends only 13.54% of the time in other functions and libraries which includes 

liblttd. 

We can observe that unlike LTTng kernel tracer, LTTng userspace tracer spends greater amount 

of its execution time in the C libraries, still it spends a lot of time (approximately 13% to 17%) in 

executing its own functions. Therefore, we can say that the LTTng userspace tracer is not as efficient as 

the LTTng kernel tracer and there is a scope of improving its performance.  

 

7.2.11 Combined Impact of LTTng Kernel and Userspace Tracer  

We have already evaluated the performance of LTTng kernel tracer and the userspace tracer separately. 

We also wanted to know if there is any additional impact on the system if LTTng kernel tracer and 

userspace tracer are executed together. LTTng kernel tracer was executed with instrumented load utility 

together with the LTTng userspace tracer. The impact can be identified against the percentage of CPU 

cycles required for the kernel operations for a vanilla kernel and a load program compiled without the 

markers. Table 7.26, Table 7.27 and Table 7.28 shows the results for 1, 5 and 10 instrumentations 

respectively. 
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KERNEL OPERATIONS - LOAD - 1 UST Marker 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.67 0.95 0.64 0.75 

Flight Recorder + UST 0.84 0.88 0.61 0.78 

Table 7.26: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in load 

KERNEL OPERATIONS - LOAD - 5 UST Markers 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.61 0.88 0.60 0.70 

Flight Recorder + UST 0.53 0.85 0.57 0.65 

Table 7.27: Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in load 

KERNEL OPERATIONS - LOAD - 10 UST Markers 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.68 0.96 0.70 0.78 

Flight Recorder + UST 0.67 1.01 0.52 0.73 

Table 7.28: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in load 

Table 7.29 provides the average data for the combined impact of LTTng kernel tracer and UST on varying 

markers on load utility. 

KERNEL OPERATIONS - LOAD - AVERAGE 

Load Configuration 
% CPU Cycles 

AVERAGE 
%IMPACT 

Low 
Load 

Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.65 0.93 0.65 0.74 

Flight Recorder + UST 0.68 0.91 0.57 0.72 

Table 7.29: Average Impact of LTTng kernel tracer and UST on kernel operations (Load) 

Graph 7.15 shows the average combined impact of LTTng kernel tracer and userspace tracer on load 

utility for varying load configurations. 
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Graph 7.15: Impact of LTTng kernel tracer and UST on kernel operations (Load) 

From Graph 7.15 we can observe that the impact is quite similar to LTTng kernel tracer with load utility 

where the average impact ranges between 0.5% and 1%. 

LTTng kernel tracer was executed with instrumented tbench utility as well together with the 

LTTng userspace tracer. The impact can be identified against the percentage of CPU cycles required for 

the kernel operations for a vanilla kernel and a tbench utility compiled without the markers. Table 7.30, 

Table 7.31 and Table 7.32 shows the results for 1, 5 and 10 instrumentations respectively. 

KERNEL OPERATIONS - TBENCH - 1 UST Marker 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.93 1.80 1.19 1.31 

Flight Recorder + UST 1.10 2.31 1.86 1.76 

Table 7.30: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in tbench 

KERNEL OPERATIONS - TBENCH - 5 UST Markers 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 1.24 2.36 1.27 1.62 

Flight Recorder + UST 1.65 2.81 1.82 2.09 

Table 7.31: Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in tbench 
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KERNEL OPERATIONS - TBENCH - 10 UST Markers 

Load Configuration 
% CPU Cycles 

AVERAGE 
Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 1.12 2.27 1.07 1.49 

Flight Recorder + UST 1.59 2.95 1.86 2.13 

Table 7.32: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in tbench 

Table 7.33 provides the average data for the combined impact of LTTng kernel tracer and UST on varying 

markers on tbench utility. 

KERNEL OPERATIONS - TBENCH - AVERAGE 

Load Configuration 
% CPU Cycles AVERAGE 

%IMPACT Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 1.10 2.14 1.18 1.47 

Flight Recorder + UST 1.45 2.69 1.85 1.99 

Table 7.33: Average Impact of LTTng kernel tracer and UST on kernel operations (Tbench) 

Graph 7.16 shows the average combined impact of LTTng kernel tracer and userspace tracer on load 

utility for varying load configurations. 

 

Graph 7.16: Impact of LTTng kernel tracer and UST on kernel operations (Tbench) 

From Graph 7.16 we can observe that the impact is quite similar to LTTng kernel tracer with tbench 

utility where the average impact ranges around 1.5% to 2%. 
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 Table 7.34 shows the average combined impact of LTTng kernel tracer and userspace tracer on 

varying load configurations. 

KERNEL OPERATIONS - AVERAGE 

Load Configuration 
% CPU Cycles AVERAGE 

%IMPACT  Low Load Medium Load High Load 

Vanilla 0.00 0.00 0.00 0.00 

Non Overwrite + UST 0.88 1.54 0.91 1.11 

Flight Recorder + UST 1.06 1.80 1.21 1.36 

Table 7.34: Average Combined Impact of LTTng kernel tracer and UST on kernel operations 

Graph 7.17 displays the average impact of LTTng kernel tracer and UST on kernel operations based on 

the percentage of CPU cycles for kernel operations against the kernel operation of a vanilla kernel with 

the load generator running without the markers compiled in. 

 

Graph 7.17: Average Combined Impact of LTTng kernel tracer and UST on kernel operations 

From Graph 7.17 we can observe that the impact is quite similar to LTTng kernel tracer and there is no 

additional impact on the percentage of CPU cycles needs to perform kernel operations. We can also 

observe that the LTTng Kernel tracer Non Overwrite mode has performed a bit better then the Flight 

Recorder mode while executed with Userspace Tracer in terms of CPU cycles needed for kernel 

operations. 
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7.3 Data Flow Analysis  

 

7.3.1 L2 Caches Misses during execution of LTT Control Module with 

respect to various load configurations generated by load 

program and tbench  

We sampled the whole system with OProfile Hardware event LII_MISSES to evaluate the cache misses of 

LTT Control Application (lttctl) under various load parameters generated by the load program and 

Tbench Application separately. The results are presented in Table 7.35 and Table 7.36 shows the L2 

Cache Misses for LTT Control Module during Non Overwrite and Flight Recorder Tracing Modes for load 

program and tbench separately.  

 

 

 

Table 7.35: L2 Cache Miss (lttctl) for load program 

Tbench Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low 0.000029 0.000056 

Medium 0.000023 0.000022 

High 0.000014 0.000022 

Table 7.36: L2 Cache Miss (lttctl) for tbench application 

From Table 7.35 and Table 7.36 we can see that the Cache Miss of LTT Control (lttctl) is very less and in 

order of 10-4 percentage of samples collected by OProfile. For both the application and the different kind 

of load generated the cache miss trend seems to vary. Table 7.37 shows average L2 cache miss for lttctl. 

Load/Tbench Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low 0.001681 0.0014945 

Medium 0.0015615 0.000011 

High 0.007257 0.0093275 

Table 7.37: Average L2 Cache Miss (lttctl) 

We now draw Graph 7.18, an average graph to conclude the overall Cache Miss rate for LTT Control 

Application with the effect of both load and tbench taken together. 

Load Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low 0.003333 0.002933 

Medium 0.003100 0.000000 

High 0.014500 0.018633 
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Graph 7.18: Overall L2 Cache Miss Rate for LTT Control 

From Graph 7.18 we can see that Non Overwrite Tracing and Flight Recorder tracing have similar L2 

Cache misses for Low load configuration but maintains a steady difference in medium and high load for 

lttctl. Also the Cache misses dips for medium load and shoots up for high load configuration for both 

tracing modes.  

 

7.3.2 L2 Cache Misses of LTT Daemon with respect to various load 

configurations generated by load program and tbench  

When lttd (LTT Daemon) was sampled with OProfile for the same hardware counters as section 7.1.1 for 

L2 Cache Misses against different load configurations for load and tbench program we got the results as 

shown in Table 7.38 and Table 7.39. 

Load  Non Overwrite (lttd) Flight Recorder (lttd) 

Low  0.003500 0.002933 

Medium 0.000000 0.000000 

High 0.000000 0.000000 

Table 7.38: Cache Miss (lttd) for load program 

Tbench Non Overwrite (lttd) Flight Recorder (lttd) 

Low  0.000029 0.000085 

Medium 0.000011 0.000055 

High 0.000007 0.000070 

Table 7.39: Cache Miss (lttd) for tbench program 
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Overall cache misses are very low for LTT Daemon as seen previously for LTT Control. For lttd the cache 

Ƴƛǎǎ ƛǎ ƻŦǘŜƴ ƴƻǘ ǘƘŜǊŜ ƳŜŀƴǎ ƛǘΩǎ ƘƛƎƘƭȅ ƳŜƳƻǊȅ ŜŦŦƛŎƛŜƴǘΦ ²Ŝ ǘŀƪŜ ŀƴ ŀǾŜǊŀƎŜ ƻŦ ǘƘŜ cache miss result 

for lttd in Table 7.40 and represent in the Graph 7.19. 

Load/Tbench Non Overwrite (lttd) Flight Recorder (lttd) 

Low 0.0017645 0.001509 

Medium 0.0000055 0.0000275 

High 0.0000035 0.000035 

Table 7.40: Cache Miss (lttd) 

 

Graph 7.19: Overall L2 Cache Miss Rate for LTT Daemon 

Graph 7.19 shows that Cache Miss is highest for LTT Daemon in case the load configuration is low and 

reduces largely to be almost NULL when the load increases in system, process or network by load 

program and tbench respectively. The difference in Non Overwrite mode and Flight Recorder mode is 

almost negligible in any of load configurations. 

 

7.3.3 Branch Mispredictions  exhibited by LTT Control  module with 

respect to various load configurations generated by load 

program and tbench  

The whole system was sampled with OProfile Hardware event INST_RETIRED_ANY_P to evaluate the 

branch mispredictions of LTT Control Application (lttctl) under various load parameters generated by the 

load program and Tbench Application separately and in different tracing modes. The results are 

presented in Table 7.41 and Table 7.42. 
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Load  Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low  0.000049 0.000052 

Medium 0.000035 0.000033 

High 0.000027 0.000011 

Table 7.41: Branch Mispredictions (lttctl) for load program 

Tbench Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low  0.000140 0.000123 

Medium 0.000043 0.000021 

High 0.000024 0.000033 

Table 7.42: Branch Mispredictions (lttctl) for tbench 

Branch Mispredictions are also much low at 10-4 samples of OProfile. For Non Overwrite tracing mode 

for both the load and tbench program the Branch Misprediction rate of lttctl  decreases upon the 

increase of load on the system. We calculate the average effect for both the programs in Table 7.43 and 

form Graph 7.20 from the result to determine the average Branch Mispredictions rate for LTT Control. 

Load/Tbench Non Overwrite (lttctl) Flight Recorder (lttctl) 

Low 0.0000945 0.0000875 

Medium 0.000039 0.000027 

High 0.0000255 0.000022 

Table 7.43: Branch Mispredictions (lttctl) 

 

Graph 7.20: Overall Branch Misprediction for LTT Control 

In Graph 7.20 the trend shows that the Branch Mispredictions differ much less between Non Overwrite 

and Flight Recorder tracing modes on any different load configurations. We can also see that when load 

increases, Branch Mispredictions decrease.  
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7.3.4 Branch Mispredictions  of LTT Daemon with respect to various 

load configurations generated by load program and tbench  

When LTT Daemon was sampled for Branch Mispredictions under various load configurations generated 

by load program and tbench, we got results which are tabulated in the Table 7.44 and Table 7.45. 

Load Non Overwrite (lttd) Flight Recorder (lttd) 

Low  0.000040 0.000237 

Medium 0.000031 0.000113 

High 0.000029 0.000115 

Table 7.44: Branch Mispredictions (lttd) for load program 

Tbench Non Overwrite (lttd) Flight Recorder (lttd) 

Low  0.000080 0.000330 

Medium 0.000043 0.000210 

High 0.000030 0.000101 

Table 7.45: Branch Mispredictions (lttd) for tbench 

The LTT Daemon was also sampled with same Hardware counter by OProfile as the earlier 7.3.3 Section. 

The consolidated average result for the Branch Mispredictions for LTT Daemon is represented in Table 

7.46 and Graph 7.21. 

Load/Tbench Non Overwrite (lttd) Flight Recorder (lttd) 

Low 0.00006 0.0002835 

Medium 0.000037 0.0001615 

High 0.0000295 0.000108 

Table 7.46: Branch Mispredictions (lttd) 

 

Graph 7.21: Overall Branch Misprediction for LTT Daemon 
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From Graph 7.21, we can see the branch predictions of LTT Daemon also scales down similarly like the 

LTT Control application with increase in system, process or network load from load program and tbench. 

But unlike the LTT Control module, the LTT Daemon exhibits a difference in Branch Mispredictions 

between Non Overwrite and Flight Recorder tracing modes. Branch Mispredictions is more in Flight 

Recorder mode for LTT Daemon. 

 

7.3.5 Analysis of Memory Leak  of LTT Control and LTT Daemon 

program during execution with respect to various load 

configurations gener ated by load program and tbench  

When we used Valgrind memory checking tool Memcheck to trigger the kernel tracing (firing up lttctl) it 

was seen that for any types of load configuration the memory leaks for LTT Control is very minimal and 

constant. LTT Daemon showed a zero memory loss during its execution. The Summarized results are in 

Table 7.47. 

Tracing Modes Lost Blocks Lost Memory Blocks(Not Free) Memory not Freed 

Non Overwrite 17 152 bytes 3 988 

Flight Recorder 34 304 bytes 3 988 

Table 7.47: Memory Leak for LTT Control (Kernel Tracer) 

From Table 7.47 we see that Flight Recorder mode registered a memory loss of 304 bytes double to that 

of Non Overwrite tracing mode under any load circumstances. Also the there is a equal amount of 

memory, 988 bytes which are not released or rather freed after completion of execution in both the 

tracing modes. The lines of code in the LTT Control application responsible for the memory losses are 

also captured and are given in details in Appendix A.  

 

7.3.6 L2 Cache Misses for UST Daemon during tracing of load and 

tbench program (10 markers) under various load 

configurations  

To find out L2 Cache misses for UST, OProfile was run with LII_MISSES hardware event. The UST Tracing 

was done on the load program and tbench program one after the other instrumented with 10 markers. 

The result is displayed in Table 7.48. 
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Load Load 10 Markers Tbench 10 Markers 

Low 0.142800 0.000293 

Medium 0.129433 0.000116 

High 0.149700 0.000096 

Table 7.48: L2 Cache Miss for UST Daemon      

Graph 7.22 displays the L2 cache miss of UST Daemon with respect to load and tbench. 

        

Graph 7.22: L2 Cache Miss for UST Daemon 

From Table 7.48 and the Graph 7.22 we can see for load program the L2 Cache miss dips a bit for 

Medium load and shoots up for high load.  For Tbench program the UST Daemon Cache miss shows it is 

very minimal and decreases with increase in load.  

We tried to compare the performances with respect to cache misses for both LTT Daemon (lttd) 

and UST Daemon (ustd) from the experiments done in Table 7.49 and we came up with Graph 7.23. 

Load ustd lttd 

Low 0.07154650 0.00163675 

Medium 0.06477450 0.00001650 

High 0.07489800 0.00001930 

Table 7.49: L2 Cache Miss (ustd & lttd) 
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                                                      Graph 7.23: L2 Cache Miss (ustd vs. lttd) 

From Graph 7.23 we can see that though both ustd and lttd  have very less percentage of cache misses 

but UST daemon has a big scope to improve in L2 Cache hits with respect to LTT Daemon. For different 

load configuration UST Daemon has lot more cache misses when compared to LTT Kernel Tracer 

daemon. 

 

7.3.7 Branch Misprediction for UST Daemon during tracing of load 

and tbench program (10 mar kers) under various load 

configurations  

To find out Branch Mispredictions, OProfile was run with INST_RETIRED_ANY_P hardware event. UST 

was tracing under varying load configurations the tbench and load program which was each 

instrumented with 10 markers and recompiled in the system. Table 7.50 shows the result data. 

Load Load 10 Markers Tbench 10 Markers 

Low  0.000300 0.000230 

Medium 0.000111 0.000117 

High 0.000061 0.000068 

Table 7.50: Branch Mispredictions for UST Daemon 

Graph 7.24 represents the branch mispredictions of UST Daemon with respect to load and tbench. 
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                                                Graph 7.24: Branch Mispredictions for UST Daemon 

From the Graph 7.24 and the Table 7.50 we can say that Branch Mispredictions for UST DaeƳƻƴ ŘƻŜǎƴΩǘ 

depend on the application it is tracing as for both load and tbench it shows similar trend of higher 

branch mispredictions during low load and lower branch mispredictions during higher load. The branch 

mispredictions gradually decrease with increase in load. 

We also compared the average branch misprediction rate of both lttd  and ustd which is 

represented by the Table 7.51 and Graph 7.25. 

Load ustd lttd 

Low  0.000265 0.000172 

Medium 0.000114 0.000099 

High 0.000065 0.000069 

Table 7.51: Branch Mispredictions (ustd & lttd) 
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Graph 7.25: Branch Mispredictions (ustd vs. lttd) 

The Branch Mispredictions graph plotted for ustd and lttd  shows that LTT Kernel Tracer Daemon 

performs better than UST daemon is low load but in High load there is no performance difference 

between the two.  

 

7.3.8 Analysis of Memory Leak  of UST Tracer during execution with 

respect to various load configurations gener ated by load 

program and tbench  

Load and tbench which are instrumented with 10 markers and UST tracing was done on it one after the 

other. During the UST tracing on each load and tbench, it was run with the help of Memcheck utility of 

Valgrind which helped to get the report of any memory leaks during execution. In Table 7.52 is the result 

from the experiment. 

Application Blocks (Lost) Memory Lost Blocks (Not Free) Memory not Freed 

load 1 654 bytes 1267 33599 bytes 

tbench 1 654 bytes 1270 33658 bytes 

                                            Table 7.52: Memory Leak for UST Tracer (load & tbench) 

From the Table 7.51 we Ŏŀƴ ŦƛƴŘ ƻǳǘ ǘƘŀǘ ǿƛǘƘ ƛƴŎǊŜŀǎŜ ƻŦ ƭƻŀŘ ƛƴ ǎȅǎǘŜƳ ŘƻŜǎƴΩǘ ŀŦŦŜŎǘ ǘƘŜ ƳŜƳƻǊȅ ƭŜŀƪ 

of the User Space Tracer. During tracing of both load program and tbench Userspace Tracer lost 1 Block 

of data (654 bytes), and that was during saving the trace data to the disk. But the problem with 

¦ǎŜǊǎǇŀŎŜ ¢ǊŀŎŜǊ ǎŜŜƳŜŘ ǘƻ ōŜ ǘƘŜ ƴǳƳōŜǊ ƻŦ ŀƭƭƻŎŀǘŜŘ ƳŜƳƻǊȅ ǎǇŀŎŜǎ ǿƘƛŎƘ ƛǘ ŘƻŜǎƴΩǘ ŦǊŜŜ ǿƘŜƴ ƛǘ 

completes its execution. It has approximately 33600 bytes in 1270 blocks of blocked data after 

completion of execution. The memory blƻŎƪǎ ƴƻǘ ŦǊŜŜŘ ŘƻŜǎƴΩǘ ŘŜǇŜƴŘ ǘƻƻ ƳǳŎƘ ƻƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƛǘ 

traces as we can see from Table 7.52 where the difference is very less among tbench and load program. 
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8. Discussion 

 

 

 

 

This chapter mainly focuses upon the constraints of experiments executed and the issues faced during 

the research period. The issues discussed concentrates upon the unavailability of tools and time 

limitation of the thesis standing as the main barriers. Last part of the Discussion aims to evaluate the 

benefits of this research to the community and the industry. 

 

List of technical terms 

LTTng Linux Trace Toolkit Next Generation 

AMP Asymmetric Multiprocessing 

SMP Symmetric Multiprocessing 

CPU Central Processing Unit 

LTTD Linux Trace Toolkit Daemon 

USTD Userspace Tracer Daemon 
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8.1 Limitations of the performed experiments  

 

Initially all the experiments were scheduled to be carried out in a P4080 multiprocessor board with 8 

cores having an AMP setup. But due to unavailability of hardware setup, all the experiments were 

performed on an Intel Quad Core multiprocessor having a SMP setup. Due to SMP setup and Quad Core 

ŀƭƭ ǘƘŜ ŀǊŜƴŀǎ ŀƴŘ ǇƻǎǎƛōƛƭƛǘƛŜǎ ƻŦ ƳǳƭǘƛŎƻǊŜ ŜƴǾƛǊƻƴƳŜƴǘ ŎƻǳƭŘƴΩǘ ōŜ ŜȄǇƭƻǊŜŘΦ Lƴ {at ǘƘŜ hǇŜǊŀǘƛƴg 

System controls the cores, rather than in AMP where every core has a separate Operating System. 

Due to the time constraint all the experiments were run only 3 times, but to get appropriate 

expected result we needed 20 runs approximately. The consistency of the results could only have been 

judged by such extensive experiments as the percentage of CPU samples varied within a range of 10-4 to 

10-6. 

We used the profiling and sampling tool called OProfile as we found it quite efficient than other 

tools for the particular set of information we were looking for. But the main drawback of this tool is it 

Ŏŀƴƴƻǘ ŜȄŜŎǳǘŜ ǇǊƻǇŜǊƭȅ ƛƴ ŀ ǾƛǊǘǳŀƭ ǎȅǎǘŜƳ ƭƛƪŜ ±ƛǊǘǳǘŜŎƘ {ƛƳƛŎǎ ƻǊ ±ƛǊǘǳŀƭ ōƻȄ ŀǎ ƛǘ ŘƻŜǎƴΩǘ ƎŜǘ ŀŎŎŜǎǎ ǘƻ 

respective hardware events. When we were using OProfile we faced an issue during experimentation in 

which there was significant amount of buffer overflows due to high rate of sampling and longer run 

durations. We minimized the sampling frequency and thus the overflow got down below 1%.  

During the execution of the experiments when OProfile continuously was collecting samples, 

after certain point of time the Opreport failed to gather data from the system to generate a sample 

report. This was due to memory stack overflow and memory flush errors, by which the sysǘŜƳ ŎƻǳƭŘƴΩǘ 

dump the earlier samples collected. For every case like this the system was rebooted and the test cases 

were rerun and it completed successfully. 

For gauging the efficiency of LTTng and measuring its footprint we only could analyze the 

binaries which were running in the system, i.e. the LTTD (LTTng daemon for kernel tracing) and USTD 

(User Space Tracing daemon). The major portions of code and additions of LTTng are inside the kernel as 

patches. For Data Flow analysis and code coverage especially the patched kernel should have been 

tested extensively with respect to kernel analysis tools which we left out of the scope of the thesis 

because of time constraints. 

For testing the working of LTT agent with Eclipse LTTng tool we found many hiccups during 

successfully setting up the system for the test configurations. We reported the errors for many of them. 

Still there is a absence of proper manual for carrying out the setup and also due to lack of time we 

decided not carrying on further with the LTT agent and Eclipse LTTng tool experiments.  

We used benchmark tool such as tbench for generating load into the system. More benchmark tools 

could have been used to make the experiment real time with minimal amount of limitations. 
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8.2 Choice of Control and Data Flow Analysis Tools  

 

Control Flow tools such as OProfile, Gprof and sysprof came in our first set of tools marked to measure 

the control flow of the system. But from the above three OProfile was chosen best to serve our purpose. 

Problems with Gprof 

¶ It couldƴΩǘ ƘŀƴŘƭŜ ƳǳƭǘƛǘƘǊŜŀŘŜŘ ŀǇǇƭƛŎŀǘƛƻƴ ŀƴŘ ǘƘǳǎ ŀǇǇƭƛŎŀǘƛƻƴ ōƛƴŀǊƛŜǎ ǿƛǘƘ Ƴǳƭǘƛ ǘƘǊŜŀŘƛƴƎ 

were not profiled appropriately. 

¶ ¢ƘŜ ǇǊƻƎǊŀƳ ƴŜŜŘǎ ǘƻ ōŜ ŎƻƳǇƛƭŜŘ ǿƛǘƘ Ψ-ǇƎΩ ǇŀǊŀƳŜǘŜǊǎ ǘƘǳǎ ƛƴŎǊŜŀǎƛƴƎ ǘƘŜ ƻǾŜǊƘŜŀŘ ƻŦ 

statically linking it before execution. For this reason third part binaries are difficult to be 

sampled with Gprof [LYN10]. 

Problems with sysprof 

¶ [¢¢5 ŀƴŘ ¦{¢5 Ƙŀǎ ǎǳŎƘ ƭƻǿ ŦƻƻǘǇǊƛƴǘǎ ǘƘŀǘ ǎȅǎǘŜƳ ǿƛŘŜ ǇǊƻŦƛƭŜǊ ŎƻǳƭŘƴΩǘ ŎƻƭƭŜŎǘ ǘƘŜ ǎŀƳǇƭŜ 

needed for it. During the LTTng run when the system was profiled there was no samples for 

either LTTD or USTD. But we had to get results to proof the low footprint and thus this tool was 

also not used. 

For Data Flow analysis we had in mind many tools based on their usage and way of working. The main 

tools decided upon were Zoom, Valgrind, Acumem and OProfile. Acumem was a very efficient tool and 

exactly served our purpose for getting the pain points inside the LTTD and USTD application but due to 

having its evaluation license there was limitations in capturing of samples and thus we had to opt out 

from this tool. For our experiments we needed a tool which can attach itself with the running program 

and sample it so that during its run the issues in the code can be gathered, but no tool provided this 

except Acumem. 

Problems with Zoom system profiler 

¶ Again because of very low foot print Zoom cannot capture very low sampled events like LTTD 

and USTD. 

¶ Zoom cannot attach itself to running programs, though provides all sorts of valuable code 

refactoring guidelines for a hugely sample application. 

Problems with Valgrind 

¶ Though Valgrind cannot attach itself to running programs but it can follow a forked child 

program from a master program. Trying to check memory errors in LTTD code, Valgrind gave an 

unhandled syscall error as shown in Figure 8.1. 

 



Page | 102  
 

 

 

 

 

Figure 8.1: Valgrind Error 

¶ Valgrind eats up a lot of memory and the thus the programs running under it is typically slowed 

down from 20 to 30 times than the usual run [SN05]. 

Problems with Acumem 

¶ Acumem was the required and most focused tool for doing Data Flow Analysis, but the only 

problem with it was the unavailability of the License file. We were using the Evaluation License 

to test the tool and we found out that Acumem in its evaluation license cannot handle the no. of 

sample it gets from the running LTTD or USTD program. The error displayed during the test run 

is shown in Figure 8.2. 

    

 
Figure 8.2: Acumem Error 

 

With all the problems faced we decided to do Data Flow Analysis with Valgrind and OProfile. Valgrind 

was used to check the memory leaks occurring during running of LTT Control during non overwrite and 

ŦƭƛƎƘǘ ǊŜŎƻǊŘŜǊ ǘǊŀŎƛƴƎΦ ¢ƘƻǳƎƘ ƛǘ ŎƻǳƭŘƴΩǘ ŎŀǇǘǳǊŜ ƳŜƳƻǊȅ ƭŜŀƪǎ ƻŦ ǘƘŜ [¢¢ 5ŀŜƳƻƴ ǎǇŀǿƴŜŘ ōȅ ǘƘŜ [¢¢ 

Control binary but it gave out memory leak errors for the LTT Control binary during execution. Valgrind 

also could capture the memory leak errors for UST Daemon.  

OProfile was used with two events, one of LII_MISSES and another of INSTRUCTION_RETIRED_P 

to get the details of which part of the code has most no. of L2 Cache misses and branch misprediction. 

 

WARNING: unhandled syscall: 313  

-- 2089 --  You may be able to write your own handler.  

-- 2089 --  Read the file README_MISSING_SYSCALL_OR_IOCTL.  

-- 2089 --  Nevertheless we consider this a bug.  Please report  

-- 2089 --  it at http: //valgrind.org/support/bug_reports.html.  
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8.3 Benefits of the Research  

 

Ericsson has the need to deploy a well performing, low overhead tracing tool and thus the results from 

this above experiments will help Ericsson to think over LTTng as the needed tracing utility across its 

multicore systems. 

During our experimentations we did found few bugs in UST (Userspace Tracer). We reported 

them to the development team, and they were corrected immediately.  

Lƴ Ƴŀƴȅ ŀ ŎŀǎŜǎ ǿŜ ŎƻǳƭŘƴΩǘ ŀŘǾŀƴŎŜ ŘǳŜ ǘƻ ǾŀǊƛƻǳǎ constraints like unavailability of proper 

tools, licenses or resources. We documented the methodology to do the experiments for the future 

research community, so that in case all things are proper this thesis report will guide new researchers to 

further carry on our work with greater precision.  
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9. Conclusion 

 

 

 

 

The experiments performed in course our research works have produced a variety of results. By 

analyzing those results we can conclude the following points: 

 

LTTng Kernel Tracer  

The impact of LTTng on kernel operations in terms of percentage of CPU cycles against vanilla kernel is 

1.6%.  

There is almost no difference between the performances of LTTng kernel tracer in Non Overwrite mode 

and in Flight Recorder mode. 

LTTD has almost negligible footprint on both Non Overwrite mode and Flight Recorder mode. We have 

ŀƭǊŜŀŘȅ ǎŜŜƴ ǘƘŀǘ ōƻǘƘ ǘƘŜ ƳƻŘŜǎ ƘŀǾŜ ŀƭƳƻǎǘ ǎƛƳƛƭŀǊ ŀƳƻǳƴǘ ƻŦ ƛƳǇŀŎǘ ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΣ 

but still LTTD takes more CPU cycles in flight recorder mode than in Non Overwrite mode. The difference 

is almost negligible as it is in the order of 10-4 percent. 

Memory loss is of very negligible amount but it doubles itself in case of flight recorder mode with 

respect to Non Overwrite mode during kernel tracing. 

LTTng kernel tracer spends most of its time in libc and ld standard C libraries. It spends only 5.83% of the 

time in other functions and libraries which includes liblttd. Therefore, we can say that as LTTng kernel 

tracer spends so less time in executing its own functions it has so little impact in the systems 

performance. 

LTT Control and Trace Daemon have minimal Cache miss and Branch Misprediction rate in order of 10-4 

percent. 

Branch Mispredictions of LTTng Kernel Tracer decreases significantly with increase in load. Memory 

handling thus becomes more efficient with load increase. 

Branch Mispredictions in case of different tracing modes vary in case of LTT Control and LTT Daemon. 

For LTT Daemon branch misprediction rate is high in case of flight recorder mode. LTT Control exhibits 

no major change with change in tracing modes. 
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LTTng Userspace Tracer  

The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on the 

performance of the userspace application in terms of percentage of CPU cycles against the original copy 

of the applications without markers. 

The impact of UST on userspace applications marginally increase with the increase in the number of 

instrumentations compiled in, though the pattern of increase for all load configurations are not similar.  

USTD has almost negligible footprint on the system for different load configurations or different number 

of markers. But it is noticeable that the footprint of USTD is not as good as compared to the footprint of 

LTTD. USTD has got a footprint a little higher than LTTD but still is almost negligible to affect the 

ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΦ 

The footprint of USTD decreases as the load increases in the system. Therefore, the performance of 

USTD gets better with increasing amount of load. 

The footprint of UST is liner to the increasing number of markers. Therefore, the number of markers 

compiled in does not have any effect on the footprint of USTD. 

Unlike LTTng kernel tracer, even if LTTng userspace tracer spends greater amount of its execution time 

in the C libraries, still it spends a lot of time (approximately 13% to 17%) in executing its own functions. 

Therefore, we can say that the LTTng userspace tracer is not as efficient as the LTTng kernel tracer and 

there is a scope of improving its performance. 

Branch Mispredictions of LTTng Userspace Tracer decreases significantly with increase in load. Memory 

handling thus becomes more efficient with load increase. 

Memory loss though is of insignificant number but is more for UST tracing with respect to kernel tracing. 

UST also has problem of not freeing a chunk of memory after completion of execution. 

A memory leak for UST Daemon happens with a loss of small amount of data during saving trace data to 

disk. 

 

LTTng Kernel and Userspace Tracer Together  

The impact is quite similar to LTTng kernel tracer and there is no additional impact on the percentage of 

CPU cycles needs to perform kernel operations.  

The LTTng Kernel tracer Non Overwrite mode has performed a bit better then the Flight Recorder mode 

while executed with Userspace Tracer in terms of CPU cycles needed for kernel operations. 

LTT kernel Tracing Daemon is much more memory efficient than UST Daemon. 
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10. Future Work 

 

 

 

 

We were originally set out to do experiment in the P4080 Freescale board with AMP setup for each of 

the 8 cores. But due to the unavailability of the hardware and setup we ended up doing experiments in a 

Quad Core SMP Setup. Our experiments methodology can be used to do experiments in the real 

hardware for evaluating LTTng on a multicore platform. 

hƴŜ ǇŀǊǘ ƻŦ ǘƘŜ ǊŜǎŜŀǊŎƘ ǉǳŜǎǘƛƻƴ ŎƻǳƭŘƴΩǘ ōŜ ŀƴǎǿŜǊŜŘ ƛƴ ǘƘŜ ǘƘŜǎƛǎ ǊŜǇƻǊǘ ǿƘƛŎƘ ǇŜǊǘŀƛƴŜŘ ǘƻ 

the use of LTTng agent and Eclipse LTT Tools. This was mainly unaccomplished due to immature build of 

the LTTng agent and lack of documentation related to its use. There are still few bugs which are 

reported and yet to be corrected. This all needed much more time and thus was skipped. This work can 

be carried on after these issues are resolved as it will open new doors to monitor and stream LTTng 

traces in remote systems. 

In some part of the result analysis we found that both the Kernel and Userspace Tracer Daemon 

performs better with respect to memory handling incase the load increases on the system. While 

analyzing with Valgrind we also found that the number of time the data gets collected and buffered for 

high load is very high. So from above two sentences the reason of this may be that the prefetcher 

already gets to know the branch to be taken, due to large rate of trace data collection, but this requires 

ŦǳǊǘƘŜǊ ŀƴŀƭȅǎƛǎ ǿƘƛŎƘ ŎƻǳƭŘƴΩǘ ōŜ ŘƻƴŜ ōŜŎŀǳǎŜ ƻŦ ƭŀŎƪ ƻŦ ǘƛƳŜΦ 

.ŜŎŀǳǎŜ ƻŦ ƭŀŎƪ ƻŦ ǇǊƻǇŜǊ ǘƻƻƭǎ ǿŜ ŎƻǳƭŘƴΩǘ ŘƛƎ ŘŜŜǇ ƛƴǘƻ 5ŀǘŀ Cƭƻǿ !ƴŀƭȅǎƛǎ ǘƻ ŎƘŜŎƪ ŦƻǊ 

incorrect data structures or cyclic loop issues. Acumem is suitable tool, pǊƻǾƛŘŜŘ ƛǘΩǎ ǿƛǘƘ ŀ Ŧǳƭƭ ǾŜǊǎƛƻƴ 

license. We could only gauge the memory performances of the LTTng and UST tracer with the help of 

OProfile and Valgrind. Deeper data flow analysis can be taken up as a future work.  

We could only limit our studies to the binaries and the running programs of LTTng Kernel Tracer, 

but the main involvement of LTTng is inside the kernel where its code gets patched. Thus in future, if the 

Control and Data Flow analysis can be carried out for that part of LTTng then it can give more interesting 

and useful data to analyze.  

GDB (GNU Debugger) has tracepoints to collect trace data which can be analyzed later with help 

of GDB commands. An interesting future work will be involving this with UST tracepoints and LTTng to 

see the performance tradeoff. 
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Appendix A ɀ Experiment Results 

 

 

11.1 Control Flow Analysis  

 

11.1.1 Experiment 2  ɀ Measuring  the efficiency of LTTng Kernel 

Tracer  

   

CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS LOAD 
KERNEL 

OPS 
OPROFILE LTTD 

LOW T1 

R1 94.140000 4.200900 0.948300 0.000000 

R2 94.089200 4.371600 0.957800 0.000000 

R3 93.765200 4.610700 1.016600 0.000000 

LOW T4 

R1 93.896600 4.392600 1.001600 0.000000 

R2 93.730900 4.510600 1.000200 0.000000 

R3 94.081500 4.237300 0.989600 0.000000 

LOW T7 

R1 94.062200 4.422400 0.986200 0.000000 

R2 94.170800 4.358800 0.990400 0.000000 

R3 93.957100 4.515100 0.984700 0.000000 

LOW T10 

R1 93.851200 4.573400 0.999200 0.000000 

R2 93.965300 4.487700 0.985500 0.000000 

R3 94.131300 4.340200 0.985100 0.000000 

LOW T13 

R1 93.514300 4.759500 1.032000 0.000600 

R2 93.786500 4.662500 1.001200 0.000110 

R3 93.353200 4.776100 1.047700 0.000160 

LOW T16 

R1 93.962900 4.502200 1.007600 0.000740 

R2 93.741000 4.537100 0.997900 0.000330 

R3 93.142800 5.003500 1.054800 0.000430 

MED T2 

R1 96.239700 2.537700 0.865200 0.000000 

R2 96.038300 2.722500 0.870100 0.000000 

R3 96.302400 2.470500 0.865400 0.000000 

MED T5 

R1 95.446900 3.227900 0.901400 0.000000 

R2 95.540300 3.139100 0.905100 0.000000 

R3 95.505900 3.217900 0.909800 0.000000 
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CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS LOAD 
KERNEL 

OPS 
OPROFILE LTTD 

MED T8 

R1 95.499900 3.220500 0.904700 0.000000 

R2 95.604400 3.167000 0.907700 0.000000 

R3 95.598500 3.196500 0.893500 0.000000 

MED T11 

R1 95.450500 3.272100 0.917900 0.000000 

R2 95.319200 3.346600 0.937900 0.000000 

R3 95.363200 3.250400 0.936200 0.000000 

MED T14 

R1 95.159700 3.448900 0.933900 0.000051 

R2 95.313200 3.342500 0.923900 0.000041 

R3 95.343600 3.381900 0.926800 0.000051 

MED T17 

R1 95.137500 3.488300 0.959200 0.000093 

R2 95.234600 3.402000 0.954100 0.000200 

R3 95.098400 3.427700 0.971600 0.000093 

HIG T3 

R1 96.712300 2.197100 0.829800 0.000000 

R2 96.697300 2.191400 0.842200 0.000000 

R3 96.754000 2.129200 0.848200 0.000000 

HIG T6 

R1 96.270600 2.612600 0.845700 0.000000 

R2 96.395600 2.557300 0.766200 0.000000 

R3 96.328000 2.603800 0.780900 0.000000 

HIG T9 

R1 96.329100 2.603300 0.799500 0.000000 

R2 96.244500 2.627800 0.806300 0.000000 

R3 96.246400 2.647300 0.807100 0.000000 

HIG T12 

R1 96.157100 2.668800 0.838400 0.000000 

R2 96.368800 2.574900 0.785200 0.000000 

R3 96.399700 2.500500 0.788000 0.000000 

HIG T15 

R1 96.136000 2.630100 0.886900 0.000006 

R2 95.957200 2.822500 0.848200 0.000035 

R3 96.120600 2.645900 0.876300 0.000029 

HIG T18 

R1 96.112400 2.673400 0.844800 0.000081 

R2 96.230200 2.658000 0.811100 0.000081 

R3 96.032900 2.765600 0.865100 0.000093 

Table A1: Experiment 2 Results (Load) 

   

CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS TBENCH 
KERNEL 

OPS 
OPROFILE LTTD 

LOW T1 

R1 11.055100 81.445400 4.339800 0.000000 

R2 11.075800 81.483000 4.332000 0.000000 

R3 11.165000 81.622600 4.246500 0.000000 
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CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS TBENCH 
KERNEL 

OPS 
OPROFILE LTTD 

LOW T4 

R1 10.123600 81.328400 5.619600 0.000000 

R2 10.013900 81.276600 5.696000 0.000000 

R3 10.059500 81.329100 5.717700 0.000000 

LOW T7 

R1 10.015100 81.032100 5.776800 0.000000 

R2 10.108500 81.229200 5.720000 0.000000 

R3 10.143000 81.057800 5.651800 0.000000 

LOW T10 

R1 9.143100 80.982700 5.620800 0.000000 

R2 9.141700 81.013800 5.667500 0.000000 

R3 9.155100 80.989700 5.694300 0.000000 

LOW T13 

R1 7.206800 84.049300 4.989700 0.000160 

R2 7.304000 83.782900 5.090000 0.000160 

R3 7.041100 84.061200 4.992800 0.000130 

LOW T16 

R1 6.496400 83.607200 6.295200 0.000180 

R2 6.548900 84.070500 5.807100 0.000180 

R3 6.577500 83.594300 6.034400 0.000360 

MED T2 

R1 12.385100 81.652800 3.551600 0.000000 

R2 12.456400 81.572800 3.507400 0.000000 

R3 12.587100 81.568200 3.481300 0.000000 

MED T5 

R1 12.200700 82.388300 3.110700 0.000000 

R2 12.595800 81.838200 3.314900 0.000000 

R3 12.229800 82.035700 3.395100 0.000000 

MED T8 

R1 12.232800 81.949600 3.478500 0.000000 

R2 12.700000 81.016800 3.841800 0.000000 

R3 12.164100 81.977400 3.445500 0.000000 

MED T11 

R1 10.800500 82.394600 3.448100 0.000000 

R2 10.930800 82.122800 3.534800 0.000000 

R3 10.716500 81.826200 3.969100 0.000000 

MED T14 

R1 8.192400 84.960700 3.585200 0.000050 

R2 8.490900 84.943200 3.254200 0.000180 

R3 8.403700 84.916900 3.396500 0.000150 

MED T17 

R1 7.558300 85.487200 3.909500 0.000610 

R2 7.920700 84.261100 4.690800 0.000300 

R3 7.554500 85.329700 4.075200 0.000360 

HIG T3 

R1 13.017900 82.545100 2.366300 0.000000 

R2 13.013900 82.563900 2.397800 0.000000 

R3 13.032300 82.553000 2.387400 0.000000 
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CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS TBENCH 
KERNEL 

OPS 
OPROFILE LTTD 

HIG T6 

R1 13.290600 81.447300 3.102900 0.000000 

R2 13.128100 81.315600 3.415900 0.000000 

R3 13.220800 81.296700 3.304900 0.000000 

HIG T9 

R1 13.236900 81.380700 3.219900 0.000000 

R2 13.181200 81.178100 3.440700 0.000000 

R3 13.476500 81.341600 3.021500 0.000000 

HIG T12 

R1 12.028300 81.636700 3.084700 0.000000 

R2 11.957200 81.845300 2.867600 0.000000 

R3 11.885800 81.710900 3.021800 0.000000 

HIG T15 

R1 9.327400 84.284000 3.342000 0.000100 

R2 9.459000 84.448500 3.057700 0.000200 

R3 9.251300 84.606100 3.011500 0.000200 

HIG T18 

R1 8.665400 84.515200 3.767800 0.000210 

R2 8.732200 85.074000 3.233600 0.000380 

R3 8.758700 85.348000 2.851100 0.000280 

Table A2: Experiment 2 Results (Tbench) 

 

11.1.2 Experiment 3  ɀ Measuring the efficiency of LTTng Userspace 

Tracer  

   

CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS LOAD USTD 

LOW T1 

R1 93.809000 0.000000 

R2 93.832000 0.000000 

R3 93.362200 0.000000 

LOW T4 

R1 94.186900 0.000000 

R2 94.090300 0.000000 

R3 93.715200 0.000000 

LOW T7 

R1 94.191900 0.001800 

R2 93.170600 0.001700 

R3 93.713500 0.001500 

MED T2 

R1 95.068800 0.000000 

R2 95.962800 0.000000 

R3 95.913000 0.000000 
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CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS LOAD USTD 

MED T5 

R1 95.910900 0.000000 

R2 95.961100 0.000000 

R3 95.961900 0.000000 

MED T8 

R1 95.893200 0.000550 

R2 95.919400 0.001000 

R3 95.921800 0.000680 

HIG T3 

R1 96.785000 0.000000 

R2 96.689100 0.000000 

R3 95.919700 0.000000 

HIG T6 

R1 96.723500 0.000000 

R2 96.852800 0.000000 

R3 96.806100 0.000000 

HIG T9 

R1 96.692300 0.000570 

R2 96.929200 0.000410 

R3 96.768500 0.000590 

Table A3: Experiment 3 Results (Load with 1 Marker) 

   

CPU CYCLES 

LOAD 
TEST 
CASE 

RUNS LOAD USTD 

LOW T1 

R1 93.218300 0.000000 

R2 93.625300 0.000000 

R3 93.751800 0.000000 

LOW T4 

R1 93.914900 0.000000 

R2 94.200500 0.000000 

R3 94.200500 0.000000 

LOW T7 

R1 94.101800 0.002100 

R2 94.286500 0.001900 

R3 93.795000 0.001500 

MED T2 

R1 95.216900 0.000000 

R2 95.924900 0.000000 

R3 95.172700 0.000000 

MED T5 

R1 96.001100 0.000000 

R2 95.844800 0.000000 

R3 96.139300 0.000000 

MED T8 

R1 95.929400 0.000640 

R2 95.861300 0.001100 

R3 95.879300 0.000620 






























