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Abstract

With the advent of huge multicore processors, complex hardware, intermingled networks and huge disk
storage capabilities the programs that are used in the system and the code which is written to control
them are increasingly getting large and oftenuch complicated. There is increase in need of a
framework which tracks issues, debugs the program, helps to analyze the reason behind degradation of
system and program performance. Another big concern for deploying such a framework in complex
systems is to thedotprint of the framework upon the setup. LTTng project aims to provide such an
effective tracing and debugging toolset for Linux systems. Our work is to measure the effectiveness of
LTTng in dMulticore Environment and evaluate its affect on the systerd program performance. We
incorporate Control and Data Flow analysis of the system and the binaries of LTTng to reach for a
conclusion.
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Thesis Summary

The Goal of the thesis is to analyze the performance of LTTng kernel and Userspace tracer in a multicore
environment under various loadonfigurations.Control and Data Flow analysis of the system and the
application binariess carried outo evaluate theperformancemeasurementof the tracing tool. With

Control Flow analysis, we annotate source code of application binaries, measure the internal CPU cycles
usage, perform a call graph analysis to draw a picture about the necessary calls made by the program
and the tool during testing. Data Flow analysis helps us to find out the memory performances of the
tracing utility and its memory leaks under different load configurations.

The experiments we performed in course of finding the efficiency of LTTng kieacel and the
userspace tracer are:

Experiment 1¢ Determination of load configuration parameters for System Under Test (SUT)

Experiment 2¢ Measuring the efficiency of LTTng Kernel Tracer

Experiment 3¢ Measuring the efficiency of LTTng Userspace Tracer

Experiment 4¢ Measuring the impact on System as well as Traced Application when LTTng

Kernel Tracer and Userspace Tracer are executed together

1 Experiment 5¢ Running load program and tbench on LTTnhg Kernel with Non Overwrite and
Flight Recorder tracing ndes

1 Experiment 6¢ Running UST tracing on load and tbench program each instrumented with 10
markers under different load configurations

1 Experiment 7¢ Running the Kernel tracer with the help of Valgrind under various load
configurations generated by loadggram (system load) and tbench (process and network load)

1 Experiment 8¢ Running the load and tbench application instrumented with 10 markers under

UST (Userspace Tracing) with the help of Valgrind

=A =4 =4 =4

The findings from these experiments have enabled us twlcmle on the following points:

1 The impact of LTTrigernel traceron kernel operationsigainstvanillakernel is 1.6%

1 There is almost negligibldifference between the performances of LTTng kernel tracer in Non
Overwrite modeand in Flight Recorder mode

1 The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on
the performance of the userspace application against the original copy of the applications
without markers

1 The impact of UST on userspace applications marginaligase with the increase in the
number of instrumentations compiled in, though the pattern of increase for all load
configurations are not similar
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LTT Controhnd Trace Daemon have minimalcbe miss and Branch Misprediction rate in order

of 10* percent

Branch Mispredictions of both LTTng Kernel Tracer and UST decreases significantly with increase
in load. Memory handling thus becomes more efficient with load increase

LTT kernel Tracing Daemon is much more memory efficient than UST Daemon

Memory loss thogh is of insignificant number but is more for UST tracing. UST also has problem
of not freeing a chunk of memory after completion of execution

The impactof LTTng kernel tracer and UST togetisequite similar to LTTng kernel tracer and
there is no addittnal impact on the percentage of CPU cyclesdseto perform kernel
operations
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1. Introduction

Ericsson as a company is rapidly growing in telecom sector with deployment of advanced technologies
and increase in its user base. Slowly due to the pressure of the industry and hunger for more
performance, Ericsson has moved into multicore processors and PowerPC architectures. Multicore
architectures help to reduce footprint through virtualization, replacing many small processor boards and
packing it into one slot and thus giving better and higher perforreguer slot and much more value for
Y2ySeéad Ly | KdzZ3S vYdZ G6§AO2NBE aeaidisSyz AidQa 2F0Sy
RSANI RIFIiGA2yad alyeé LINRPOfSYa 200dz2NJ 2yfeé 2yO0OS | yR
developers to look foit in large multiprocessor and multicore systems. LTTng provides a highly efficient
set of tracing tools for Linux which is used for resolving performance issues and troubleshooting
problems. Ericsson is in need for suchatbd A OK Ol gevelgis td backiraz& and debug the
problems and errors in the system. The research question catered in our thesis is to test the efficiency of
LTTng as a kernel and userspace tracer in a multicore environment. As even nanoseconds of delay can
cause peformance degradations fotelecommunicationsystems, we need to gauge the footprint of
LTTng over a multicore system and in case the tool has pretty low overhead, Ericsson can deiploy it

the systemfor helpingits developers to effectively backtrack tiperformance loopholes.

R,
|
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1.1  Organization of Thesis

The thesis document is organized in several chapters:

The chapteProblem Formulatiomtroduces the problem statement of our thesis work. Then it
divides the problem into several sygvoblems and finally tries to offer a solution to the bigger problem
by solving the smaller problems.

The chapteBackgroundorovides the background knowledgn the technologies on which our
thesis work is based. It explains the basics of tracing and then provides an insight of embedded systems
and multicore systems. Then it provides detailed information about LTTng kernel and userspace tracer
architecture awnl functionality. Finally this chapter wraps up with the description of the lab environment
on which our experiments have been executed.

The chapterRelated Worlstarts off with an overview of ougoal Then it explains our search
methodology. Finally, itancentrates on citation of the previous work done that was useful to us to
proceed in the correct direction and helped us making the correct decisions throughout our thesis work.
It also describes similar work done in past.

The chapterExperiment Setuplescribes in detail the use of technologies in our experiments.
These technologies include the hardware and software configurations and tools, utilities and scripts
used to perform the experiments.

The chapteExperiment Methodologglescribes the experiment ethods in detail that are to be
performed on LTTng kernel tracer and userspace tracer.

The chapterResultspresents the analysis of results that are obtained by performing the
experiments mentioned in the experiment methodology chapter.

The chapteDiscus®n mainly focuses upon the constraints of experiments executed and the
issues faced during the research period. The issues discussed concentrates upon the unavailability of
tools and time limitation of the thesis standing as the main barriers. Last panieadDiscussion aims to
evaluate the benefits of this research to the community and the industry.

The chapterConclusiorfocuses on the important findings from the experiments performed in
course of this research work and tries to draw a conclusion flmrfindings.

The chaptefFuture Workhrows light on the possibilities of continuing our research work. These
also include extending our research by overcoming the limitations we faced.

The references are organized in the final chapter cdRetkrences
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2. Problem Formulation

Thischapterintroduces the problem statement of our thesis work. Then it divides the problem into

several sukproblems and finally tries to offer a solution to the bigger problem by solving the smaller
problems.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

TCF Target Communication Framework
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2.1 Problem Statement

Modern day systems are becoming more complex which invites the need of an effective and high
performance trace mechanism. LTTng bett@yeloped as a next generation tracing utility for Linux
supports both kernel space and user space tracing and claims to perform high performance tracing with
a very low overhead on the system. LTTng has the capability to dump the trace data eithedisktoe

to the network.

The primary question that our research is going to address is:

How efficient is LTTng as a kernel as well as userspace tracer on a multicore environment?

2.2  Problem Analysis

¢2 ljdzr yiAFe GKS STTFA Ode@ssddpto szd dowinNde thefpAntsdiithe fodl ané A G Q
the system or on the other applications running in it. To measure the fingerprint on the system various

data and control flow analysis on LTTng modules should be carried out. This will help us boogeten

picture for the fingerprint involving details of how it affected the system or the user programs.

Thus the first and preliminamgfinementof our research question stands as:

1. How does LTTng affect the control flow and data flow in kernelspasglaas userspace on a
multicore environment?

LTTng has a trace viewer called LTTV which helps to view the trace generated by LTTng in a GUI
environment thus helping the end user to view the system trace effectively with control flow charts and
resource vewers. For multicore AMP systems the efficiency of LTTnhg can be increased if the tracing can
be controlled remotely from another system and also if it can stream the trace over network effectively.

Thus our research question can fedinedto the below question:
2. How toefficientlystream the trace datdor multicore systemt remote host Eclipsg?

Eclipse team is in process to develop LTTng integration tool.
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The above mentioned sub problems akaboratedbelow which ultimately leads us to the finahaiof
the thesis.

1 How does LTTng affect the control flow and data flow in kernelspace as well as userspace on a
multicore environment?

Control Flow analysis involves the useagdrofiler to scan through the function and system calls of the
events in the multicore environment. Data Flow study on the events focus on the Cache Behavior and
Data Path analysidll together these both help us to reach to the conclusion regarding tfectebf

LTTng on a multicore system.

1 How toefficientlystream the trace datdéor multicore system® remote host Eclipsg?

The general approach will be to use a network protocol called Target Communication Framework (TCF)
for streaming the trace dataot Eclipse. We will measure the efficiency of LTTng in streaming huge
amount of trace data, gathered from different cores, over the network to Eclipse. The results will enable
us to narrow down on an optimal architecture to stream the LTTng trace on acomeltsystem.

The results of the suproblems will enable us to comment on the efficiency of LTTng as a kernel as well
as userspace tracer on multicore environment.

All the above discussion on the problem statement and analysis marks the need of a brief
background study on tracing, embedded systems, multicore environment, LTTng, Control Flow and Data
Flow analysis. We also discuss in the forthcoming Related \&lwmakter about similar work and
experiments carried out by other researchers and also some atkeful work which helps us to get a
correct direction to proceed forward with our study and analysis.
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3. Background

Thischapterprovides the background knowledge on the technologies on which our thesis work is based.
It explains the basics of tracing and then provides an insight of embedded systems and multicore
systems. Then it provides detailed information about LTTng kerneluaatspace tracer architecture

and functionality. Finally thishapterwraps up with the description of the lab environment on which our
experiments have been executed.

List of technical terms

PC Personal Computer

ASIP Application Specific InstructioreS
ASIC Application Specific Integrated Circuit
CPU Central Processing Unit

/0 Input / Output

AC Alternating Current

DMA Direct Memory Access

GPP General Purpose Processor

AMP Asymmetric Multiprocessing

SMP Symmetric Multiprocessing

LTTng LinuxTrace Toolkit Next Generation
UST Userspace Tracer

LTTV LTT Viewer

RCU Read Copy Update

OMAP Open Multimedia Application Platform
MIPS Microprocessor without Interlocked Pipeline Stages
NMI Non-Maskable Interrupt

PID Process ID

GUI Graphical Uselnterface

IBM International Business Machine
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3.1 Tracing

Tracingis a mechanism to identify and analyze the behavior of a system. Tracing is a technique of
recording low level events #t frequently occur in a system along with the timestamps and attributes of
the events [SHE99]. A tool that performs tracing on a system is knotvacas. A tracer records a huge
number of events that occur in a system in a period of time and generates dangunts of data known
astraces The size of a trace may vary from a few megabytes to several gigabytes [LTT10].

=A =4 4 =

A tracer generally records operating system kernel events that include [LTT10]:

Interrupt Requests
System Calls
Scheduling Activities
NetworkActivities

A tracer may also be capable of recording events that are generated by an application.

Equally important is to present the trace data in a meaningful way to the useacA analyzer

or trace vieweris an application that produces graphs andtistics from the trace data generated by
the tracer [LTT10].

Tracing helps in the following activities [LTT10][SHE99]:

1

Debugging:A tracer helps to identify performance bugs and bottlenecks in complex parallel
systems and real time systems.

Monitoring: A tracer helps to maintain and analyze statics of events and their timestamps,
attributes and flow of control from one event to another. These data may be utilized in a lot of
different activities.

Tracing a system involves the following steps [SHE99]:

T

Ingrumentation: Instrumentation is the modification of source code of an application where
instructions are added to the program that helps to generate trace data.

Measurement: Recording different aspects of execution of an application such as resources
consumed, mapping of these resources to the application routines and statements.

Analysis: Analysis of the performance data that is generated in the subsequent phases of
instrumentationand measurement
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3.2 Embedded Systems

As technology is climbing new heights we need more and more systems which are standalone and can
work without human intervention. An embedded system is a microprocelsase system that is built to
control a function or range of functions and is not pragraed by the end user in the same way that a

PC [Sér02]Often embedded systesalso handle time critical applications which require utmost time
precision. It can respond, monitor and control the external environment using seasd actuators and

is basedupon application level processors. One tife major considerations whemlesigning an
embedded system ithe consumption of power, which should always be less whether it is battery driven

or wall powered. Manufacturing cost is an important aspect to be nta@éied during design of
Embedded Systems.

3.2.1 Classes of Embedded Systems
Embedded Systems can be typically categorized into two different subclasses [NR98]. They are:

1 Embedded Controllers:Embedded Controllersre those which are dedicated to control
particular functions and are thus reactive to external environmental events. Control systems
react to external stimuli by changing its internal state and producing desired reésoihe
appliances can be cited as a example for Embedded Controllers.

1 Embedded DataProcessing SystemsEmbedded data processing systemse also called
transformational systemss they are dedicated to communication and data processing. They
are data flow @minated real time systems thatxecutea special function within a predefined
time window. Theseaystemsrequire much higher performance than tlenbedded controllers
and thus require powerful microprocessors like ASIP (Application Specific Instruction Set) and
circuits like ASIC (Application Speciftedmnated Circuit)Audio/Video Avplication and Wireless
Communicatorgan be cited a example for this

3.2.2 Challenges in Embedded Systems Design
In case of design requirements embedded systems face several chal[Ség@28][TamO05]. They are:

1) Physical size and weight restrictionslt varies greatly with the application. The high
performance processing systems tends to be much larger and heavier than the slower systems.
At system level design higher cache memory needs bigger circuit boards and at CPU level the
board size increases if thereimerease in number of pines.
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2) Performance The main performance metrics are instructions per second, interrupt response
characteristics, context switching overhead and I/O performance.

3) Power Consumptionlt should always be low in case of battery drivenipgqents. For direct
AC powered systems the power consumption should be kept minimal to reduce heat generation
or increase of cooling requirements.

4) Cost of the embedded systenManufacturing cost includes cost of components and assembly.
Nonrecurring engieering cost which includes personnel and other cost of system designing.

5) Reliability. Embedded systems can be subjected to extreme operative conditions like in military
or automotive sectors. The embedded system should be properly functional at extreme
conditions and deliver results within its time boundaries.

3.2.3 Real Time Architecture Constraints

Embedded systems have two important performance rules to be maintaipeeklictability and
determinacy In many occasions embedded systems work in real time emieats in which it must

finish operation by certain deadlines failing to which can cause major disasters or in some cases
degradation of performance. There are many architectural features which are considered as
inappropriate for hard real time embedded $gms [KP9(Qér02]and are discussed below

Cache Memoryprovides the biggest source of unpredictability and wmterminacy. The
problem is with scheduling the instruction cache misses because the time required to process a cache
miss is a magnitude slower than processing a cache hit. If smaller percentagehefroiss is present
during the execution, it dedicatedly reduces the speed of operation. Thus hard real time embedded
system hardware is designed with fast static memory chip that renders cache management hardware
superfluous.There is also dependabilign the variable execution time of the instructions, as depending
upon the input data, different instruction sets take variable number of clock cycles for the execution.

With write buffers CPU can perform write operation to the memory without waiting for the memory
cycle to occur. Processor must be stalled in case the write buffer overflows and there are no subsequent
free bus cycles. There should also be additional stalls in case the meeaal corresponds to a memory
location that is yet to be updated by the write buffer. The interaction which takes place between cache
misses, write buffer and data fetching causes loss of both predictability and determinacy of the
Embedded System.

Interrupt Response Latency increases with deep instrugiipelines An instruction takes several clock
cycles to pass through pipelines and perform its job. The pipeline also needs some handling of delays in
memory access or data dependencies which results ithee software generated instructions
rearrangement or hardware generated pgline halts which results in pnedictability and non
deterministic behaviorMultiple instructions can be issued in a single clock cycle byntbeprocessor.

The number of instictions that can be issued together depends on the type of instructions, the
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available hardware resources and execution history of the program. Thus these all factors make it very
difficult to calculate single instruction executed time.

Branch Target Buéirs is a mechanism in which the program execution history is used for caching
instructions at branch targets for faster access. Branch target buffers are used with the context of
branch prediction strategies in which compiler guesses which branch is takba by the instruction
causing to fetch the next instruction or branch goal before the outcome of the ongoing instruction. The
challenge occurs to calculate the branch completion time as it depends on the matching of branch target
buffer value and the aopiler guess.

Prefetch Queuesffects the predictability of an operation because the time required for completion of
the instruction cycle is solely determined by the fact that whether the preceding instructions were slow
enough to allow the Prefetch queuo accumulate new instructions. Thus to determine execution time
of one instruction cycle, it is required to determine the clock (depends upon data dependent path, cache
misses etc) for several preceding instruction cycles so that there are free meyueg or not for the
Prefetch queue to fill.
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3.3  Multicore Systems

In the computer industry, the customers always expect faster and more powerful systems. There is a
persistent need of increase in performance in the computer industry, be itegiaédd systems or
desktop computing.

Multicore processing comes into the picture as a key to continuous improvement of
LISNF2NXYIFyOS I O02NRAY3 (2 (GKS 02y &adzySNEQ SELISOGHGA
is a real challenge not only for theraiconductor industry but also for the software industry.

3.3.1 Migration from Single Core to Multicore

The multicore systems can increase the performance of ruldiaded applications significantly by
increasing the processing power but with a relatively l@atency. The migration from single core
systems to multicore systems requires considerable changes to the system as well as to software.
Therefore, the factors that have driven the semiconductor industry to migrate from single core to
multicore systems shdd be worth the additional work that is required to be done.

The most prominent driving factors [SLESO09] for the migration from single core to multicore are:
1 Performance

A way to increase the performance of a single core system is to increase the auerfcy.

But, pushing up the core frequency does not always increase the performance of the system in
the same proportion. The techniques like parallelism and pipelining does not always scale with
the frequency. It is not always easy for a single core memeto handle Parallel Processing
timeline issues. If the frequency of the core does not match with frequency @hdgsfmemory

and /O subsystems the core may have to wait for thecbff busses to transfer data. This
particular phenomenon is calledemory wall

1 Power Consumption

The power consumption for a core to operate is proportional to the frequency of the core.
Therefore, doubling the frequency of a core to gain performance increases the power
consumption by four times. The equation presenteddve shows the relation between power
and frequency.

HéE0QIDON OGN WE BDERGTR QR 6 Q8 GO
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To overcome the processor and -gffiip memory and 1/0O subsystems frequency lag, large fast
on-chip caches have been implementachich increases power consumption. An efficient
cooling system will consume power, whereas if the generated heat is substantially less the core
can reside even without a cooling mechanism.

1 Simplicity in Design

Multicore architecture enables less complicdteor no cooling mechanisms and better
performance with smaller caches. These contribute to simpler board design rather than
increasing the frequency of a single core.

1 Cost

Multicore architecture enables less complicated or no cooling mechanisms and better
performance with smaller caches. These contribute to comparatively lesser costs rather than
increasing the frequency of a single core.

3.3.2 Parallelism in Multicore Processing

Parallelismis an important feature for modern day computing. Most of the moderntesys are
equipped with parallelism. The different types of parallelism [SLESQ09] that are implemented in multicore
processing are:

Bit Level Parallelism
Instruction Level Parallelism
Data Parallelism

Task Parallelism

= =4 =4 =4

Bit Level Parallelisanables the hardwae to operate on larger data. For example, if abi8
core is performing computation on a it data, it will need two instruction cycles to complete the
computation. Therefore by increasing the word length from 8 to 16 will enable the processor t@ do th
computation in one instruction cycle. Currently we haveb@dword length to perform computation on
large data in a single instruction cycle.

Instruction Level Parallelisia the method of identifying the instructions that does not depend
on one anotheand processing them simultaneously.

Data Parallelisnis the technique of processing multiple data in a single instruction cycle. In
multicore architecture, performance improvement depends on different cores being able to work on the
data at the same time.

Task Parallelisris the method to distribute the applications, processes and threads to different
units for processing.
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3.3.3 Types of Multicore
The multicore systems can be categorized into two distinct types based on the core topology [SLES09]:
Homogeneous Miiicore System

Ahomogeneousnulticore system consists of identical cores that execute the same instruction set.

General Tasks

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

Figure4.1: Homogeneous Multicore Environment

Heterogeneous Multicore System

A heterogeneousystem consists of cores that are not identiddere, different types of cores execute
different instruction sets.

General Tasks Data Processing
‘ Type 1 Core ‘ Type 2 Core |
Type 2Core ]
‘ Type 1 Core ‘ l Type 2 Core }

Figure4.2: Heterogeneous Multicore Environment

The multicore systems can be categorized into the following types based on the memory topology
[SLESO09]:
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Distributed Memory MulticoreSystem

In distributed memorymulticore systems each core has a private memory. The communication between
the cores takes place over a high speed network.

Private Memorv Private Memorv
Core Core

Private Memorv Private Memorv
Core Core

Figure4.3: Distributed Memory Multicore Environment

Shared Memory Multicore System

In shared memorymulticore systems there is a common memory which is shared by all cores in the
system.

Shared Memorv

Figure4.4: SharedMemory Multicore Environment

Hybrid Memory Multicore System

In hybrid memorymulticore systems there is a common memory which is shared across all cores in the
system. Each core also has its own private memory as well.

PrivateMemorv Private Memorv

Core Core

Shared Memorv

Core Core

Private Memorv Private Memorv

Figure4.5: Hybrid Memory Multicore Environment
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3.3.4 Inter -core Communication

In a multicore system it is very important for the individual cores to communicate within themselves. In
most multicore systems the cores can be connected to each other with the héliglospeed busesr
coherent communication fabr[SLES09]

The comma network topologies in which the cores can be interconnected are bus, mesh, ring
or crossbar. The cores may also share caches or memory as a part -@birgerommunication.

3.3.5 Multicore Design Approaches

The multicore system architecture focuses mostly aeta and task parallelism. Multicore design
approaches vary depending on the data management and handling of tasks [SLESQ9]. They are:

1 Asymmetric Multiprocessing (AMP)
1 Symmetric Multiprocessing (SMP)

In asymmetric multiprocessinglesign each core operatetndependently and performs
dedicated tasks. Each core has its own logically or physically separated memory and can run operating
systems independent of the other cores. The operating system running on different cores communicate
with a help ofhypervisor The cores can either leomogeneousr heterogeneouén type.

In symmetric multiprocessingesign all the cores share the same memory, operating system and
other resources. The operating system takes care of the distribution and tasks and resourceshacross
cores. The cores should hemogenousn type in order to support symmetric multiprocessing.

3.3.6 Problems in Multicore Systems

However,a few problems still exist in muttore systems [MUCQ09T.he memory performance does not
match the core performance tls creating a bottleneck, which results in starvation of coless not
easy to create algorithms having independent tasks to execute on different cores simultaneously.
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34 LTTng

3.4.1 Overview

LTTng is an effective tracing platform that has been develdpedke over its previous version, the

Linux Trace Toolkit [LTT00]. The LTTng Project provides effective kernel space and user space tracing
solutions for Linux platforms for performance monitoring and debugging. The LTTng Project comprises
of the followirg tracing tools [LTT10]:

1 LTTng Kernel Tracer
1 LTTng Userspace Tracer (UST)
 LTT Viewer (LTTV)

3.4.2 Features of LTTng

LTTng was developed keeping in mind the requirements that a new generation tracing application
should provide [DD06]. The most distinctive featsIfLTT10] sported by the latest release of LTThg are:

1 Integrated tracing of kernel space and user spat&Tng provides a way of tracing the kernel as
well as the applications that are present in the user space simultaneously. The LTTng userspace
tracer @an be used along with the kernel tracer for effective debugging and performance
monitoring.

1 High performance yet Low Impact:TTng provides effective tracing probes without any system
calls and a good instrumentation coverage for kernel tracing that helget a detailed analysis
of the performance of the system. LTTng has very low observer effect on the traced system. This
is essentially done usingserspace RGUatomic data structuresto have reallylockless
algorithmsand cache optimizationinactive nstrumentation has almost negligible performance
impact on the system. Active instrumentation points have a very low performance impact.

9 Timestamp precisionLTTng provides effective clock synchronization technique for maintaining
timestamp precision foreents.

9 Security: LTTng has been designed keeping in mind that it has to be deployed in Linux
production systems where security is an issue. The flow of data between kernel and userspace
might not be acceptable in production environment. Therefore, usepafCPU bufferdor
reading and writing by kernel or a user process keeps it fit for use in production environment.

9 Portable:LTTng is portable to various system architectures. The latest release of LTTng kernel
tracer supports x8@2, x8664, PowerPC 32/64ARMv7 OMAP3, MIPS, sh, sparc64, s390. The
latest release of LTTng userspace tracer supports328énd x8654.
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9 Scalable:The LTTng tracer supports multiple CPU cores and a wide range of CPU frequencies
with very little impact in performance.

1 Flexible aml extensible:LTTng provides the flexibility to add custom instrumentation. It also
provides an easy to use interface for trace analysis which is also extensible for adding new
functionalities for trace analysis.

1 Reentrancy:LTTng provides complete Nientrancy to ensure that NMI nesting does not
cause deadlocks in the system.

3.4.3 LTTng Tracer Architecture

To perform extensive analysis of traces the trace data is extracted from the kernel. The tracing process
has been dividednto two phases.tracing phaseand post processing phasgpES09]. Between the
tracing phase and the post processing phdsgut/output represents the extraction of trace data to

disk or network. Figurd.6 presents the LTTng architecture with the two phases.

Tracing

On Site

Instrumentation

Scalability to multi-cores

Deterministic real-time effect
Low latency

Low overhead

Portability
+ 1 Input/ Output
e
PostProcessing n
g )
Off-site

Merge Sort

a

Scalability to large traces

Cross-architecture l

Figure4.6: LTTng Tracer Architecture [DES09]
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Thetracing phases carried out in the target system, which uses processor, memory and 1/O
resources. Initially the kernel is patched by inserting itt&trumentationin the kernel. When the kernel
reaches an instrumentation point, it verifies if the instrumentation point is activated, it calls the tracing
probes attached to that instrumentation site. The probes write the trace event data into circui@réu
in a synchronized manner. Trace data can be extracted in two different niD&209]

1 Flight Recorder ModeTrace data is not extracted when the circular buffers are full. Eventually,
when the trace is stopped that latest data in the buffers is eoted. This mode of tracing in
calledflight recorder mode

1 Non-Overwrite Mode: Trace data is extracted whenever the circular buffers are full. Therefore,
trace data is not lost. This mode of tracing is caied-overwrite mode

I/0 operations required tavrite the trace data to the disk or network are costly, therefore not done by
the probes. There are specialized threads for performing the 1/0O operations. It can be done while the
tracing is being done as well as when the trace session is over.

Tominimid GKS SFTFFSOOG 2y G(KS ad2aiasSyQa LISNF2NXIyOS
a zerocopyapproach has been taken at LTThg design level while data extractammofopyapproach
ensures that no trace data is copied between memory locations itrteéng phases. This also ensures
an effective use of memory bandwidth.

The recording of the events in thmst processing phase done by collecting a timestamp value
from the traced processor and then the probe writes the timestamp value to the evesddre The
timestamp is a timesource that is synchronized between all the traced processors.

The tracing phase and post processing phase may be performed in the same environment or it
might be in different environments. Therefore, the trace output isef described binary file for easy
extraction and portability.

3.4.4 LTTng Design
The kernel code can be instrumented in two ways:

i Static Instrumentation at source code level using Linux kernel markers and tracepoints
1 Dynamic instrumentation using Kprobes

When an active instrumented code is reached during the execution of the kernell . Ti@g probeés
called. The probe reads theace sessiormand writes the events intehannels Figure4.7 portrays the
different components of LTTng kernel tracer and their iattions [DES09].
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Kernel core Kernel modules

Instrumented code Instrumented code
call ™. 7 cal
Probe
Read Write

(Synchronized)

Trace Session /1 +contains * Channels
v. hi
KERNELSPACE
——————————————————— V' DebugFs | R e

USER SPACE ! : Read
H | (Synchronized)
/Read/write "

fttctl o / | htd

Storage

Figure4.7: LTTng Tracer Components [DESQ9]

Trace Sessiom trace session consists of the trace configuration and a set of channels that are to be
used by the trace session. A trace session can have several channels attached to it. The trace
configuration consists of the following data:

9 Trace session is actioe not
1 The event filters to be applied

Channel:A channel is an information pipe between the writer and the reader. It acts a buffer to
transport data efficiently. A channel consists of one buffer per CPU elimfakse sharingand at the
same time having cache locality A few properties can be configured at the time of trace session
creation. The configurable properties of channels are:
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9 Tracing mode
i Buffer size

9 Buffer flush period

A channel in turn is composed of several $uiffers and in each subuffer slotsare reserved by the
LTTng probes to write the event data into them. Tite extracts each subuffer separately to the disk
or network. The components of a channel are displayed in Fig8re

Slot: A slot is a part of sukbuffer reserved for exasive write access by the LTTng probe. The data
written by the probe to each slot is theub-buffer headerevent headeor payload

Reserved
slot —

Channel

\

Buffer CPU 0
Sub-buffer 0!
:rHeader |

1
1nEvent 0 I
b - |

'Sub-buffer 1!

Buffer CPU 1

Sub-oufer 0,
:rHeader L

Event 1 1

I I
H N
jb=—-— === I

I

Buffer CPU n

1Sub-buffer 0!

_________ I
" h
1

Header I

AN

Reserved

/' slot

Figure4.8: LTTng Channel Components [DESQ9]

DebugFSbebugF$s a virtual file system which provides an interface traot data from kernelspace

to userspace. The trace session and channel data structures are represented as DebugFS virtual files so

that Ittctl andlttd can interact with them.

Ittctl: The commandine applicationlttctl is an interface that interacts witthe DebugFS in order to
control the kernel tracing. Thigctl is responsible for the following:

1 Configuration of the trace session before tracing is started

i Start tracing
i Stop tracing

Ittd: The userspace daemditd is responsible to interact with the DebugFS an extract the channels data
to disk or network. Thétd does not have in interaction with the trace session directly.
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3.4.5 LTTng Userspace Tracer

LTTng provides a highly efficient kernel tracer but lacks a userspaer with similar performance. The
LTTng userspace tracer (UST) is basically ported from the LTTng static kernel tracer to userspace, and is a
work in progress.

3.45.1 UST Architecture

The userspace tracer has the following design level goals that sheilggt in its architecture

[FDDO9]:

1
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UST is completely independent of the kernel tracer during trace time. The UST trace and the
kernel trace can be correlated during the analysis time.

UST is completely reentrant

UST supports tracing of event handlers amaltithreaded applications in userspace.

To achieve better performance and low impact UST does not have system calls.

UST employzerocopy, therefore data is never copied.

UST is able to trace code in executables as well as shared libraries

The instrumetation point whether it is a marker or a tracepoint, should support unlimited
number of arguments.

UST does not require any compiler or linker support to generate trace data.

UST produces a compact and coherent trace format for analysis.

Figure4.9 showsthe architecture of UST:

| Path to trace data (zero copy) >

Tracecontral pragram | Tracing Commands

i e
Application i —_— Trace Buffer
i Createdony | | Shared memory [ Consumer
| when nesdsd segment daemon
i
i
ust E Socket |«

Consumer synchronization

Figure4.9: UST Architecture [FDDO09]
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3.4.5.2 UST Libraries
The programs must be linked with two libraries in order to get traced. The libraries are [FDDO9]:

9 Userspace tracing libraxylibust
1 Userspace RCU libragyiburcu

3.4.5.3 Time Synchronization

The LTTng userspace tracer does on have any dependency on the LTTng kernel tracer or vice versa
[FDDO09]. However, in order to do a combined analysis of the userspace and kernel traces it is hecessary
that the event timestamps of both the tracebauld be from the same timsource. The UST currently

runs only on x86_32, x86_64 and ppc32 architectures [FDDO09].

3.45.4 UST Data Collection

A userspace process callastd collects data for all the processes that are being traced.ugtéopens

a socket namedstdin the same directory as the traced application and wait for the command to collect
the traced data from a certain buffer for a PID. On command ustd creates a consumer thread that
eventually writes the trace data into the tracief[FDDO09].

3.4.6 LTT Viewer (LTTV)

The LTT Viewer is a common GUI based trace analysis tool for kernel tracer as well as userspace tracer.
LTTV is a trace viewer and is independent of LTTng tracer. It can open and filter traces based on different
plugins.

As LTTV is easily extensible, developers can extend the functionality of LTTV by developing
plugins. To get better performance results LTTV is written in C and uses glib and GTK graphical library.

3.4.7 Use of LTTng

LTTng has been used by some organizationsdétnugging and performance mdoiing. IBM used
LTTng successfully to solve some of their distributed filesystem related isstaeskused LTTng to
solve some real time issues in their application developm&rmensised LTTng to do some internal
debugging and performance monitoringhe Linux distribution8ontavista Wind River STLinwand
Susehave included LTTng in their packdg€T10]
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3.4.8 How to use LTTng?

LTTng kernel tracer has good instrumentation coverage, which are basically code changsstto i
LTTng probes into a kernel. Therefore, the LTTng instrumentation set is distributed as a kernel patch
series. LTTng has the flexibility to build the kernel instrumentation inside the kernel as well as build
them as modules. Another package callttcontrol contains thelttctl and the Ittd userspace
applications needed for tracing.

LTTng userspace tracer comes as a package celtéloat installs userspace tracer in a system.
The ust package depends on theerspaceculibrary, which has to be italled before theustpackage.

LTTV acts as a trace viewer and analyzer for both LTTng kernel and userspace trace files. LTTV
comes as a separatttv package and does not have any dependency on LTTng kernel or userspace
tracer. But the Ittv depends on éhtrace format the LTTng tracer produces. Therefore Jtthegpackage
should be compatible with the LTTng kernel and userspace tracer trace format to be able to view trace
files.
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3.5 Control and Data Flow Analysis

3.5.1 Control Flow Analysis

In the context of this thesis report we define control flow as the order or pattern in which the
application program calls or executes various other applications or snippets of code (like functions and
procedures). Control Flow analysis helps to optimtee work flow execution of application programs

and to determine functions and system calls which takes more amount of time [LPGFO08]. If the
execution of any program is gettimgore delayed than usual, the control flow analysis can easily help to
find out the reason for the delay. For the whole system and the running application programs the
control flow analysis can be done by a system profiler who takes time based samples of all the
applications depending upon its footprint on the system and displays titeaiend of sampling. From

such sampling we can generate call graph which diagrammatically represents the functions and the
system calls that the application made during its time of execution.

An example of a call graph which gets generadadng the prgram execution is shown in Figure 4.10.

__./ _,-" thench
! ! child_run
88.65%

\\

N\ 024% O\
. Y
g (11 44%) \

028% N\ 0.65%
N A

thench
snprintf
59

M .48%

41.00% />

/

'
____£/>< 1.38% 14.61% /

—

thench
[i}

Figure4.10. Example of @l Graph

The call graphin Figure 4.1Ghows how the application program tbench makes calls to functions and
programs during its sample run. We can also see how much time is spent in each of the functions and
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system calls. We can either optimize the program checking in which function it spesréstime and
refractor it or otherwise can trace the delay of execution of the particular application program.

3.5.2 Data Flow Analysis

Data Flow analysis also helps to optimize the program to run better and faster than usual with effective
use of system andthemory. By annotating the source code of the application program we can get the
lines of code which are using more number of CPU cycles and thus can be modified. One of the biggest
performance measurement criteria in a multicore system is effective usageemory and the CPU
resources [ACUOQ9]. The reason behind a line of code taking more CPU cycles can be improper memory
management, irresponsible cache usage or improper data structures being used. Thus with certain tools
we can gauge the usage of cachegtify the temporal and spatial locality problem, hide the latencies
involved in memory access and thus adding more Prefetch instructions. Increasing the cache line
utilization of an application program decreases its execution timings and thus optimizethér. We

know that different ways of data representation and data access pattern can affect the performance of
an application program. Thus Data and Control Flow analysis detects issues in application source code
and also helps in optimizing the sounmegram.

An example of annotated source code of an application program is shown in Figure 4.11.

while (1) {
: kill(child, SIGSTOP);
12.8e -05: usleep((100 - load_percent) * 1000);
411e -04: kill(child, SIGCONT);
720e -04: usleep(load_percent * 1000);
102.8e -04: end = (long) time(NULL);
: sec = (end - start);
: lprintf("%d \ n",sec);
12.8e -05: if(sec >= duration)
: break;

counter++;

}

/* never here at this moment */

printf("sending SIGTERM to the child \'n");
kill(child, SIGTERM);
printf("loops execut ed = %d \ n", counter);

} else if (child == 0) {
/*
* child process
*/
: while (1) {
66 0.0019: if (syscall) {
: getpid();

3560000 99.9958 : }

Figure 4.11Example of Annotated Source

The annotated source code provides the details of how many samples were taken for the particular line
of code and its percentage of the total samples for that lifethe sample count for a particular
line/block of code is more then it shows that it spends more CPU cycles than other lines of code.
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4. Related Work

Thischapterstarts off with an overview of ougoal Then it explains our search methodology. Findlly,
concentrates on citation of the previous work done that was useful to us to proceed in the correct
direction and helped us making the correct decisions throughout our thesis work. It also describes
similar work done in past.

List of technical terms

LThg Linux Trace Toolkit Next Generation

/0 Input / Output

CPU Central Processing Unit

RCU Read Copy Update

ASCI Accelerated Strategic Computing Initiative
RAM Random Access Memory

SATA Serial Advanced Technology Attachment
RPM Revolutions Per Minute

GB Gigabyte
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4.1 Overview

LTTng comes with a set of efficient tracing tools for Linux which helps in solving performance and
debugging issues involving multi threads and processes. LTTng aims to provide low disturbance and
architecture neutraltracing tools which helps to track the pains in the system without involving much
overhead.

Our goal mainly focuses on effectively gauging the fingerprint of LTTng as a tracing tool in a
multicore Environment. There have been quite similar researches goderbefore in getting either the
effectiveness of tracing or the efficiency of LTTng in diffeaeahitectures and environments which are
described and explained in this chapter.

4.2  Search Methodology

LTTng was developed by Mathieu Desnoyers andpnesented in his PhD thesis [DES09], so his thesis

was the base for searching all the initial papers iatato LTTng and various otheaaters which are

there at present in the Linux Sests. The[LTT10]carries lots of invaluable papers from various
conferences and journals which are somehow related to LTTng. As the thesis goal involved us to
RSGSNY¥AYS (GKS LISNF2NXYIFyOS YSIFadaNBa F2NI [¢¢y3T Ay |
keyword search in Dabmses like IEEE and ACM gave us a lot of results and references to scientific
22dNylrfad 2SS 3F20 GKS AYyF2NXIGA2Yy F2N) GKS v 2NLv)
YIydzZFlF OGdzNBENRa 6S0aAisS 6KAOK O2y il AYySR RBOdzYSyida
P4080. Our next objective was to do Control Flow and Data Flow Analysis of the System and LTTng
respectively and thus we went through the details of what those terms actually meant and what are the
RSGIAfa GGKIFIG Oy 0SS FT2¢ziRRP2dzCf ZHRYYUKRAD®AYSEYRNRS
aSIFNOKSR Ay D223ftS {OK2ftFINJ nu tSIFR (2 YdAZ GALX S LI
university Lecture sessions. The Cited papers in those papers also contained the tools for doing Control

and Data Flow Analysis and from there we got profiling tools like OProfile, TAU, Gprof, Valgrind and

many others in which we chose OProfile for Control Flow based upon the results anddts/effess of

working in different architecturesThe other part obur thesis goal focuses in Streaming of the LTTng

Trace to Eclipse over the TCF Framewdvk. got research material regarding TCF Framework from

Google Scholan which pointed us to Eclipse website and LTT Tools plugin. pdigéhe scientific
researchpap NE YR 02214 NBFSNNBR (2 KSNB NS FTNRY D223
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4.3 State of the Art

LTTng was developed by Mathieu Desnoyers as his PhD project and his PhD dissertation [DES09] shows
how he tested LTTng performance for different load cbods on different type of architectures and
compared it with the existing tracer tools. He took the load simulator toolsdid@nch(Disk load) and
tbench(Network Load) to get the scalability of the tracer in multicore environments and benchmarking
tool Imbenchto measure the tracing effect on important system components like system calls and traps.
Running &benchclients with warm up of 120 seconds and execution time of 600 secondslezl/that

tracing had very lovimpact on the overall performanceith the network load on a 100Mb/s network

card. During the test for scalability it was noticed tila@nchlinearly increases its workload in absence

of tracing and LTTng tracing overhead was linearly maintaining same line with increase in processors
thus showing that the overhead being totally independent on the number of processorsdfémch

tests showed that disk throughput gets affected in heavy 1/0O workloads in traceovemvrite mode.

In nonoverwrite mode the tracer suffers from a lot of evens$othan normallmbenchtests showed

that how the performance of the system get affected by a tracer running in the background. Results
from Imbench proved that the instrumented code portions and paths suffered from more overhead
than normal. All the exigtg tracers are compared with the performance results of LTTng and it shows it
has quite low overhead and affect on the system performance than the other tracing tools.

Before that in 2006 performance of LTTng was determined by Mathieu Desnoyers and Michel
Dagenais with micro and macro benchmarks [DD06]. The test was conducted on a 3 GHz Intel Pentium 4
without hyper threading and CPU clock calibrated to 3,000.607 MHz. For micro benchmarks kernel
probe tests are done, without enabling interrupts. Resusitgygestd that LTTng probe points do not
increase the latency measure as they work without disabling the interrupts. The LTTng scheduler time
gets affected due to the instrumentation as it needs the disabling of preemption on RCU list which is
used for cotrol. With macro benchmarks the time spent in the Ittd and in the probe site was measured
on application of variable loads on the system. Under kernel tracing it was found out that during high
and medium load scenarios CPU time utilized by the tracings/énom 1.54 % to 2.28 % [DDO06]. In user
space tracing gcc application was instrumented and it showed an execution time variation. It execution
time was 1.73 % more than the normal runtime. 2 % of the CPU time is taken by LTTng in case of a high
workload b the system.

During December 2006 there was a study conducted by Kathryn Mohror and Karen L. Karavanic
to find out the tracing overhead on the High Performance Linux clusters. The experiment setup was
designed with three contexts; firstly execution time$ execution of applications that contained
instrumentation and wrote file to the disk. Secondly, executions having trace instrumentations but the
trace file was not written to the disk and the Third condition involved no instrumentation and normal
executbn of a program [MLKOG6]. The tracing overhead was also measured due to scaling the number of
processors. Execution time was compared by ASCI Purple Benchmark SMG2000. TAU was the main
tracing tool and PerfTrack was the software used for collecting resunltie results of the experiment it
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was found that the overhead of writing the trace data to disk was nearly 27 % of the normal execution
time. Also the execution time of the application depended on the trace buffer size, as if it was larger the
memory ugd by the buffer and the amount of time required to flush that off, largely varied. When the
number of processors were increased it was seen that the overhead due to the was quite interrelated
with the number of events generated in the whole trace sesdiboigh the overhead of writing trace
0dZFFSNJ G2 GKS RA&1 RARYQl KIFIR YdzOK NBtFGA2Yy gA0K

During 2008 there was another study conducted by Parisa Heidari, Mathieu Desnoyers and
Michel Dagenais to measure the overhead causael  tracing and virtualization in a system [HDDOS].
The experiment was setup considering 3 scenarios in which the one related to tracing was the impact
caused by LTTng observed on a Domain O (Linux running over Xen), Domain U (one or more virtual
system)and a normal system in 4 different scenarm&TTng not compiled in the kernel, compiled in
kernel but disabled the markers, flight recorder mode active, fully active with trace data being written to
the disk. The tests were grouped into two parts onegieting of original application creating system
stress (compiling, archiving, compression) and other part was standard benchmarks which simulates the
load @dbench). The whole experiment was carried out in a machine having Intel Pentium 4, 3GHz hyper
threaded processor, 2 GB RAM and a single 320 GB 7200 RPM SATA. The results showed that the cost
associated with tracing is less than 3 % which when compared with the correctness, compactness and
completeness of the information collected was a very small armhadirdisturbance. In the scenario
when LTTng was compiled in but the probe was disabled, it caused a very less impact. LTTng without
loading the probes fast completes the test but the difference is smaller and lesser than standard
deviation. There is a aftt of less than 2 % in the performance scale when probes are not loaded and
less than 5 % deviation in performance when the trace is written by LTTng [HDDO08]. There was no
impact on scheduling or real time response as LTTng uses atomic operations.

During late 2009 PierrMarc Fournier, Mathieu Desnoyers and Michel Dagenais gauged the
performance of UST and also compared it with the performance of DTrace on an equivalent tracing task
[FDDO09]. The tests were conducted on a cache hot dual-qaesl Xeon 2 8z with a RAM of 8GB.
DTrace was run under Solaris environment. The command,

QTR 1 1 QQOBGB [FDDO9]

was run 60 times. This regular expression was chosen to prove malloc / free activity and they were also
instrumented. ThdJST performance was measured with and without instrumentation compiled in. The
difference in the two measures came to much less significant value. When the probes were connected
but there was no tracing then there was a slight increase in the executitngi With Tracing on the
cost/event was found to be approximately 698 ns [FDDQ09]. The LTTng and UST together have a cost per
events 7 times lower than that of DTrace.
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5. EXxperiment Setup

Thischapterdescribes in detail the use of technologies in our experiments. These technologies include
the hardware and software configurations and tools, utilities and scripts used to perform the
experiments.

List of technical terms

LTTng Linux Trace Toolkit Ne@eneration

AMD Advanced Micro Devices, Inc.

DDR Double Data Rate

SDRAM Synchronous Dynamic Random Access Memory
/0 Input / Output

CPU Central Processing Unit

SMP Symmetric Multiprocessing

L2 cache Level 2 cache
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5.1 System Configuration

Thefirst step is to configure the system on which we should run our experiments. System configuration
consists of two parts:

1 Hardware Configuration
1 Software Configuration

5.1.1 Hardware Configuration

The hardware on which we performed our experiments ix@o I a SR Ly 4GSttt / 2NBux
desktop The specifications of the system are:

T LYGStt / 2NBu 64bitQaEb0BMPdokesoferaling aiziidquency 2.83Hz
1 3GB of DDR2 SDRAM operating at frequency 667 MHz
1 100Mbps Ethernet

5.1.2 Software Configurat ion

TheoF SR Ly dStt [ t8pNd&subeen rumnismppBnSESS 4 1 Resktop Linux operating
system with dual kernels. One of the kernels are kernel version 2.6.33.2 patched with LTTng 0.211
instrumentation set built as loadable modules. Therefore egalthe LTTng modules are loaded using
modprobethe LTTng instrumentation set will remain dormant. The other kernel is kernel version
2.6.31.5 without LTTng instrumentation in it.

Apart from the LTTng kernel patch series, the application packagentrol version 0.84 has
been installed in the system to control the tracing activity. Userspace tracer has also been installed in
the system by installing the packageserspaceacuandustversion 0.4.3

LTT Viewer has been installed in the system to viewtrtiee files, by installing thitv package
version 0.12.31, according to the compatible trace format.
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5.2 Tools and Utilities

5.2.1 Load Generation Tools

The tools described under this section generate various types of load on the system and in varying
amourt. The purpose of using these tools in our experiment is to apply varying amount of load in the
test system.

5211 load

The load is a command line program written in C, which can generate specified amount of load on a
single CPU core for a specific period of time.

Usage:
romik@linux - 2tOw:~>gcc g ioloadload.c
romik@linux - 2tOw:~> ./load 7150 1t180

loadis executed with 20% CPU load for 180 seconds.

Output:

generating CPU load : 20 %
running for 180 seconds
sending SIGTERM to the child
loops executed = 1789

5.2.1.2 tbench

The tbench is a command line utility that can generate network and process losithbiating similar
socket calls as done by the Samba daemon durilddgaBenchrun in real environment. The tbench
utility has two components:

9 tbench_srv:Thetbench_snis the server utility that listens tthenchclient connections

9 tbench: Thetbenchutility which has the capability of spawning multiple clients to connect to
the tbench_srv

Usage:

romik@linux - 2tOw:~> tbench_srv
waiting for connections

tbench_snis executed and waiting for tbench clients to run.
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romik@linux - 2tOw:~> tbench -t55 localhost
dbench version 4.00 - Copyright Andrew Tridgell 1999 - 2004

Running for 5 seconds with load '/usr/local/share/client.txt' and minimum warmup 1 secs
0 of 5 processes prepared for launch 0 sec
5 of 5 processes prepared for launch 0 sec
releasin g clients
5 14603 226.10 MB/sec execute 1 sec latency 11.225 ms
5 23155 227.33 MB/sec execute 2 sec latency 7.511 ms
5 31630 227.18 MB/sec execute 3 sec latency 11.902 ms
5 40197 228.05 MB/sec execute 4 se ¢ latency 8.037 ms
5 cleanup 5 sec
0 cleanup 5 sec

tbenchis executed for a time span of 5 seconds with 5 clients for tbench_srv runnimgaihost

Output:

Operation  Count AvglLat MaxLat

NTCreateX 36535 0.097 8.020
Close 26932 0.084 11.663
Rename 1546 0.107 2.934
Unlink 7291 0.096 8.132
Qpathinfo 33225 0.096 7.894
Qfi leinfo 5823 0.085 2.981
Qfsinfo 6042 0.085 2.905
Sfileinfo 2958 0.086 2.988

Find 12839 0.097 10.371

WriteX 18078 0.236 11.887

ReadX 57510 0.108 11.761
LockX 120 0.085 0.206
UnlockX 120 0.089 0.209

Flush 2540 0.085 0.344

Throughput 228.048 MB/sec 5 clients 5 procs max_latency=11.902 ms

5.2.2 System Activity Measurement Tools

The tools described undehis section are used to record the activity of the system related to CPU,
memory, 1/O and other parameters. The purpose of using these tools in our experiment is to record and

analyze the activity and performance of the system.

5.2.2.1 Sysstat

Sysstat is a saif utilities that can monitor and record system activities that can be used to measure
system performance. The tools present in the Sysstat packagsaarsadf, iostat, mpstat, pidstat, sal

andsa2

The utilities we used to capture various system aiitis are:
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1 sar: The sar utility collects and saves the system activity information. It includes information
about CPU, memory, I/O, interrupts, disk and other parameters.

Usage:

linux - 2tOw:~ # sar -u -osysdata2 3

saris executed to run 3 times at anterval of 2 seconds, output statistics to fdgsdataand display CPU
activity information.

Output:
Linux 2.6.33.2 - 0.1 - desktop (linux - 2t0w) 04/21/10 _i686_ (2 CPU)
20:46:29 CPU  %user %nice %system %iowait %steal %idle

20:46:31 all 427 0.00 1.07 0.00 0.00 94.67
20:46:33 al 591 0.00 206 0.77 0.00 91.26
20:46:35 al 622 0.00 224 050 0.00 91.04
Average: al 549 000 180 043 0.00 92.28

1 sadf: The sadf utility is used to export the data collected Isar in multiple human readable
formats such as CSV, XML etc.

Usage:

linux - 2t0w:~ # sadf -dsysdata -- -u |

sadf is executed to read information from filsysdata (created bysar) and display CPU activity
information.

Output:

# hostname;interval;timestamp;CPU;%user;%nice;%system;%iowait; %steal;%idle

linux -2t0w;2;2010 -04-21 18:46:31 UTC;- 1;4.27;0.00;1.07;0.00;0.00;94.67
linux -2t0w;2;2010 -04-21 18:46:33 UTC; - 1;5.91;0.00;2.06;0.77;0.00;91.26
linux -2t0w;2;2010 -04-21 18:46:35 UTC; - 1;6.22;0.00;2.24;0.50;0.00;91.04

5.2.3 Control Flow and Data Flow Analysis Tools

The tools described under thégction are useful for control flow analysis of a system or an application.
These tools are basically profilers and utilities to generate call graphs. The purpose of using these tools
in our experiment is to generate profiling data, annotations and aalplgs that will help us in control

flow analysis of the system or a binary compiled with debug information.
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5.2.3.1 OProfile

OProfileis the most commonly used systemide profiler for Linux based systems. It is capable of
profiling all running code in the systemith very little overhead. Th®©Profilepackage consists of a
kernel driver, a daemon and several profile analysis tools. OProfile supports collection of data from
various hardware performance counters. Therefore, applications, shared libraries, kermklleso
kernel as well as software and hardware interrupt handlers can be profiled @itrgfile OProfile
supports a wide range of architecture from 32 and 64 bit x86 to PowerPC, MIPS, ARM etc. In a work,
OProfileis a useful utility to determine perforrmeze bottlenecks within a systeropcontrolis used to

control the profiler andpreportis used to extract the profiled data.

Usage:
linux - 2tOw:~ # opcontrol -- reset
linux - 2tOw:~ # opcontrol -- vmlinux=/usr/src/linux - 2.6.33.2/vmlinux -- separate=lib -
callgraph=32
linux - 2tOw:~ # opcontrol -- start

Using default event: CPU_CLK_UNHALTED:100000:0:1:1
Using 2.6+ OProfile kernel interface.

Reading module info.

Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon start ed.

Profiler running.

StartOProfile

linux - 2tOw:~ # opcontrol -- dump
linux - 2tOw:~ # opcontrol -- shutdown
Stopping profiling.

Killing daemon.

Dump profile data or stoProfile

Output:

CPU: AMD64 processors, speed 800 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a unit mask of 0x00 (No
unit mask) count 100000
CPU_CLK_UNHALT..|
samples| %]
17675 38.9463 vmlinux
8649 19.0578 kdeinit4
CPU_CLK_UNHALT...|
samples| %]
4050 46.8262 libQtGui.s0.4.5.3
1220 14.1057 libQtCore.s0.4.5.3
1155 13.3541 libc -2.10.1.s0
503 5.8157 libkonsoleprivate.so
392 4.5323 1ibX11.50.6.2.0
196 2.266 2 libglib - 2.0.s0.0.2200.1
195 2.2546 libpthread -2.10.1.s0
160 1.8499 libplasma.s0.3.0.0
133 1.5378 libkdeui.s0.5.3.0
113 1.3065 libxcbh.s0.1.1.0

opreportoutput (clipped).
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In our experimentsfor Control Flow analysisie have usedOProfilewith the performance
counter event CPU_CLK_UNHALT and with libraries separated. The CPU_CLK_UNHALT event gives the
number of CPU clock cycles outside the halt state of CPU whiclesntipé amount of time spent by a
binary image while execution. We have also generated call graphs of binary imageO&sige
[PZWSSO07]

In our experiments for Data Flow Analysis we have @Rdbfilewith two performance counter
events LII_MISSES amdiST_RETIRED_ANY_P and with the libraries separated [PZWSS07]. Caches are
high speed memories placed closest to the CPU. It takes less number of CPU cycles to fetch data stored
in cache memory rather than the main memory. Therefore, performance will aseréf the cache
misses decreases. The LII_MISSES event gives the number of L2 cache misses for a particular binary
image while execution. Branch prediction is an important technique to achieve parallelism in multicore
systems. Branch prediction is a teddume to predict and process instructions for a particular branch
even before the decision is made. In case of a branch misprediction the processed instructions have to
be retired. The event INST_RETIRED_ANY_P helps us determine the number of times branch
mispredictions have happened for a particular binary image while execution [PRAO3].

5.2.3.2 Valgrind

Valgrind is a tool suite consisting of debugging and profiling tools. It consists of utility Memcheck
(Memory leak Checker), Cachegrind (Cache Profiler), Callf@iachegrind with Callgraphs), Massif
(Heap Profiler) and Helgrind (Thread debugger) [VAL10]. In our experiments we use Memcheck, which
detects the memory errors in programs during runtime. Memcheck mainly has 4 different kinds of
Memory checking [SNO5]:

9 It tracks addressability of each byte of memory getting updated with the information of whether
the memory is free or allocated.
91 It keeps a note of all heaps which gets allocated with malloc () and new, so that it can detect
leaking of memory at program tmination time.
¢ LG OKSOl1a GKFKG adNOL®R o600 YR YSYOLR o060 R2SayQi
1 It performsdefinedness checkinghich ensures the definedness of every data bit in memory
and registers.

Usage:
linux -2tOw:~#  valgrind -- tool=memcheck -- leak - check=full -- trace - children=yes -- show-
reachable=yes - v lttetl - C - w /tmpl/trace trace
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Output:

==3531== Memcheck, a memory error detector

==3531== Copyright (C) 2002 - 2009, and GNU GPL'd, by Julian Seward et al.
==3531== Using Valgrind -3.5.0 and LibVEX; rerun with - h for copyright info
==3531== Command: lttctl - C - w /tmpltrace - o channel.all.overwrite=1 trace
==3531==

-- 3531-- Valgrind options:

-- 3531-- -- tool=memcheck

-- 3531-- -- leak - check=full

-- 3531-- -- trace - children=yes

-- 3531-- -- show- reachable=yes

-- 3531-- -V

-- 3531-- Contents of /proc/version:

-- 3531-- Linux version 2.6.33.2 - Lttng0.203 (root@linux - ambr) (gcc version 4.4.1 [gcc -4 4-

branch revision 150839] (SUSE Linux) ) #3 SMP Wed May 5 17:15:59 CEST 2010
-- 3531-- REDIR: 0x40cad00 (rindex) redirected to 0x4027840 (rindex)

-- 3531-- REDIR: 0x40ca260 (index) redirected to 0x40278d0 (index)

-- 3531-- REDIR: 0x40ca970 (strlen) redirected to 0x4027c00 (strlen)

-- 3531-- REDIR: 0x40cca20 (memcpy) redirected to 0x4028080 (memcpy)

-- 3531-- REDIR: 0x40ca440 (strcpy) redirected to 0x4027¢60 (strcpy)

-- 3531-- REDIR: 0x40c7050 (malloc) redirected to 0x4026c07 (malloc)

-- 3531-- REDIR: 0x40ca3d0 (strcmp) redirected to 0x4027f20 (strcmp)

-- 3531-- REDIR: 0x40ca0bO0 (strcat) redirected to Ox4 0279c0 (strcat)
-- 3531-- REDIR: 0x40cc550 (mempcpy) redirected to 0x4028d10 (mempcpy)
-- 3531-- REDIR: 0x40cf510 (strchrnul) redirected to 0x4028ccO0 (strchrnul)

-- 3531-- REDIR: 0x40c6f70 (free) redirected to 0x4026821 (free)

=3531== 152 bytes in 17 blocks are definitely lost in loss record 1 of 5

=3531==at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - X86 - linux.so)
=3531== by 0x40CA6CO: strdup (in /lib/libc -2.10.1.s0)

=3531== by 0x4051297: lttctl_set_channel_enable (liblttctl.c:472 )

=3531== by 0x8049E1F: main (lttctl.c:631)

=3531==

=3531== 152 bytes in 17 blocks are definitely lost in loss record 2 of 5

=3531== at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - X86 - linux.so)
=3531== by 0x40CA6CO: strdup (in Nlib/libc -2.10.1.s0)

=3531== by 0x4051117: Ittctl_set_channel_overwrite (liblttctl.c:536)
=3531== by 0x8049E49: main (lttctl.c:637)

=3531==
=3531== 284 bytes in 1 blocks are still reachable in loss record 3 of 5
=3531== at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - X86 - linux.so)

=3531== by 0x8049346: parst_opt (lttctl.c:238)
=3531== by 0x80496DA: main (lttctl.c:425)

=3533==

=3533== HEAP SUMMARY:

=3533== in use at exit: 0 bytes in 0 blocks

=3533==total heap usage: 0 allocs, O frees, 0 bytes allocated
=3533==

=3533== All heap blocks were freed --  no leaks are possible
=3533==

=3533== ERROR SUMMARY: 0 errors from O contexts (suppressed: 4 from 4)

In our experiments of Data Flowjemcheck is used here to detect memory leaks in LTTng
YSNYSt IyR ! aSNARLI OS (N} QS Md=ru? 3 tolgttB fultzdpdryoHanyi KS 2 LJ
GellsSa 2F YSY2NE £ SIF1a& ¥FNERMe fabS-yekINRiFUSEd Yodtrack &$ | NH dz
forked program fronthe main program, so that the &mncheck utility can even show memory leaks of
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detailed report about memory mismanagement of the applicatoogram.
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5.2.3.3 gprof2dot.py

Thegprof2dot.pyis a Python script that can convert the call graph output from different profilers into a

dot graph. It supports different profilers such as gprof, OProfile, callgrind, sysprof and others. The script
has dependencieonPythonand Graphvizo run.

Usage:

linux - 2tOw:~ # opreport image:/usr/local/bin/dbench - cgf | gprof2dot.py - f oprofile | dot
Tpng - o0 output.png

Output:

thench
main

/ thench
child_run
88.65%
(11.44%)

F/"é .

345, 28%

0.24%

Figure5.1: tbench call graph output

We have used gprof2dot.py to convédProfilegenerated call graphs into dot graphs for better
understanding and comparison.
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5.3 Test System Setup

5.3.1 Tools Setup

The different tools mentioned in the previous section are used to set up the test system. bigure
describes how the different tools aresed in combination in Test System Setup.

i . N

! Load Configuration i | LTTng i
| i i
l [ !
i LOAD Lt N Kemel Userspace !
i X ' i
' Network and L Tracer Tracer '
i CFU lood Process load ' ' '
: QE-I']EFDTD! gf:'ﬂf:'!ﬂfﬂ! : : :
i X ' i
l I !

Tracing

Gprof2dot.py  Control OProfile
Flow
Call Graph Info System Wide Profiler /'

SYSSTAT

generatar script sar

System activity recorder

Call Graphs System Profile Data & Brofil B
P Source Annotations rotie System Activity
Data Data

h

VALGRIND
heck SYSSTAT
Memcheck  Memecnhec sadf
debugging and
profiling tool System dato presenter
. f/-'
System Activity Data
in human readahble

format

Figure5.2: Test System Setup

The system runkTTngracer which comprises of thieernel tracermandthe userspace traceifhe
tools load and tbhench are used to generate load on the system in different configurations while the
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tracing in on or off. The system activity is recordedshyutility of the SYSSTA®ols bundle, and the
sadfutility from the same bundle converts tteargenerated data intdiuman readable form and stores

the data in the disk. The system is also profiled using a system wide profiler ©&lteélle It stores the
system profile data and the source annotations of binary files in the disk. These profile data and source
annotations are used foControl Flow Analysiand Data Flow Analysief the traced systemOProfile
passes the control flow information to a call graph generation script na@mwf2dot.pythat generates

visual call graphs from the control flow information. It sathe call graphs to the disk.

5.3.2 Load Configuration
Two different types of load generators have been used to generate load on the test system.

Theload program generates specified amount of CPU load on a single core. Therefore for a
fourccore processor,dur instances of the load program have to be executed. The load program is a
program written in C language and generates CPU load by forkingpebitdsses continuously. The
source code of théoad program has been provided in Appendix B.

Thetbenchutility produces process and network load on the test system. In our experiments tbench is
run on the loopback interface adapter with a standard of 10 clients. The amount of load on the system is
varied by varying the throughput data rate of tbench clients.

Table 5.1describes the load configuration for the experiments to be performed:

Configuration Load Generator Load Level Load %
CNFO1 Load Low 20
CNFO02 Load Medium 50
CNFO3 Load High 90
CNF0O4 Thench Low 30
CNFO05 Thench Medium 50
CNFO06 Thench High 80

Table5.1: Load Configuration

5.3.3 Test Automation

The experiments are automated with the help of shell scripts. These shell scripts are responsible for
running the tools and utilities in proper order and recording all the test data in the disk for enatyes
later period.

Page |53



5.3.4 Performance Measurement

Various criteria have been measured in order to judge the performance of LTTng kernel trace and
userspace tracer in a@bre SMP system under various load configurations. Performance measurement
has been donén system level, program level and function level. Following are the different criteria for
performance measurement.

System Level Performance Measurement

1 CPU usage by a user program
1 CPU usage due to system activities
1 CPU usage due to I/O waits

ProgramLevel Performance Measurement

1 Percentage of CPU cycles needed for an image execution
1 Percentage of L2 cache misses

1 Percentage of retired instructions

1 Percentage of memory leaks

Function Level Performance Measurement

9 Call Graph analysis
I Source annotation etuation

5.3.5 Result Analysis

The results obtained from the experiments are stored in the disk in form of system activity data,
OProfile data, VALGRIND memory report, call graphs and source annotations. These result data provide
a valuable input for system lely program level and function level performance measurement.

The system level performance measuremeéntludes analyzing and comparing percent CPU
utilization for user programs, system and /O waits. Titegram level performance measurement
includes CPWycles needed for execution, L2 cache misses, memory leaks while execution and the
retired instructions while branch mispredictions for a binary image. flimetion level performance
measurementncludes call graph analysis and source annotation evaludto percent CPU cycles at
instruction level. The program level and function level performance measurement comprise the Control
Flow and Data Flow Analysis.

The results analysis will help us to zero down on the efficiency of the LTTng kernel traceespaces
trace on a multicore SMP system. FigGrapresents the different phases of result analysis.
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6. Experiment Methodology

This chapter describes the experiment methods in detail that are to be performed on LTTng kernel
tracer and userspace tracer.

List of technical terms

LTTng Linux Trace Toolkit Next Generation
UST Userspace Tracer

SUT System Under Test

CFG Control Flow Graph

CPU Central Processing Unit
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6.1 Load Configuration

6.1.1 Experiment 1 z Determination of | oad configuration parameters
for System Under Test (SUT)

Objective ¢ Setting up the parameters for load configuratioas described in Tablé.1 in chapter
Experiment Setup. These load configurations are to be used in forthcoming experiments.

Explanation¢ For the Control Flow and the Data Flow analysis the idea is to generate a substantial load
in the whole system. For the determination of lowedium and high load of CPU, the idle time of the
CPU will be collected by ttsar utility of SYSTABundle Table 6.1 showsthe desiredpercentageof idle

time for each low, medium and high load configurations of the CPU

Configuration of LOAD CPU Idle ime (%)
Low 67-100
Medium 33-66
High 0-32

Table6.1: Load Configuration

The load program generates specified percentage of load on a single CPU core. As the system under test
has four SMP cores, 4 instances of load program is executed simultaneoustyllakernel to generate

the specified percentage of CPU load on theaysiThetotal number ofclients that will be required for
tbench(network load) is kept fixed at 10 and by running thench (in loopback) in a frestanillakernel

with controlled throughput.Table6.2 provides the details of six different load configiimas to be
determined.

Utility Instances/Clients| Target CPU Idl&ime (%)| Load Configuration
load 4 80 CNFO1
load 4 50 CNF02
load 4 10 CNFO3
tbench 10 70 CNFO4
tbench 10 50 CNFO05
tbench 10 20 CNFO06

Table6.2: Load Configurations to be determined

After the determination of the load configuration parameters, Control and Data Flow analysis are done
on empty vanillakernel and kernel compiled with LTTng with variation of different parameters thus
differentiating ketween their usages of CPU cycles.
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6.2  Control Flow Analysis

6.2.1 Experiment 2 z Measuring the efficiency of LTTng Kernel Tracer

Objective ¢ Measuringthe efficiency of LTTng kernel tracer ftifferent load configurations. Detailed
program level and function \el performance analysis is to be performed on the gathered results.

Explanation¢ The OProfiletool is used to get the Control Flow parameters in the whole system with
different load configurationsTheopcontrolcommand is run with kernel image and segiarlibraries as
the argument (to get the control flow of any process inside the libraries) to get the approppagport
depicting the CPU cycles spent by each of the functions and binaries. Thes@gisalso collected
during the load generation wit the help ofsar tool. This experiment helpus to determine the CPU
activity of the systemhavingupon different load configurations along with a generalized sample report
of individual CPU cycles used by separate functions of binaries under varie®@Padilewasrun with

the CPU_CLK_UNHALTED hardware performamaeter to get the actual CPUnte spem by the
binaries and source annotation®Profileoutput was fed into a python script to generate control flow
graphs forLTTDaemon Table6.3 describes all the test cases to be executed. To get better results all
test cases are run 3 times.

Test Case Kernel Markers | LTTng Armed Tracing| Tracing Mode | Load Configuration
T1 Vanilla Off No Off NA CNFO1, CNFO4
T2 Vanilla Off No Off NA CNF02, CNFO5
T3 Vanilla Off No Off NA CNF03, CNFO6
T4 Instrumented| Off No Off NA CNFO1, CNFO4
T5 Instrumented| Off No Off NA CNF02, CNF5
T6 Instrumented| Off No Off NA CNF03, CNF6
T7 Instrumented| On No Off NA CNFO1, CNF4
T8 Instrumented| On No Off NA CNF02, CNF5
T9 Instrumented| On No Off NA CNF03, CNF6
T10 Instrumented| On Yes Off NA CNFO1, CNF4
T11 Instrumented| On Yes Off NA CNF02, CNF5
T12 Instrumented| On Yes Off NA CNF03, CNF6
T13 Instrumented| On Yes On Non Overwrite | CNFO1, CNP4
T14 Instrumented| On Yes On Non Overwrite | CNF02, CNFD5
T15 Instrumented| On Yes On Non Overwrite | CNFO3,CNF06
T16 Instrumented| On Yes On Flight Recordery CNFO1, CN4
T17 Instrumented| On Yes On Flight Recordery CNF02, CN5
T18 Instrumented| On Yes On Flight Recorder, CNFO3, CNF6

Table6.3: Test Cases for Experiment 2

Page |58




6.2.2 Experiment 3 z Measuring the efficiency of LTTng Userspace
Tracer

Objective ¢ Measuringthe efficiency of LTTng userspace tracer €hiferent load configurations.
Detailed program level and function level performancelgnis is to be performed on the gathered
results. The effect of the number of instrumentations is also measured.

Explanation ¢ The Profiling tools are having same configurations for all the experiments. For this
experiment the UST is installed amnillakernel andload and bench are freshly compiled with UST
instrumentation inside. The profiler is started after running the load generating programs with the
instrumentation ON/OFF. The profiler (OProfile) gathers sample generapireport which shows the

CPU cycles usagd program level the annotations of the source files of UST and load generation
programs with the time spend in the CPU and the call graph which helps into digging deep regarding the
reason of the overhead (if any). Overall system ovetheaalso measured. The experiment helps in
determining that either or not User Space Tracing Instrumentation has an overhead on the execution
time of the binary andlso on the system performanceaflle 6.4 shows thetest caseexecutedfor this
experiment All test cases are repeated 3 times to get better results. To determine the effect of the
number of instrumentations all the test cases are repeated with 1, 5 and 10 instrumentation(s) compiled
in the source code of both load and then

Test Case Kernel UST Markers Tracing Load Configuration
T1 Vanilla Off Off CNFO01, CN4
T2 Vanilla Off Off CNF02, CNF5
T3 Vanilla Off Off CNF03, CNF6
T4 Vanilla On Off CNFO1, CNP4
1) Vanilla On Off CNF02, CNF5
T6 Vanilla On Off CNF03, CNF6
T7 Vanilla On On CNFO1, CNP4
T8 Vanilla On On CNF02, CNF5
T9 Vanilla On On CNF03, CNF6

Table6.4: Test Cases for Experiment 3

6.2.3 Experiment 4 z Measuring the impact on System as well as
Traced Application when LTTng Kernel Tracer and Userspace
Tracer are executed together

Objective ¢ This experiment aims to find out the overhead in the system #ral instrumented
applicationin case LTTng kerhéradng and userspace Tracirig both running together and the
applicationbinaries are instrumented with UST markers.
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Explanationg In an LTTng installed kernel we already have tested all variations to test the overhead of
LTTy kernel tracing in Expenient 2 In thiscase we also install UST (Ugarse Tracing) in the LTTng
patched kernel and instrument the UST markers in the binaries. With all combination of LTTng tracing
alongwith UST instrumentatiowe take a set of test cases for which we generateannotated source

code for LTT Daeon and UST DaemoWe get overall sample report showing the CPU cycles taken in
all the possible conditions by LTTng binaries and UST binaries. There is also control flow graph of the
binaries helping us to find the eitt of LTTng kernel tracer on UST and vice versa, and also the effect of
both on the system and the traced applicatioralile 6.5 provides thetest cases to bexecuted for this
experiment. All test cases are executed 3 times to get better results. Asener@ning userspace tracer

we have repeated all test cases with 1, 5 and 10 UST markers compiled in with the userspace
applications to find out the impact of increasing number of instrumentations as well.

Test Case Kernel Kernel Tracingl Tracing Mode UST LoadConfiguration
T1 Instrumented | On Non Overwrite | On CNFO1, CNFO4
T2 Instrumented | On Non Overwrite | On CNF02, CNfO5
T3 Instrumented | On Non Overwrite | On CNF03, CNfo6
T4 Instrumented | On Flight Recorder | On CNFO1, CNFO4
T5 Instrumented | On FlightRecorder | On CNF02, CNfO5
T6 Instrumented | On Flight Recorder | On CNF03, CNfo6

Table6.5: Test Cases for Experiment 4
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6.3 Data Flow Analysis

6.3.1 Experiment 5 z Running load program and tbench on LTTng
Kernel with Non Overwrite and Flight R ecorder tracing modes

Objective¢ The objective of this experiment is to find out any LIl cache misses or branch misprediction
of LTT Control module or the LTT daemon during tracing when there is a low, medium and high load
generated on the system by a child forgi programload and process and network load generated by

the benchmarking utilittbench. This is an effort to make the tracer run through different type of loads
and check the internal memory allocation issues for the LTT Control and Daemon modules.

Explanationg In LTTng kernel we use load program and tbench to generate low, medium and high load
according to the load configuration matrix of Experiment 1. We start the LTTng kernel tracer in Non
overwrite and Flight recorder tracing modes one after thiher and use OProfile Hardware Events
LII_MISSES antST_RETIRED_ANYo Bample LTT Control and LTT Daemon to find out respective
Cache Misses and Branch Mispredictions in it. All the experiments are controlled by automated script
which initially triggrs the load program under different load configuration and then starts OProfile
sampling and LTTng Kernel Tracer parallely. The trace gets destroyed after 180 sec when the load
program ends. For tbench also the same process is followed where the trexelgstoyed after the
completion of tbenchTable6.6 providesall test @sesfor this experiment.

Test Case Kernel Tracing Mode | LoadConfiguration
T1 LTTng Non Overwrite | CNFO1, CNP4
T2 LTTng Non Overwrite | CNF02, CNF5
T3 LTTng Non Overwrite CNF03, CNF6
T4 LTTng Flight Recorder | CNFO1, CNP4
5

T6

LTTng Flight Recorder | CNF02, CNF5
LTTng Flight Recorder | CNF03, CNF6
Table6.6: Test Cases for Experiment 5

6.3.2 Experiment 6 z Running UST tracing on load and tbench
program each instrumented with 10 markers under different
load configurations

Objective¢ The aim of this eperiment is to find out any L&ache misses or branch misprediction of UST
daemon and UST Libraries during userspace tracing when there is a low, medium and high load
generated on the process and network by the benchmarking uthignch and on the system by the

load program. The test are done under various load circumstances to gauge the memory management
efficiency of the UST Daemon and the Libraries during Userspace tracing.
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Explanationg In plainvanillakernel the programoad and tbench are instrumented with 10 markers

and are ecompiled for current experiment use.UST Tracer triggers Load program and tbench are again
triggered to generate the respective loads in the system according to the load generation matrix. An
automated script is fired which trigge@Profilesampling withhardware counters same as Experiment

5. After 180 sec UST tracer dumps the trace file for both load and tbench program and tH@éeOPro
sampling also endsable 6.7 representthe test cases for this experiment.

Test Case | Kernel Tracing LoadConfiguration
T1 Vanilla | UST CNF01, CN4
T2 Vanilla | UST CNF02, CNF5
T3 Vanilla | UST CNF03, CNF6

Table6.7: Test Cases for Experiment 6

6.3.3 Experiment 7 z Running the Kernel tracer with the help of
Valgrind under various load configurations generated by load
program (system load) and tbench (proce ss and network load)

Objectiveg The experiment aims to find out the memory leaks with the help of Valgrind tool within LTT
Control module during its run waker different load configurations generated by load and tbench.

Explanation¢ In LTTng kernel we use load and tbench program one after the other to generate
necessary load configurations in the system. We usétbenchechutility of the Valgrind tool under the
arguments of complete memory leak check and tracing of forked programs turned on. The usage detalil
of the tool is explained in the tools section of the Experiment Setup chapter. The Valgrind toolrearts
Kernel Tacer in both Non Overwrite and in Flightd®rder tracing modes. After the load and tbench
program completes the execution the trace is destroyed to get the Valgrind memory report. The report
generated by Valgrind helps to get down to the functional lefehstruction whichis responsible for
memory leaks in the LTT Control applicatititet{). Table 6.8 shows the test casesavolved in the above
experiment.

Test Casg Kernel Tracing Mode Valgrind Tool | LoadConfiguration
1 LTTng Non Overwrite Memcheck CNFO1, CNP4
2 LTTng Non Overwrite Memcheck CNF02, CNF5
3 LTTng Non Overwrite Memcheck CNF03, CNF6
4 LTTng Flight Recorder | Memcheck CNFO01, CNP4
5 LTTng Flight Recorder | Memcheck CNF02, CNP5
6 LTTng Flight Recorder | Memcheck CNF03, CNfo6

Table6.8: Test Cases for Experiment 7
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6.3.4 Experiment 8 z Running the load and tbench application
instrumented with 10 markers under UST (Userspace Tracing)
with the help of Valgrind

Objective¢ The objective of this experiment is to run UST Tracing on the load and tbench applications
instrumented with 10 markers with the help of Valgrikttmcheckool. This experiment will give us the
detailed report of any memory leak issues faced by USE&nnander different load configurations.

Explanationg In fresh vanill&kernel we instrument the tbench and load with 10 markers and recompile
it. We run the UST tracing on the instrumented load and tbench programs Matimcheckutility of
Valgrind tool. Te argument of tracing of forked programs are disabled for this experiment as it is not
able to recognize the system call made by the forked child programs instttace(Userspace Tracer)
utility. After the load and tbench ends after its stipulated diwatthe Valgrind report gets generated.
The reports generated by Valgrind are more detailed and drills down to functional level of the
application program, i.e. we will get the line numbers of the application program which is responsible
for the memory le&s. Table6.9showsthe set of test cass designed for the experiment.

Test Case| Kernel Tracing Valgrind Tool LoadConfiguration
T1 Vanilla UST Memcheck CNFO1, CNP4
T2 Vanilla UST Memcheck CNF02, CNFO5
T3 Vanilla UST Memcheck CNF03, CNfo6

Table6.9: Test Cases for Experiment 8

Page |63



7. Results

This chapter presents the analysis of results that are obtained by performing the experiments
mentioned in the experiment methodologshapter. Detailed Results have been presented in Appendix
A.

List of technical terms

LTTng Linux Trace Toolkit Next Generation
UST Userspace Tracer

CPU Central Processing Unit

LTTD Linux Trace Toolkit Daemon

USTD Userspace Tracer Daemon
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7.1

Load Configuration

7.1.1 Load Configuration parameters for System Under Test (SUT)

Experiment 1 enabled us to determine the load configuration parameters for the load generation

utilities. Table7.1 provides the parameters for different load configurationsléad utility.

Load Configuration| Instances| Specified Load (% Execution Time (s| Average CPU Usad#)
CNFO1 4 20 180 21.16
CNF02 4 50 180 50.53
CNFO3 4 90 180 89.52

Table7.1: Results for Load Configurationlofd utility

Table7.2 provides the parameters for different load configurationsti@nchutility.

Load Configuration| Clients | Specified Data Rate, Execution Time (s| Average CPWsage(%)
CNFO3 10 12 180 29.05
CNFO4 10 31 180 53.4%6
CNFO05 10 60.55 180 81.81

From Table 7.1 anflable 7.2 we can observe that the average CPU usages for all load configurations are
close to the target loadescribed in Tablb.1 Thereforewe can proceed with these load configurations

Table7.2: Results for Load Configurationtbenchutility

for the other experiments.
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7.2

7.2.1 Efficiency of LTTng Kernel Tracer with Load utility

We have identified the performance impact of LTTng Kernel Tracer on the kernel operations of the
system while the system is under varied amount of stress exerted by the Load utility. The percentage of
impact has been calculated in terms of percentage of CPU cycles needed for performing kernel
operations in different scenarios against the percentage of CPU cycles needed for performing kernel

Control Flow Analysis

operations on aanillakernel. Tabl&’.3 provides the results.

Graph7.1 presents the impact of LTTng kernel tracer on kernel operations with Load utility executing in

KERNEOPERATIONE&OAD
Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG
Vanilla 0.00 0.00 0.00 0.00
Instrumented -0.01 0.62 0.42 0.34
Markers On 0.04 0.62 0.45 0.37
LTTng Armed 0.07 0.71 0.41 0.40
Non Overwrite 0.34 0.81 0.53 0.56
Flight Recorder 0.29 0.86 0.53 0.56

Table7.3: Impact of LTTng kernel tracer on kernel operations (Load)

various configurations.
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From Graply.1 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing
in non overwrite and flight recorder modes. Here, the impact varies with the amount of loatbdxsy

Graph7.1: Impact of LTTng kernel tracer on kernel operations (Load)




the load utility, low load having the least impact, high in between and medium load having the most
impact. The percentage impact on kernel operations, calculated by measuring the percentage of CPU
cycles needed, ranges between 0.25% to 0.85% waliri)g on with almost negligible difference

between non overwrite and flight recorder modes and average impact near 0.56%.

7.2.2 Efficiency of LTTng Kernel Tracer with Thench utility

We have identified the performance impact of LTTng Kernel Tracer on the lapesritions of the
system while the system is under varied amount of process and network load exerted by the Thench
utility. The percentage of impact has been calculated in terms of percentage of CPU cycles needed for
performing kernel operations in diffent scenarios against the percentage of CPU cycles needed for
performing kernel operations on\anillakernel. Tabl& .4 provides the results.

KERNEL OPERATIONSENCH

Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG|
Vanilla 0.00 0.00 0.00 0.00
Instrumented -0.21 0.49 -1.20 -0.31
Markers On -0.41 0.05 -1.25 -0.54
LTTng Armed -0.52 0.52 -0.82 -0.27
Non Overwrite 2.45 3.34 1.89 2.56
Flight Recordel 2.24 3.43 2.43 2.70

Table7.4: Impact of LTTng kernel tracer on kernel operations (Thench)

Graph7.2 presents the impact of LTTng kernel tracer on kernel operations with Thench utility executing
in various configurations.
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From Graplv.2 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing
in non overwrite and flight recorder modes. Here, the impact varies with the amount of load exerted by
the tbench utility, high load having thedst impact, low in between and medium load having the most
impact. The percentage impact on kernel operations ranges between 1.85% to 3.45% with tracing on
with almost negligible difference between non overwrite and flight recorder modes, the averagetimpa
with tracing on being approximately near 2.6%.

7.2.3 Efficiency of LTTng Kernel Tracer

The efficiency of LTTng kernel tracer is determined by calculating the average percentage CPU cycles
needed for kernel operations between the load generators load anddbeihe averaged results are
displayed in Tabl@&.5.

KERNEL OPERATION®ERAGE

Load % CPU Cycles AVERAGE
Configuration | Low Load| Medium Load| High Load| %IMPACT
Vanilla 0.00 0.00 0.00 0.00
Instrumented -0.11 0.56 -0.39 0.02
Markers On -0.19 0.34 -0.40 -0.08
LTTng Armed -0.23 0.62 -0.21 0.06
Non Overwrite 1.40 2.08 1.21 1.56
Flight Recorder 1.27 2.15 1.48 1.63

Table7.5: Impact of LTTng kernel tracer on kernel operations (Average)

Graph7.3 presents the impact of LTTnhg kernel tracer on keopelrations in low, medium and high load

configurations.
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Graph7.3: Averagdmpact of LTTng kernel tracer on kernel operatitmrdifferent load configurations
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From Graplv.3 we can observe the effect of instrumented kernel, markers on, LTTng armed and tracing
in non overwrite and flight recorder modes. Here, the impact varies with the amount of load, high and
low load performing similarly and medium load having the most ichp&he percentage impact on
kernel operations ranges between 1.2% and 2.15%, the average impact being near 1.5%7.Graph
provides the average impact on kernel operations for all scenarios of LTTng kernel tracer.
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Graph7.4: Average Impact of LTTnhg Kefifracer

Therefore,from Graph 7.4we can see that the impact of LTTng on kernel operations in terms of
percentage of CPU cycles agaiveillakernel is (1.56 + 1.63)/2 = 1.6%. We can also observe that there
is marginal difference between the performaes of LTTng kernel tracer in Non Overwrite mode and in
Flight Recorder mode.

7.2.4 Footprint of LTTng Kernel Tracer Daemon (LTTD)

Table 7.6 and Table7.7 records the footprint of LTTng Kernel Tracer Daemon (LTTD) in terms of
percentage of CPU cycles utilized bTTD to operate through the trace sessions for load utility and
tbench utility respectively.
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LTTD LOAD
Load % CPU Cycles
. . AVERAGI
Configuration | Low Load| Medium Load| High Load
Non Overwrite 0.0003 0.0000 0.0000 0.0001
Flight Recorder 0.0005 0.0001 0.0001 0.0002
Table7.6: Footprint of LTTD (Load)
LTTD TBENCH
0
Load % CPU Cycles AVERAG
Configuration | Low Load| Medium Load| High Load
Non Overwrite 0.0002 0.0001 0.0002 0.0002
Flight Recorder 0.0002 0.0004 0.0003 0.0003

Table7.7: Footprint of LTTD (Tbench)

From the data in Tabl&.6 and Table’.7 we can identify that LTTD has very less footprint within the
a2adGSY YR R2Sa y20 FF¥FSOO GKS &B provides ha aveddF 2 N I
results for the footprint olLTTD in terms of percentage of CPU cycles needed for execution of LTTD.

LTTD AVERAGE
Load % CPU Cycles
. . - - AVERAGI
Configuration | Low Load| Medium Load| High Load
Non Overwrite 0.0003 0.0001 0.0001| 0.0001
Flight Recorder 0.0004 0.0003 0.0002| 0.0003

Table7.8: Footprint of LTTD (Average)

From Table7.8 we can see that LTTD has almost negligible footprint on both Non Overwrite mode and
Flight Recorder mode. We have already seen that both the modes have almost similar amount of impact
2y GKS arb@nanSeystil ILISTD takes more CPU cycles in flight recorder mode than in Non
Overwrite mode.

7.2.5 Call Graph Analysis for LTTng Kernel Tracer

In our experiment we have generated call graphs for LTTng kernel tracer those help us to know in which
libraries and functions are explored by the LTTng kernel tracer in course of its execution. We have
identified the libraries and the respective functions where the LTTng kernel tracer spends time.

Table7.9 provides the list of libraries and functionsledl during the execution of LTTng kernel
tracer with the load utility and the average percentage of CPU time spent within the functions.
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Library Function(s) Average
ld-2.10.1.s0 /lib/ld -2.10.1.s0 49.61
libc-2.10.1.s0 /lib/libc-2.10.1.s0 46.97

liblttdvfs_on_read_subbuffer 0.73
liblttd.s0.0.0.0 frame_dummy 0.35
__1686.get_pc_thunk.bx 0.35
pthread_mutex_trylock 0.26
_init 0.35
libpthreac-2.10.1.50 pthread_nNchk_unIock 0.21
__pthread_diaable_asynccance 0.21
__close_nocancel 0.62
__pthread_initialize_minimal 0.55

Table7.9: Libraries and functions for LTTng Kernel Tracer (Load)

Graph7.5 displays the average percentage of CPU time spent by LTTng on each function that in turn
belongs to a library, with load utility.
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Graph7.5: Call Graph Analysis of LTTng Kernel Tracer on Load

From Graply.5 we can observe that LTTng kernel tracer spends most of its tifite andld standard C
libraries. It spends only 3.42% of the time in other functions and libraries which indibidels

Table7.10 provides the list of libraries and functions called during the execution of LTTng kernel
tracer with the tbench utility and the avage percentage of CPU time spent within the functions.
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Library Function(s) Average
ld-2.10.1.s0 /lib/ld -2.10.1.s0 43.83
libc-2.10.1.s0 /lib/libc-2.10.1.s0 50.34

liblttdvfs_on_read_subbuffer 0.00
liblitd.S6.0.0.0 open_channel_trace_pairs 0.23
frame_dummy 0.00
__1686.get_pc_thunk.bx 0.00
Ittd parse_arguments 1.72
pthread_mutex_trylock 0.00
pthread_mutex_unlock 0.46
_init 0.00
sigaction 0.43
pthread_rwlock_unlock 0.00
libpthreac-2.10.1.50 _pthre_ad_disable_asynccancel 0.00
__reclaim_stacks 1.62
__close_nocancel 0.00
__do_global dtors_aux 0.63
pthread_create@@GLIBC_2.1 0.37
__errno_location 0.37
__pthread_initialize_minimal 0.00

Table7.10: Libraries and functions for LTTng Kernel Tracer (Tbench)

Graph7.6 displaysthe average percentage of CPU time spent by LTTng on each function that in turn
belongs to a library, with tbhench utility.
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Graph7.6: Call Graph Analysis of LTTng Kernel Tracer on Tbench
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From Graplv.6 we can observe that LTTng kernel tracer spends most of its tifite andld standard C
libraries. It spends only 5.83% of the time in other functions and libraries which indibitikes

Therefore, we can say that as LTTng kernel tracer spends sdirtes in executing its own
functions it has so little impact in the systems performance.

7.2.6 Efficiency of LTTng Userspace Tracer with Load utility

We have identified the performance impact of LTTng Userspace Tracer or UST on the Load utility while
the systen is under varied amount of stress exerted by the Load utility itself. The percentage of impact
has been calculated in terms of percentage of CPU cycles needed for executing the instrumented Load
binary in different scenarios against the percentage of CRiles needed for executing an original copy

of the Load binary image. The instrumentation compiled within the Load utility has also been varied as
1, 5 and 10 instrumentations in order to observe the effect of varying markers as well.7TEhldable

7.12 and Table7.13 provides the results for load program compiled with 1, 5 and 10 markers

respectively.

LOAD 1 Marker

Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG
Original 0.00 0.00 0.00 0.00
Markers On 0.33 0.30 0.33 0.32
UST On 0.02 0.26 0.23 0.17

Table7.11: Impact of UST on Load with 1 marker

LOAD 5 Markers

L_oad _ % C.PU Cycles . AVERAGH
Configuration | Low Load| Medium Load| High Load
Original 0.00 0.00 0.00 0.00
Markers On 0.57 0.56 0.18 0.44
UST On 0.53 0.45 0.33 0.44

Table7.12; Impact of UST on Load with 5 markers

LOAD 10 Markers

Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG]
Original 0.00 0.00 0.00 0.00
Markers On 0.47 0.46 0.48 0.47
UST On 0.50 0.54 0.56 0.53

Table7.13: Impact of UST on Load with 10 markers
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Table7.14 provides the average data for the impact of UST on varying markers on Load utility executed
with markers compiled without UST and with UST running, against an original run of the load utility

without the makers.

LOAD; AVERAGE
Load % CPU Cycles AVERAGE
Configuration| Low Load | Medium Load| High Load| %IMPACT
Original 0.00 0.00 0.00 0.00
Markers On 0.46 0.44 0.33 0.41
UST On 0.35 0.42 0.37 0.38

Table7.14: Impact of UST on Load (Average)

From Tablé&7.14 we can identify that the userspace trace similar to the kernel tracer has very less impact
on the userspace application. We know, when markers are compiled in, even if UST is not,rinening
control goes to the marker site and returns back. Thereforeittgact of the compiled markers on UST
can be justified. It is seen that UST has an impact of 0.38% on the load application.

7.2.7 Efficiency of LTTng Userspace Tracer with Thench utility

We have identified the performance impact of LTTngrkjsgce Tracer or USIh the Tbenchutility
while the system is under varied amount of stress exerted byTthenchutility itself. The percentage of
impact has been calculated in terms of percentage of CPU cycles neededaéotting the instrumented
Tbhenchbinary in differen scenarios against the percentage of CPU cycles neededxémutingan
original copy of theTbenchbinary image. The instrumentation compiled within tlibenchutility has
also been varied as 1, 5 and 10 instrumentations in order to observe the effearyhg markers as
well. Tabler.15, Tabler.16 and Tabl€.17 provides the results forbenchutility compiled with 1, 5 and

10 markers respectively.

TBENCH1 Marker
L_oad _ % C.PU Cycles . AVERAGH
Configuration | Low Load| Medium Load| High Load
Original 0.00 0.00 0.00 0.00
Markers On 0.81 0.57 0.50 0.63
UST On 0.89 0.49 0.57 0.65

Table7.15: Impact of UST on Thench with 1 marker
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TBENCHS Markers

Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG|
Original 0.00 0.00 0.00 0.00
Markers On 0.49 0.56 0.63 0.56
UST On 0.55 0.54 0.54 0.54

Table7.16: Impact of UST on Tbhench with 5 markers

TBENCH10 Markers

Load % CPU Cycles
Configuration | Low Load| Medium Load| High Load AVERAG
Original 0.00 0.00 0.00 0.00
Markers On 0.72 0.47 0.58 0.59
UST On 0.57 0.49 0.63 0.56

Table7.17: Impact of UST on Thench with 10 markers

Table 7.18 provides the average data for the impact of UST on varying markers on Tbench utility
executed with markers compiled without UST and with W@&Ining, against an original run of the
Tbhench utility without the markers.

TBENCHAVERAGE
Load % CPU Cycles AVERAGE
Configuration| Low Load| Medium Load| High Load| %IMPACT
Original 0.00 0.00 0.00 0.00
Markers On 0.67 0.53 0.57 0.59
UST On 0.67 0.51 0.58 0.59

Table7.18: Impact of UST on Thench (Average)

From Table7.18 it can be seen that both markers and UST has an impact of 0.59% on the Tbench

application.

7.2.8 Efficiency of LTTng Userspace Tracer

The efficiency of LTTngserspacdracer is determined by calculating the average percentaggact on
CPU cycles needddr the execution of thdoad generators load and tbhenciihe average is calculated
from the already averaged data for load and tbench in Tatkld and Tabl&.18 respctively. Thefinal

averagedesults are displayed in Tablelo.
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AVERAGE

Load % CPU Cycles AVERAGE
Configuration| Low Load | Medium Load| High Load | %IMPACT
Original 0.00 0.00 0.00 0.00
Markers On 0.57 0.49 0.45 0.50
UST On 0.51 0.46 0.48 0.48

Table7.19: Impact of UST on userspace applications (Average)

Graph7.7 presents the impact of LTTng userspace tracer on userspace applications in low, medium and
high load configurations.
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Graph7.7: Impact of UST on userspace applications for diffeleatl configurations

From Graply.7 we can observe that there is an impact of both compiled instrumentation as well as the
userspace tracer on the traced application, but the impact is as low as between 0.45% and 0.51%
depending on the load configuration&raph 7.8 shows the average impact of UST on userspace

applications.
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Graph7.8: Average Impact of UST on userspace applications

From Graplv.8 we can identify that the LTTng userspace tracer and the compiled markers both have an
effect of around 0.50% otie performance of the userspace application.

Table7.20 provides the average impact of UST on userspace applications based on the number
of markers for low, medium and high load configurations.

AVERAGE
% CPU Cycles AVERAGE
Markers , .
Low Load | Medium Load| High Load| %IMPACT
1 0.46 0.38 0.40 0.41
5 0.54 0.50 0.44 0.49
10 0.54 0.52 0.60 0.55

Table7.20: Impact of UST based on number of markers

Graph7.9 represents the impact of the number of markers compiled into the userspace application for
low, medium and high load configurations.
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Graph7.9: Impact of UST based on number of markers for different load configurations

From Graph7.9 we can observe that the impact of UST on userspace applications marginally increase
with the increase in the number of instrumentations compiled in, though the pattern of increase for all
load configurations are not similar.

Graph7.10 provides the aveige impact of UST based on the number of markers.
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Graph7.10: Average Impact of UST based on number of markers
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From Graph7.10 we can observe that the percentage impact of UST on the userspace application
increases with the increase of number of markers.

7.2.9 Footprint of LTTng Userspace Tracer Daemon (USTD)

Table7.21 and Tabl&/.22 records the footprint of LTTngserspace Tracer Daemon (UpirDterms of
percentaige of CPU cycles utilized byTOSto operate through the trace sessions for load utility and
tbench utility respectivelyor 1, 5 and 10 number of instrumentations in userspace application

From the data in Tablé.21 and Tabl&.22 we can identify that USTD has very less footprint within the
0 KS &.233ipsdesiie alelageFr 2 NI |
results for the footprintof USTD in terms of percentage of CPU cycles needed for execution of USTD.

agaasy

USTD LOAD
Markers % CPU Cycles AVERAGI
Low Load| Medium Load | High Load

1 0.0017 0.0007 0.0005 0.0010

5 0.0018 0.0008 0.0003 0.0010

10 0.0017 0.0007 0.0005 0.0010

Table7.21: Footprint of USTD (Load)
USTD TBENCH
% CPU Cycles

Markers Low Load| Medium Load | High Load AVERAGI
1 0.0003 0.0002 0.0002 0.0002

5 0.0003 0.0002 0.0002 0.0002

10 0.0003 0.0003 0.0002 0.0003

YR R2Sa

Table7.22: Footprint of USTD (Thench)

y 2

FFF¥SOG

USTDO; AVERAGE
Markers % C.P U Cycles , AVERAGI
Low Load| Medium Load | High Load
1 0.0010 0.0005 0.0004| 0.0006
5 0.0011 0.0005 0.0003| 0.0006
10 0.0010 0.0005 0.0004| 0.0006

Table7.23: Footprint of USTD (Average)

From Tabler.23 we can see that USTD has almost negligible footprint on the system for different load
configurations or different number of markers. But it is noticeable that the footprint of USTD is not as
good as comparto the footprint of LTTD. USTD has got a footprint a little higher than LTTD but still is
Ffy2ad yS3atAaroftsS G2 FFFSOG (GKS aeadsSyQa LISNF2NXYI
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Graph7.11 represents the impact of load on the footprint of USTD.
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Graph7.11: Impact of load on USTD

From Graph7.11 we can observe that the footprint of USTD decreases as the load increases in the
system. Therefore, the performance of USTD gets better with increasing amount of load.

Graph7.12 presents the impact of the number of markers on USTD.
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Graph 7.12: Impact of the number of markers on USTD

From Grapltv.12 we can observe that the footprint of UST is liner to the increasing number of markers.
Therefore, the number of markers compiled in does not have any effect on the footprint of USTD.
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7.2.10 Call Graph Analysis of LTTng Userspace Tracer

In our experiment we have generated call graphs for LTTng userspace tracer as well those help us to
know in which libraries and functions are explored by the LTTng userspace tracer in course of its
execution. We have ahtified the libraries and the respective functions where the LTTng userspace

tracer spends time.

Table 7.24 provides the list of libraries and functions called during the execution of LTTng

userspace tracer with the load utility and the average percemta§ CPU time spent within the

functions.

Library Function(s) Average
Id-2.10.1.s0 /Nlib/ld -2.10.1.s0 23.51
libc-2.10.1.s0 /lib/libc-2.10.1.s0 59.50

__init 0.17

start_thread 0.38

start_ustd 0.20
consumer_thread 0.51
consumer_loop 0.55
ustcomm_init_connection 0.38
ustcomm_connect_app 0.38
ustcomm_connect_path 0.33
ustcomm_send_requrst 0.19

ustd ustcomm_recv_message 0.56
ustcomm_close_app 0.16
get_subbuffer 0.21
put_subbuffer 0.34
unwrite_last_subbuffer 0.20
connect_buffer 0.41
__i686.get_pc_thunk.bx 0.51
finish_consuming_dead_subbuffe 0.38

__do_global dtors_aux 0.44
send_message_fd 0.66
recv_message fd 1.21
__pthread_enable_asynccancel 1.65
__pthread_disable_asynccancel 1.50

__init 0.20

libpthread connect 0.21
2.10.1.s0 send 0.17
recv 0.42

write 0.16

pthread create@@GLIBC_2.1 0.86
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__deallocate_stack 0.34
__free_stacks 0.17
pthread_mutex_lock 0.37
pthread_mutex_unlock_usercnt 0.17
__pthread_unregister_cancel 0.16
__pthread_initialize_minimal 0.16
__pthread_cleanup_push_defer 0.51
[heap] [heap] 1.44

Table7.24: Libraries and functions for LTTdgerspacdracer (Load)

Graph7.13 displays the average percentage of CPU time spent by LTTng on each function that in turn
belongs to a library, with load utility.

Call Graph LTTng Userspace Tracer on Lo

16.99%

23.51% m /lib/Id-2.10.1.s0

m /lib/libc-2.10.1.s0

H_ init

| start_thread

W start_ustd

m consumer_thread

B consumer_loop

B ustcomm_init_connection
B ustcomm_connect_apf

59.50% B ustcomm_connect_patt

Graph7.13: Libraries and functions for LTThgerspacdracer (Load)

From Graph7.13 we can observe that LTTngserspacetracer spendsa bulk of time in libc and Id
standard C librariest bpends only 16.9% of the time in other functions and libraries which includes
liblttd.

Table 7.25 provides the list of libraries and functions callgdring the execution of LTTng
userspace tracer with the tbench utility and the average percentage of CPU time spent within the
functions.

Library Function(s) Average
Id-2.10.1.s0 /lib/ld -2.10.1.s0 21.47
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libc-2.10.1.s0 /lib/libc-2.10.1.s0 64.99
__init 0.00

start_thread 0.00

start_ustd 1.39

parse_args 0.69

consumer_thread 0.00

consumer_loop 0.00
ustcomm_init_connection 0.00
ustcomm_connect_app 0.69
ustcomm_connect_path 0.00
ustcomm_send_requrst 0.85

ustd ustcomm_recv_message 0.00
ustcomm_close_app 0.00

get_subbuffer 0.00

put_subbuffer 0.00

unwrite_last_subbuffer 0.00

connect_buffer 0.93
__i686.get_pc_thunk.bx 0.69
finish_consuming_dead_subbuffer 0.00
__do_global_dtors_aux 0.00

send_message_fd 0.85

recv_message_fd 0.69

liburcu-bp.s0.0.0.0 rcu_bp_register 1.39
__pthread_enable_asynccancel 3.01
__pthread_disable_asynccancel 1.60

__init 0.00

connect 0.00

send 0.00

recv 0.00

write 0.00

libpthread2.10.1.s0 pthread_create@@GLIBC_2.1 0.00
__deallocate_stack 0.00

__free_stacks 0.00

pthread _mutex_lock 0.00

pthread _mutex_unlock_usercnt 0.00
__pthread_unregister_cancel 0.00
__pthread_initialize_minimal 0.00
__pthread_cleanup_push_defer 0.00

[heap] [heap] 0.74

Table7.25: Libraries and functions for LTTogerspacdracer Thench
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Graph7.14 displays the average percentage of CPU time spent by LTTng on each function that in turn
belongs to a library, wittbenchutility.
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Graph7.14: Libraries and functions for LTThgerspacd@racer Thench

From Graph7.14 we can observe that LTTngerspaceracer spendsa lot of its time inlibc and Id
standard C libraries. It spends ordlg.54% of the time in other functions and libraries whiclelirdes
liblttd.

We can observe that unlike LTTng kernel tracer, LTTnhg userspace tracer spends greater amount
of its execution time in the C libraries, still it spends a lot of time (approximately 13% toii7%)
executing itsown functions Therefore, we ca say that the LTTng userspace tracer is not as efficient as
the LTTng kernel tracer and there is a scope of improving its performance.

7.2.11 Combined Impact of LTTng Kernel and Userspace Tracer

We have already evaluated the performance of LTTng kernel teammbthe userspace tracer separately.

We also wanted to know if there is any additional impact on the system if LTTng kernel tracer and
userspace tracer are executed together. LTTng kernel tracer was executed with instrumented load utility
together with theLTTng userspace tracer. The impact can be identified against the percentage of CPU
cycles required for the kernel operations fovanillakernel and a load program compiled without the
markers. Table7.26, Table7.27 and Tabler.28 shows the results fot, 5 and 10 instrumentations
respectively.
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KERNEL OPERATIONSAD 1 UST Marker
. . % CPU Cycles
Load Configuration AVERAGI
g Low Load| Medium Load| High Load
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 0.67 0.95 0.64 0.75
Flight Recorder + US 0.84 0.88 0.61 0.78
Table7.26: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in load
KERNEL OPERATIONSAD 5 UST Markers
. . % CPU Cycles
Load Configuration . , AVERAG
'gurat Low Load| Medium Load| High Load
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 0.61 0.88 0.60 0.70
Flight Recorder + US 0.53 0.85 0.57 0.65
Table7.27:Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in load
KERNEL OPERATIONSAD 10 UST Markers
% CP I
Load Configuration > C U Cycles . AVERAGI
Low Load| Medium Load| High Load
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 0.68 0.96 0.70 0.78
Flight Recorder + US 0.67 1.01 0.52 0.73

Table7.28: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in load

Table7.29 provides the average data for the combined impact of LTTng kernel tracer and UST on varying

markers on load utility.

KERNEL OPERATIONSAD AVERAGE
[0)
Load Configuration Low o CPL Cydes AVERAGH
J Load Medium Load | High Load| %IMPACT
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST] 0.65 0.93 0.65 0.74
Flight Recorder + US 0.68 0.91 0.57 0.72

Table7.29: Average Impact of LTTng kernel tracer and UST on kernel operations (Load)

Graph7.15 shows the average combined impact of LTTng kernel teaxkuserspace tracer on load

utility for varying load configurations.
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Graph7.15: Impact of LTTng kernel tracer and UST on kernel operations (Load)

From Graplv.15 we can observe that the impact is quite similar to LTTng kernel tracer with load utility
where the average impact ranges between 0.5% and 1%.

LTTng kernel tracer was executed with instrumented tbench utility as well together with the
LTTng userspace tracer. The impact can be identified against the percentage of CPU cycles required for
the kernd operations for asanillakernel and a tbench utility compiled without the markers. TahR0,

Table7.31 and Tabl&.32 shows the results for 1, 5 and 10 instrumentations respectively.

KERNEL OPERATIONBENCH1 UST Marker

% CPCycles

Load Configuration Low Load| Medium Load| High Load AVERAG!
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 0.93 1.80 1.19 1.31
Flight Recorder + US 1.10 2.31 1.86 1.76

Table7.30: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in tbench

KERNEL OPERATIONBENCHS UST Markers

% CPU Cycles

Load Configuration Low Load| Medium Load| High Load AVERAG
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 1.24 2.36 1.27 1.62
Flight Recorder + US 1.65 2.81 1.82 2.09

Table7.31: Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in tbench
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KERNEL OPERATIONBENCH10 UST Markers

. . % CPU Cycles
Load Configuration Low Load| Medium Load| High Load AVERAGE
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST| 1.12 2.27 1.07 1.49
Flight Recorder + US 1.59 2.95 1.86 2.13

Table7.32: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in tbench

Table7.33 provides the average data for the combined impact of LTTng kernel tracer and U&Viog
markers on tbench utility.

KERNEL OPERATIONSENCHAVERAGE
Load Configuration % CPU Cycles AVERAGH
Low Load | Medium Load| High Load| %IMPAC'
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST 1.10 2.14 1.18 1.47
Flight Recorder + UST 1.45 2.69 1.85 1.99

Table7.33: Average Impact of LTTng kernel tracer and UST on kernel operations (Tbench)

Graph7.16 shows the average combined impact of LTTng kernel tracer and userspace tracer on load
utility for varying load configurations.

LTTng Kernel Tracer + UST (Then
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—0—9% CPU Cycled ow Load =—=% CPU Cycle#ledium Load
% CPU Cyclesligh Load

Graph7.16: Impact of LTTng kernel tracer and UST on kernel operations (Thench)

From Graph7.16 we can observe that the impact is quite similar to LTTng kernel tracer with tbench
utility where the average impact ranges around 1.5% to 2%.
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Table7.34 shows the averageombined impact of LTTng kernel tracer and userspace tracer on
varying load configurations.

KERNEL OPERATIONSERAGE
Load Configuration % CPU Cycles AVERAG
Low Load| Medium Load | High Load | %IMPAC’
Vanilla 0.00 0.00 0.00 0.00
Non Overwrite + UST 0.88 1.54 0.91 1.11
Flight Recorder + US'| 1.06 1.80 1.21 1.36

Table7.34: Average Combined Impact of LTTng kernel tracer and UST on kernel operations

Graph7.17 displays the average impact of LTTng kernel tracer and UST on kernel operations based on
the percentage of CPU cycles for kernel operations against the kernel operatioranillakernel with
the load generator running without the markers compiled in.

LTTng Kernel Tracer + US”
(AVERAGE)

2.00

1.50

1.00 .
~

0.50 /
0.00 ’

Y

Vanila Non Overwrite + US™ Flight Recorder + US

——9% CPU Cycled.ow Load =—=% CPU Cycle#edium Load
% CPU Cyclesligh Load

Graph7.17: Average Combined Impact of LTTng kernel tracer and UST on kernel operations

From Graphv.17 we can observe that the impact is quite similar to LTTng kernel tracer and there is no
additional impact on the percentage of CPU cycles needs tfonperkernel operationsWe can also
observe that the LTTng Kernel tracer Non Overwrite mode has performed a bit better then the Flight
Recorder mode while executed with Userspace Tracer in terms of CPU cycles needed for kernel
operations.
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7.3  Data Flow Analysis

7.3.1 L2 Caches Misses during execution of LTT Control Module with
respect to various load configurations generated by load
program and tbench

We sampled the whole system with OProfile Hardware eléntMISSES evaluate the cache misses of
LTT Contl Application (Ittctl) under various load parameters generated by the load program and
Tbhench Application separately. The results are presented in Tabladd3bable 7.36hows the L2
Cache Misses for LTT Control Module during Non Overwrite and Figtitder Tracing Modes for load
program and tbench separately.

Load | Non Overwrite (Ittctl)| Flight Recorder (lttctl)
Low 0.003333 0.002933
Medium 0.003100 0.000000
High 0.014500 0.018633
Table7.35 L2Cache Miss (lttctl) for load program
Tbench | NonOverwrite (lttctl) | Flight Recorder (lttctl)
Low 0.000029 0.000056
Medium 0.000023 0.000022
High 0.000014 0.000022

Table7.36 L2Cache Miss (lttctl) for tbench application

FromTable7.35 and Table 7.3&e can see that the Cache Miss of LTT Control (lttctl) is very less and in
order of 10° percentage of samples collected by OProfile. For both the application and the different kind
of load generated the cache miss trend seems to Veaple 7.37 shows avage L2 cache miss for Ittctl.

Load/Thench Non Overwrite (lttctl)| Flight Recorder (lttctl)
Low 0.001681 0.0014945
Medium 0.0015615 0.000011
High 0.007257 0.0093275

We now draw Graph 7.18, an average grapltamclude the overall Cache Miss rate for LTT Control

Table7.37: Average.2Cache Miss (lttctl)

Application with the effect of both load and tbench taken together.
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Graph7.18 Overall L2 Cache Miss Rate for LTT Control

From Graph7.18 we can see that Non Overwrite Tracing and Flight Recorder tracing have similar L2
Cache misses for Low load configuration but maintains a steady difference in medium and high load for
Ittctl. Also the Cache misses dips for medium load and shoots up dbrlbad configuration for both
tracing modes.

7.3.2 L2 Cache Misses of LTT Daemon with respect to various load
configurations generated by load program and tbench

Whenlttd (LTT Daemon) was sampled with OProfile for the same hardware counters as sectidor7.1.1
L2 Cache Misses against different load configurations for load and tbench program we got the results as
shown inTable7.38 and Table 7.39

Load Non Overwrite (Ittd) | Flight Recorder (Ittd)
Low 0.003500 0.002933
Medium 0.000000 0.000000
High 0.000000 0.000000

Table7.38: Cache Miss (Ittd) for load program

Thench | Non Overwrite (Ittd) | Flight Recorder (lIttd)

Low 0.000029 0.000085
Medium 0.000011 0.000055
High 0.000007 0.000070

Table7.39: Cache Miss (Ittd) for tbench program
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Overall cache misses are very low for LTT Daemon as seen previously for LTT Control. For Ittd the cache
YAaa Aa 2F4Sy y204 GKSNBE YSIya AlGQa dacharkids desuly SY 2 NE
for Ittd in Table 740and represent in th&raph7.19.

Load/Tbenchl Non Overwrite (Ittd) | Flight Recorder (Ittd)
Low 0.0017645 0.001509
Medium 0.0000055 0.0000275
High 0.0000035 0.000035

Table7.40: Cache Miss (Ittd)

L2 Cache Miss of LTT Daem:

0.002
0.0018
0.0016 }\
0.0014 \\
0.0012 \\
0.001 \\
0.0008

0.0006
0.0004
0.0002

Low Medium High

=—o—Non Overwrite (Ittd) —#=Flight Recorder (lttd)

Graph7.19 Overall L2 Cache Miss Rate for LTT Daemon

Graph7.19shows thatCache Miss is highest for LTT Daemarase the load configuration is low and
reduces largely to be almoBlULLwhen the load increases in system, process or network by load
program and tbench respectively. The difference in Non Overwrite mode and Rikgbtder mode is
almost negligible in any of load configurations.

7.3.3 Branch Mispredictions exhibited by LTT Control module with
respect to various load configurations generated by load
program and tbench

The whole system was samglavith OProfile Hardware ent INST_RETIRED_ANMoRevaluate the
branch mispredictionsf LTT Control Application (lttctl) under various load parameters generated by the
load program and Tbench Application separatalyd in different tracing modesThe results are
presented inTable7.41 and Table 7.2
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Load

Non Overwrite (lttctl)

Flight Recorder (lttctl)

Low 0.000049 0.000052
Medium 0.000035 0.000033
High 0.000027 0.000011

Table7.41: Branch Mispredictions (lttctl) for load program

Tbhench | Non Overwrite (Ittctl) | FlightRecorder (Ittctl)
Low 0.000140 0.000123
Medium 0.000043 0.000021
High 0.000024 0.000033

Table7.42: Branch Mispredictions (lttctl) for tbench

Branch Mispredictions are also much low at*Bamples of OProfile. For Non Overwrite tracing mode

for both the load and tbench program the Branch Misprediction ratdtiofl decreases upon the
increase of load on the system. We calculate the average effect for both the prograrable 7.8 and

form Graph 7.2Grom the result to determine the average Branch Mispredictions rate for LTT Control

Load/Thench Non Overwrite (lttctl) | Flight Recorder (lttctl)
Low 0.0000945 0.0000875
Medium 0.000039 0.000027
High 0.0000255 0.000022
Table7.43: BranchMispredictions (lttctl)
Branch Mispredictions for LTT Contrc
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Graph7.20 Overall Branch Misprediction for LTT Control

In Graph 7.20he trend shows that the Branch Mispredictions differ much less between Non Overwrite
and Flight Recorder tracing modes on any different load configuratioescall also see that when load

increases, Branch Mispredictions decrease.
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7.3.4 Branch Mispredictions of LTT Daemon with respect to various
load configurations generated by load program and tbench

When LTT Daemon was sampled for Branch Mispredictions undeusdoad configurations generated
by load program and tbench, we got results which are tabulated iT#i#e7.44 and Table 7.3.

Load Non Overwrite (lttd) | Flight Recorder (lttd)

Low 0.000040 0.000237
Medium 0.000031 0.000113
High 0.000029 0.000115

Table7.44: Branch Mispredictions (lttd) for load program

Thench | Non Overwrite (Ittd) | Flight Recorder (lttd)

Low 0.000080 0.000330
Medium 0.000043 0.000210
High 0.000030 0.000101

Table7.45: Branch Mispredictions (lttd) for tbench

The LTT Daemon wakso sampled with same Hardware counter by OProfile as the eari& Section.

The consolidated average result for the Branch MispredictiondTdr Daemon is represented in Table
7.46 andGraph7.21.

Load/Tbench Non Overwrite (Ittd)| Flight Recorder (idl)
Low 0.00006 0.0002835
Medium 0.000037 0.0001615

High 0.0000295 0.000108
Table7.46: Branch Mispredictions (lttd)

Branch Mispredictions for LTT

Daemon
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Graph7.21 Overall Branch Misprediction for LTT Daemon
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From Graph 7.21, vcan see the branch predictions of LTT Daemon also stales similarly like the

LTT Control application with increase in system, process or network load from load program and tbench.
But unlike the LTT Control module, the LTT Daemon exhibits a difference in Branch Mispredictions
between Non Overwrite and FligiiRecorder tracing modes. Branch Mispredictions is more in Flight
Recorder mode for LTT Daemon.

7.3.5 Analysis of Memory Leak of LTT Control and LTT Daemon
program during execution  with respect to various load
configurations gener ated by load program and tbench

When we used Valgrinchemory checking todilemchecko trigger the kernel tracing (firing up lttctl) it

was seen that for any types of load configuration the memory leaks for LTT Control is very minimal and
constant. LTT Daemon showed a zero memory losisglits execution The Summarized results are in
Table7.47.

Tracing Modes | LostBlocks Lost Memory | Blocks(Not Free| Memory not Freed
Non Overwrite 17 152bytes 3 988

Flight Recorder 34 304bytes 3 988
Table7.47: Memory Leak for LTT Control (Kermehcer)

FromTable7.47we see that Flight Recorder mode registered a memory loss of 304 bytes double to that
of Non Overwrite tracing mode under any load circumstances. Also the there is a equal amount of
memory, 988 bytes which are not released or ratifrered after completion of execution in both the
tracing modes. The lines of code in the LTT Control application responsible for the memory losses are
also captured andre given in details iAppendix A.

7.3.6 L2 Cache Misses for UST Daemon during tracing of load and
tboench  program (10 markers) under various load
configurations

To find out L2 Cache misdies UST, OProfile was run withl_ MISSEBardware event. The UST Tracing
was done on the load program and tbench program one after the other instrumentddl@imarkers
The result is displayed in Table 8.4
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Load Load 10 Markers| Thench 10 Marker¢

Low 0.142800 0.000293
Medium 0.129433 0.000116

High 0.149700 0.000096

Table7.48: L2 Cache Miss for UST Daemon

Graph 7.22 displays the L2 cache midd®T Daemon with respect to load and tbench.

L2 Cache miss of UST Daemon w.r.
load and tbench

0.200000
0.150000 — /——0
0.100000
0.050000
0.000000 L i L
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=¢=—_[0ad 10 Markers ==Tbench 10 Markers

Graph7.22 L2 Cache Miss for UST Daemon

From Table 7.48 and the Graph7.22 we can see for load program the L2 Cache miss dips a bit for
Medium load and shoots up for high load. For Tbench program the UST Daemon Cache miss shows it is
very minimal and decreases with increase in load.

We tried to compare the performances with et to cache misses for both LTT Daemon (lttd)
and UST Daemon (ustd) from the experiments dion€able 7.9 and we came up witksraph7.23.

Load ustd Ittd

Low 0.07154650 0.00163675
Medium | 0.06477450( 0.00001650

High 0.07489800 0.00001930

Table7.49: L2 Cache Miss (ustd & Ittd)
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Graph7.23 L2 Cache Miss (ustd vs. Ittd)

From Gaph 7.23we can see that though bothstd andlIttd have very less percentage of cache misses

but UST daemon has a big scapemprove in L2 Cache hits with respect to LTT Daemon. For different
load configuration UST Daemon has lot more cache misses when compared to LTT Kernel Tracer
daemon.

7.3.7 Branch Misprediction for UST Daemon during tracing of load
and tbench program (10 mar kers) under various load
configurations

To find out Branch Mispredictions, OProfile was run iltIST RETIRED_ ANYhdPdware event. UST
was tracing under varying load configurations the tbench and load program which was each
instrumented with 10 markers ahrecompiled in the systenT.able7.50 shows the result data

Load Load 10 Markers| Tbench 10 Markers
Low 0.000300 0.000230
Medium 0.000111 0.000117
High 0.000061 0.000068

Table7.50: Branch Mispredictions for UST Daemon

Graph 7.24 represents tHeranch mispredictions of UST Daemon with respect to load and tbench.
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Graph7.24 Branch Mispredictions for UST Daemon

From theGraph7.24and theTable7.50 we can say that Branch Mispredictions for USTYD2¢/ R2 Say Qi
depend on the application it is tracing as for both load and tbench it shows similar trend of higher
branch mispredictions during low load and lower branch mispredictions during higher load. The branch
mispredictions gradually decrease withiiease in load.

We also compared the average branch misprediction rate of Btth and ustd which is
represented bythe Table 7.3 and Graph7.25

Load ustd Ittd

Low 0.000265| 0.000172
Medium 0.000114| 0.000099
High 0.000065| 0.000069

Table7.51: BranchMispredictions (ustd & Ittd)
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Graph7.25 Branch Mispredictions (ustd vs. lttd)

The Branch Mispredictions graph plotted fostd and Ittd shows that LTT Kernel Tracer Daemon
performs better than UST daemon is low load but in High load there is no pericemdifference
between the two.

7.3.8 Analysis of Memory Leak of UST Tracer during execution with
respect to various load configurations gener ated by load
program and tbench

Load and tbench which are instrumented with 10 markers and UST tracing was doreaneraiter the
other. During the UST tracing on each load and theitowas run with the help dilemcheckutility of
Valgrind which helped to get the report of any memory leaksripexecution. ITable7.52 is the result
from the experiment

Application Blocks (bst) | Memory Lat | Blocks (Not Free| Memory not Freed

load 1 654 bytes 1267 33599bytes

tbench 1 654 bytes 1270 33658bytes
Table7.52: Memory Leak for UST Tracer (load & tbench)

From theTable7.51weOl y FAYR 2dzi GKFd gAGK AyONBFaAS 2F t2FR
of the User Space Tracer. During tracing of both load program and tbench Userspace Tracer lost 1 Block

of data (654 bytes), and that was during saving the trace data to thk diut the problem with

' ASNB LI OS ¢NJF OSNJ aSSYSR (G2 06S (GKS ydzYoSNI 2F | ff 2(
completes its execution. It has approximately 33600 bytes in 1270 blocks of blocked data after
completion of execution. The memory01 & y 20 FTNBSR R2SayQid RSLISYyR (2
traces as we can see fronallle7.52where the difference is very less among thench and load program.
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8. Discussion

This chapter mainly focusegon the constraints of experiments executed and the issues faced during
the research period.The issues discussed concentrates upon the unavailability of tools and time
limitation of the thesis standing as the main barriers. Last part of the Discussitnta evaluate the
benefits of this research to the community and the industry.

List of technical terms

LTTng Linux Trace Toolkit Next Generation
AMP Asymmetric Multiprocessing

SMP Symmetric Multiprocessing

CPU Central Processing Unit

LTTD LinuxTrace Toolkit Daemon

USTD Userspace Tracer Daemon
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8.1  Limitations of the performed experiments

Initially all the experiments were scheduled to be carried out in a P4080 multiprocessor board with 8

cores having an AMP setup. But due upavailability of hardware setup, all the experiments were
performed on an Intel Quad Core multiprocessor having a SMP setup. Due to SMP setup and Quad Core
Fff GKS IINByla FyR Ll2aairoAfAidArasSa 2F YdzZ 6AQ2NB Sy
System controls the cores, rather than in AMP where every core has a separate Operating System.

Due to the time constraint all the experiments were run only 3 times, but to get appropriate
expected result we needed 20 runs approximately. The consisteitte results could only have been
judged by such extensive experiments as the percentage of CPU samples varied within a raifge of 10
10°.

We used the profiling and sampling tool called OProfile as we found it quite efficient than other
tools for theparticular set of information we were looking for. But the main drawback of this tool is it
OlLyy2i SESOdziS LINRBLISNI & Ay | GANIdzZ f a&aidisSy tA1S
respective hardware events. When we were using ORrefé faced an issue during experimentation in
which there was significant amount of buffer overflows due to high rate of sampling and longer run
durations. We minimized the sampling frequency and thus the overflow got down below 1%.

During the execution fothe experiments when OProfile continuously was collecting samples,
after certain point of time the Opreport failed to gather data from the system to generate a sample
report. This was due to memory stack overflow and memory flush errors, by which theSsys O 2 dzf Ry Qi
dump the earlier samples collected. For every case like this the system was rebooted and the test cases
were rerun and it completed successfully.

For gauging the efficiency of LTTng and measuring its footprint we only could analyze the
binaries which were running in the system, i.e. the LTTD (LTTng daemon for kernel tracing) and USTD
(User Space Tracing daemon). The major portions of code and additions of LTTng are inside the kernel as
patches. For Data Flow analysis and code coverage espdtiallpatched kernel should have been
tested extensively with respect to kernel analysis tools which we left out of the scope of the thesis
because of time constraints.

For testing the working of LTT agent with Eclipse LTTng tool we found many hiccuygs duri
successfully setting up the system for the test configurations. We reported the errors for many of them.
Still there is a absence of proper manual for carrying out the setup and also due to lack of time we
decided not carrying on further with the LTTeagjand Eclipse LTTng tool experiments.

We used benchmark tool such as tbench for generating load into the system. More benchmark tools
could have been used to make the experiment real time with minimal amount of limitations.
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8.2  Choice of Control and Data Flow Analysis Tools

Control Flow tools such as OProfile, Gprof and sysprof came in our first set of tools marked to measure
the control flow of the system. But from the above three OProfile was chosen best to serve our purpose.

Problems with Gprof

 ltcouldy Qi KIyRfS Ydz GAGKNBIRSR FLILX AOFGA2Y | yR 0l
were not profiled appropriately.

f ¢KS LINRPANIY ySSRa -aQ ol MI2WIihg ER @BrRdzK MY ONB | 2
statically linking it before execution. For thisason third part binaries are difficult to be
sampled with GprofLYN10]

Problems with sysprof

T  [¢¢5 FYyR ! {¢5 KIFIa adzOK t2¢ F220LINAyLGa OGKFdG &ae
needed for it. During the LTTng run when the system was profiledetwas no samples for
either LTTD or USTD. But we had to get results to proof the low footprint and thus this tool was
also not used.

For Data Flow analysis we had in mind many tools based on their usage and way of working. The main
tools decided upon we Zoom, Valgrind, Acumem and OProfile. Acumem was a very efficient tool and
exactly served our purpose for getting the pain points inside the LTTD and USTD application but due to
having its evaluation license there was limitations in capturing of sangmdshus we had to opt out

from this tool. For our experiments we needed a tool which can attach itself with the running program
and sample it so that during its run the issues in the code can be gathered, but no tool provided this
except Acumem.

Problemswith Zoom system profiler

1 Again because of very low foot print Zoom cannot capture very low sampled events like LTTD
and USTD.

1 Zoom cannot attach itself to running programs, though provides all sorts of valuable code
refactoring guidelines for a hugely spha application.

Problems with Valgrind

9 Though Valgrind cannot attach itself to running programs but it can follow a forked child
program from a master program. Trying to check memory errors in LTTD code, Valgrind gave an
unhandledsyscalkerror as shown in Figure 8.1.
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WARNING: unhandled syscall: 313

-- 2089-- You may be able to write your own handler.

-- 2089-- Read the fle README_MISSING_SYSCALL_OR_IOCTL.
-- 2089-- Nevertheless we consider this a bug. Please report

-- 2089-- it at http: /Ivalgrind.org/support/bug_reports.html.

Figure 8.1Valgrind Error

9 Valgrind eats up a lot of memory and the thus the programs running under it is typically slowed
down from 20 to 30 times than the usual run [SNO5].

Problems with Acumem

1 Acumem was theequired and most focused tool for doing Data Flow Analysis, but the only
problem with it was the unavailability of the License file. We were using the Evaluation License
to test the tool and we found out that Acumem in its evaluation license cannot hanelgo. of
sample it gets from the running LTTD or USTD program. The error displayed during the test run
is shown in Figure 8.2.

Acumem - Sampling application

icense will expire ont 2010-05-19

umber of sampled threads allowed by licenze (1) exceeded. stopping sampling and
exiting,

aiting for all threads to detach.

ype q and enter to stop the zampling> All threads detached,

rrar: o zample file was generated

optSacunensslowspottersbing,  Alibfacumenszanple exited with status 0,

o may how cloze the xterm,

Figure 8.2Acumem Error

With all the problems faced we decided to do Data Flow Analysis with Valgrind and OPrddifandva

was used to check the memory leaks occurring durimgping of LTT Control during nawerwrite and

FEAIKG NBO2ZNRSNI NI OAy3aId ¢K2dzZAK AdG O2dzZ RyQd OF LI dz
Control binary but it gave out memory leak ersdor the LTT Control binary during execution. Valgrind

also could capture the memory leak errors for UST Daemon.

OProfile was used with two events, one of LII_MISSES and another of INSTRUCTION_RETIRED_P
to get the details of which part of the code hasshno. of L2 Cache misses and branch misprediction.
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8.3 Benefits of the Research

Ericsson has the need to deploy a well performing, low overhead tracing tool and thus the results from
this above experiments will help Ericsson to think over LTTng as theedh@eting utility across its
multicore systems.

During our experimentations we did found few bugs in UST (Userspace Tracer). We reported
them to the development team, and they were corrected immediately.

LYy Ylyeé | OFasSa ¢S 02 dztoRsyfanis like Bri@Mailili§y of pagier G 2
tools, licenses or resources. We documented the methodology to do the experiments for the future

research community, so that in case all things are proper this thesis report will guide new researchers to
further carry on our work with greater precision.
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9. Conclusion

The experiments performed in course our research works have produced a variety of results. By
analyzing those results we can conclude the following points:

LTTng Kernel Tracer

The impact of LTTng on kernel operations in terms of percentage of CPU cycles\aydiladternel is
1.6%.

There is almost no difference between the performances of LTTng kernel tracer in Non Overwrite mode
and in Flight Recorder mode.

LTTD has almost negligible footprint on both Non Overwrite mode and Flight Recorder mode. We have

Ff NBFReé &aSSy (KIFId 020K GKS Y2RSa KIFI@S Ityzad &aAYA
but still LTTD takes more CPU cycles in flight recordeerttah in Non Overwrite mode. The difference

is almost negligible as itiis the order of10* percent.

Memory loss is of very negligible amount but it doubles itself in case of flight recorder mitkdle
respect toNon Overwrite modeluring kernel tracing

LTTng kernel tracer spends most of its timéboand|d standard C libraries. It spends only 5.83% of the
time in other functions and libraries which includ@dttd. Therefore, we can say that as LTTng kernel
tracer spends so less time in executiitg own functions it has so little impact in the systems
performance.

LTT Control and Trace Daemon have minimal Cache miss and Branch Misprediction rate in order of 10
percent.

Branch Mispredictions oETTng Kernel Tracelecreases significantly with ireasein load. Memory
handling thus becomes more efficient with load increase.

Branch Mispredictions in case of different tracing modes vary in case of LTT Control and LTT Daemon.
For LTT Daemon branch misprediction rate is high in case of flight recomdiy. LTT Control exhibits
no major change with change in tracing modes.
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LTTng Userspace Tracer

The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on the
performance of the userspace application in terms of percentdg@RIU cycles against the original copy
of the applications without markers.

The impact of UST on userspace applications marginally increase with the increase in the number of
instrumentations compiled in, though the pattern of increase for all load cordignns are not similar.

USTD has almost negligible footprint on the system for different load configurations or different number
of markers. But it is noticeable that the footprint of USTD is not as good as compared to the footprint of
LTTD. USTD has gmtfootprint a little higher than LTTD but still is almost negligible to affect the
aeaisSyQa LISNF2NXYIyOSo

The footprint of USTD decreases as the load increases in the system. Therefore, the performance of
USTD gets better with increasing amount of load.

The footprint of UST is liner to the increasing number of markers. Therefore, the number of markers
compiled in does not have any effect on the footprint of USTD.

Unlike LTTng kernel tracer, even if LTTng userspace tracer spends greater amount of iterexeoeiti

in the C libraries, still it spends a lot of time (approximately 13% to Iiv#ecuting itown functions
Therefore, we can say that the LTTng userspace tracer is not as efficient as the LTTng kernel tracer and
there is a scope of improving performance.

Branch Mispredictions dfTThg Userspace Trackycreases significantly with increaiseload. Memory
handling thus becomes more efficient with load increase.

Memory loss though is of insignificant number but is more for UST tragthgespect to kernel tracing
UST also has problem of not freeing a chunk of memory after completion of execution.

A memory leak for UST Daemon happens with a loss of small amount of data during saving trace data to
disk.

LTTng Kernel and Userspace Tracer Together

The impact is quite similar to LTTng kernel tracer and there is no additional impact on the percentage of
CPU cycles needs to perform kernel operations.

The LTTng Kernel tracer Non Overwrite mode has performed a bit better then theRigirtder mode
while executed with Userspace Tracer in terms of CPU cycles needed for kernel operations.

LTT kernel Tracing Daemon is much more memory efficient than UST Daemon.
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10. Future Work

We were originally set out to do experiment in the P4080 Feaksboard with AMP setup for each of

the 8 cores. But due to the unavailability of the hardware and setup we ended up doing experiments in a
Quad Core SMP Setup. Our experiments methodology can be used to do experiments in the real
hardware for evaluating TTng on a multicore platform.

hyS LI NI 2F GKS NBAaASHNOK l[dzSadAazy O2dzZ RyQild o685
the use of LTTng agent and Eclipse LTT Tools. This was mainly unaccomplished due to immature build of
the LTTng agent and lack dbcumentation related to its use. There are still few bugs which are
reported and yet to be corrected. This all needed much more time and thus was skipped. This work can
be carried on after these issues are resolved as it will open new doors to monidostegam LTTng
traces in remote systems.

In some part of the result analysis we found that both the Kernel and Userspace Tracer Daemon
performs better with respect to memory handling incase the load increases on the system. While
analyzing with Valgrind walso found that the number of time the data gets collected and buffered for
high load is very high. So from above two sentences the reason of this may be that the prefetcher
already gets to know the branch to be taken, due to large rate of trace datectioH, but this requires
FANIKSNI Fylrfeaira oKAOK O2dzZ RyQli 0SS R2yS 06SOldasS 2

.801FdzaS 2F 101 2F LINRBLISNI (22fa ¢S O2dZ RyQi
incorrect data structures or cyclic loop issues. Acumem is suitable tdd®, @A RSR A0 Q& 6AGK |
license. We could only gauge the memory performances of the LTTng and UST tracer with the help of
OProfile and Valgrind. Deeper data flow analysis can be taken up as a future work.

We could only limit our studies to theraries and the running programs of LTTng Kernel Tracer,
but the main involvement of LTTng is inside the kernel where its code gets patched. Thus in future, if the
Control and Data Flow analysis can be carried out for that part of LTTng then it can givimte@sting
and useful data to analyze.

GDB (GNU Debugger) has tracepoints to collect trace data which can be analyzed later with help
of GDB commands. An interesting future work will be involving this with UST tracepoints and LTTng to
see the performaoe tradeoff.

Page |106



11.

References

[LTT10]

[SHE99]

[TamO05]

[Sér02]

[NROS]

[KP9O]

[SLES09]

[MUCO09]

[FRE10]
[LTP10]

[LTTOO]

[DDO6]

[DES09]

[FDDO9]

LTTng Projectttp://Ittng.org/, Last Updated: 20104-20

Sameer ShendeRrofiling and Tracing in LinuXn Proceedings of the Extreme Linux
Workshop 2, Monterey, CA, June 1999 USENIX

Tammy Noergaardsmbedded Systems Architectur®ages (% 13), Newnes Publisher,
ISBN13:978-0750677929, February 2005

Sérgio de Jesus Duarte Diespbedded Systems Architecturéternational Conference
on Computer Architecture 2001/02

Niemann, RalfHardware/Software CeDesign for Data Flow Dominated Embedded
Systems Kluwer Academic Publishers, (1998)

Koopman, Philip,Design Constraints on Embedded Real Time Control Systems
Systems, Design & Networks Conference, (1990)

Jonas Svenneimg, John Logan, Jakob Engblom, Patrik StromBlethedded Multicore:
An Introduction, Published: 20097

Philip Mucci,Linux Multicore Performance Analysis and Optimization in a Nutshell
NOTUR 2009

P4 Series P4080 multicore processhieescale Semiconductor, 2010
Eclipse.orgl.inux Tools Projeat LTTng IntegrationLast Updated: 20104-20

Karim Yaghmour and Michel R. Dagendike Linux Trace ToolkitLinux Journal,
Published: May 2000

Mathieu Desnoyers and Mieh R. DagenaisThe LTTng tracer. A low impact
performance and behavior monitor for GNU/Linykinux Symposium 2006

Mathieu DesnoyersLowImpact Operating System Tracingh.D. dissertation, Ecole
Polytechnique de Montréal, Published: December200

PierreMarc Fournier, Mathieu Desnoyers, Michel R. Dage@as)bined Tracing of the
Kernel and Applications with LTTnginux Symposium 2009

Page |107



[MLKO6] K. Mohror and K.L. Karavanis, Study of Tracing Overhead on a HiBkrformance
Linux ClusterPortland State University Computer Science Technical Report number TR
06-06, December 2006

[HDDO8] Heidari, P.; Desnoyers, M.; Dagenais, Merformance analysis of virtual machines
through tracing Electrical and Computer Engineering, 2008, CCECE 20G&liaban
Conference on, vol. no. pp.0002600266, 4 7 May 2008

[FDDO09] Fournier, PierreMarc; Desnhoyers, M.; Dagenais, MCombined Tracing of the Kernel
and Applications with LTTndn Linux Symposium, Ottawa, Ontario, Canada, July 2010

[DEB10] Dbench Radme, http://samba.org/ftp/tridge/dbench/README, Last Visited: 2@
20

[BYFS10] Beyond Linux® From Scratch, Chapter 11. System Utilities
http://www.linuxfromscratch.org/blfs/view/svn/general/sysstat.html, Last Visited:
201004-20

[SYS10] SYSTAThttp://pagespersaorange.fr/sebastien.godard/documentation.html, Last
Visited: 201604-20

[OPR10] OProfile http://oprofile.sourceforge.net/, Last Visited: 2041-20

[PRAO3] Prasanna S. Panchamukimashing performance with OProfileLinux Technology
Center, IBM India Software Labs, http://www.ibm.com/developerworks/linux/library/I
oprof.html, Last Updated200310-16

[PZWSS07] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang Ber&timance
Evaluation of Virtualization Technologider Server ConsolidationEnterprise Systems
and Software Laboratory, HP LaboratoriesoRdto, Published200704-11

[GPR10] gprof2dot, http://code.google.com/p/jrfonseca/wiki/Gprof2Dot

[LPGFO08] Li, Peng; Park, Hyundo; Gao, Debin; Fu, Jianmimgingthe Gap between Datdlow
and Contro¥flow Analysis for Anomaly Detection2008 Annual Computer Security
Applications Conference, Decembeyl2, 2008, Anaheim, California, USA

[ACUQ9] Acumem SlowSpotter | Optimization Tutorial
http:// www.acumem.com/imagg/'stories/articles/tutoriatslowspotter.pdf, 2009

[VAL10] Valgrind, http://valgrind.org/info/tools.html, Last Visited: 20105-31

[SNO5] Seward, Julian; Nethercote Nicholds$sing Valgrind to detect undefined value errors
with bit-precisbn, Proceedings of the USENIX'05 Annual Technical Conference,
Anahem, California, USA, April 2005

[LYN1D Jaqui LyncHJNIX and Web PERFORMANGEt Visited2010-05-31
Page |108



Appendix Az Experiment Results

11.1 Control Flow Analysis

11.1.1 Experiment 2 z Measuring the efficiency of LTTng Kernel

Tracer
CPU CYCLES
TEST KERNEL

LOAD | ~,gg | RUNS| LOAD opg | OPROFILl  LTTD
R1 | 94.140000| 4.200900| 0.948300| 0.000000

LOW T1 R2 | 94.089200| 4.371600| 0.957800| 0.000000
R3 | 93.765200| 4.610700| 1.016600| 0.000000
R1 | 93.896600| 4.392600 1.001600| 0.000000

LOW T4 R2 | 93.730900| 4.510600| 1.000200| 0.000000
R3 | 94.081500| 4.237300| 0.989600| 0.000000
R1 | 94.062200| 4.422400| 0.986200| 0.000000

LOW T7 R2 | 94.170800| 4.358800| 0.990400| 0.000000
R3 | 93.957100| 4.515100| 0.984700| 0.000000
R1 | 93.851200| 4.573400| 0.999200| 0.000000

LOW T10 R2 | 93.965300| 4.487700| 0.985500| 0.000000
R3 | 94.131300| 4.340200| 0.985100| 0.000000
R1 | 93.514300| 4.759500| 1.032000| 0.000600

LOW T13 R2 | 93.786500| 4.662500| 1.001200| 0.000110
R3 | 93.353200| 4.776100| 1.047700| 0.000160
R1 | 93.962900| 4.502200| 1.007600| 0.000740

LOW T16 R2 | 93.741000| 4.537100| 0.997900| 0.000330
R3 | 93.142800| 5.003500| 1.054800| 0.000430
R1 | 96.239700| 2.537700| 0.865200| 0.000000

MED T2 R2 | 96.038300| 2.722500| 0.870100| 0.000000
R3 | 96.302400| 2.470500| 0.865400| 0.000000
R1 | 95.446900| 3.227900| 0.901400| 0.000000

MED T5 R2 | 95.540300| 3.139100| 0.905100| 0.000000
R3 | 95.505900| 3.217900| 0.909800| 0.000000
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CPU CYCLES
TEST KERNEL
LOAD CASE RUNS LOAD OPS OPROFILI LTTD
R1 95.499900| 3.220500{ 0.904700( 0.000000
MED T8 R2 95.604400| 3.167000{ 0.907700| 0.000000
R3 95.598500| 3.196500| 0.893500( 0.000000
R1 95.450500| 3.272100{ 0.917900( 0.000000
MED T11 R2 95.319200| 3.346600| 0.937900( 0.000000
R3 95.363200| 3.250400| 0.936200( 0.000000
R1 95.159700| 3.448900| 0.933900| 0.000051
MED T14 R2 95.313200| 3.342500{ 0.923900( 0.000041
R3 95.343600| 3.381900| 0.926800| 0.000051
R1 95.137500| 3.488300| 0.959200( 0.000093
MED T17 R2 95.234600| 3.402000{ 0.954100( 0.000200
R3 95.098400| 3.427700{ 0.971600( 0.000093
R1 96.712300| 2.197100{ 0.829800( 0.000000
HIG T3 R2 96.697300| 2.191400| 0.842200( 0.000000
R3 96.754000| 2.129200| 0.848200| 0.000000
R1 96.270600| 2.612600| 0.845700| 0.000000
HIG T6 R2 96.395600| 2.557300| 0.766200( 0.000000
R3 96.328000| 2.603800| 0.780900( 0.000000
R1 96.329100| 2.603300{ 0.799500( 0.000000
HIG T9 R2 96.244500| 2.627800| 0.806300| 0.000000
R3 96.246400| 2.647300{ 0.807100( 0.000000
R1 96.157100| 2.668800| 0.838400( 0.000000
HIG T12 R2 96.368800| 2.574900| 0.785200( 0.000000
R3 96.399700| 2.500500{ 0.788000( 0.000000
R1 96.136000| 2.630100{ 0.886900| 0.000006
HIG T15 R2 95.957200| 2.822500{ 0.848200( 0.000035
R3 96.120600| 2.645900( 0.876300| 0.000029
R1 96.112400| 2.673400| 0.844800( 0.000081
HIG T18 R2 96.230200| 2.658000{ 0.811100( 0.000081
R3 96.032900| 2.765600{ 0.865100( 0.000093
Table A1lExperiment 2 Results (Load)
CPU CYCLES
TEST KERNEL
LOAD CASE RUNS | TBENCH OPS OPROFILE LTTD
R1 11.055100| 81.445400[ 4.339800| 0.000000
LOW T1 R2 11.075800| 81.483000[ 4.332000| 0.000000
R3 11.165000| 81.622600f 4.246500{ 0.000000
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CPU CYCLES

TEST

KERNEL

LOAD CASE RUNS | TBENCH OPS OPROFILI LTTD
R1 10.123600| 81.328400| 5.619600| 0.000000
LOW T4 R2 10.01300 | 81.276600| 5.696000| 0.000000
R3 10.059500| 81.329100| 5.717700| 0.000000
R1 10.015100| 81.032100| 5.776800| 0.000000
LOW T7 R2 10.108500| 81.229200| 5.720000| 0.000000
R3 10.143000] 81.057800| 5.651800| 0.000000
R1 9.143100| 80.982700| 5.620800| 0.000000
LOW T10 R2 9.141700| 81.013800| 5.667500| 0.000000
R3 9.155100 | 80.989700| 5.694300| 0.000000
R1 7.206800| 84.049300| 4.989700| 0.000160
LOW T13 R2 7.304000| 83.782900| 5.090000( 0.000160
R3 7.041100 | 84.061200] 4.992800| 0.000130
R1 6.496400| 83.607200| 6.295200| 0.000180
LOW T16 R2 6.548900| 84.070500| 5.807100| 0.000180
R3 6.57790 | 83.594300| 6.034400| 0.000360
R1 12.385100| 81.652800| 3.551600| 0.000000
MED T2 R2 12.456100 | 81.572800| 3.507400| 0.000000
R3 12.587100| 81.568200| 3.481300| 0.000000
R1 12.200700| 82.388300| 3.110700| 0.000000
MED T5 R2 12.59800 | 81.838200| 3.314900| 0.000000
R3 12.229800| 82.035700| 3.395100| 0.000000
R1 12.232800| 81.949600| 3.478500| 0.000000
MED T8 R2 12.700000| 81.016800| 3.841800| 0.000000
R3 12.164100| 81.977400| 3.445500( 0.000000
R1 10.800500| 82.394600| 3.448100| 0.000000
MED T11 R2 10.930800| 82.122800| 3.534800( 0.000000
R3 10.71600 | 81.826200| 3.969100| 0.000000
R1 8.192400| 84.960700| 3.585200| 0.000050
MED T14 R2 8.490900| 84.943200| 3.254200| 0.000180
R3 8.403700| 84.916900| 3.396500| 0.000150
R1 7.558300| 85.487200| 3.909500( 0.000610
MED T17 R2 7.920700 | 84.261100| 4.690800( 0.000300
R3 7.554500| 85.329700| 4.075200| 0.000360
R1 13.017900| 82.545100| 2.366300| 0.000000
HIG T3 R2 13.01300 | 82.563900| 2.397800| 0.000000
R3 13.032300| 82.553000| 2.387400( 0.000000
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CPU CYES
TEST KERNEL

LOAD CASE RUNS | TBENCH OPS OPROFILI LTTD
R1 13.290600| 81.447300| 3.102900| 0.000000

HIG T6 R2 13.128100] 81.315600] 3.415900| 0.000000
R3 13.220800| 81.296700| 3.304900| 0.000000
R1 13.236900| 81.380700] 3.219900| 0.000000

HIG T9 R2 13.181200| 81.178100| 3.440700| 0.000000
R3 13.476500| 81.341600] 3.021500| 0.000000
R1 12.028300| 81.636700| 3.084700| 0.000000

HIG T12 R2 11.957200| 81.845300| 2.867600| 0.000000
R3 11.885800| 81.710900| 3.021800| 0.000000
R1 9.327400| 84.284000| 3.342000| 0.000100

HIG T15 R2 9.459000| 84.448500| 3.057700| 0.000200
R3 9.251300| 84.606100| 3.011500| 0.000200
R1 8.665400| 84.515200| 3.767800| 0.000210

HIG T18 R2 8.732200| 85.074000| 3.233600| 0.000380
R3 8.758700| 85.348000| 2.851100| 0.000280

Table 2: Experiment 2 Results (Thench)

11.1.2 Experiment 3 z Measuring the efficiency of LTTng Userspace

Tracer

CPU CYCLES
TEST
LOAD CASE RUNS LOAD USTD
R1 93.809000| 0.000000
LOW T1 R2 93.832000| 0.000000
R3 93.362200| 0.000000
R1 94.186900| 0.000000
LOW T4 R2 94.090300| 0.000000
R3 93.715200| 0.000000
R1 94.191900| 0.001800
LOW T7 R2 93.170600| 0.001700
R3 93.713500| 0.001500
R1 95.068800| 0.000000
MED T2 R2 95.962800| 0.000000
R3 95.913000| 0.000000
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CPU CYCLES
TEST
LOAD CASE RUNS LOAD USTD
R1 95.910900| 0.000000
MED T5 R2 95.961100| 0.000000
R3 95.961900| 0.000000
R1 95.893200| 0.000550
MED T8 R2 95.919400| 0.001000
R3 95.921800| 0.000680
R1 96.785000| 0.000000
HIG T3 R2 96.689100| 0.000000
R3 95.919700| 0.000000
R1 96.723500| 0.000000
HIG T6 R2 96.852800| 0.000000
R3 96.806100| 0.000000
R1 96.692300| 0.000570
HIG T9 R2 96.929200| 0.000410
R3 96.768500| 0.000590

Table A3Experiment 3 Results (Load with 1 Marker)

CPU CYCLES
TEST
LOAD CASE RUNS LOAD USTD
R1 93.218300| 0.000000
LOW T1 R2 93.625300| 0.000000
R3 93.751800| 0.000000
R1 93.914900| 0.000000
LOW T4 R2 94.200500| 0.000000
R3 94.200500| 0.000000
R1 94.101800] 0.002100
LOW T7 R2 94.286500| 0.001900
R3 93.795000| 0.001500
R1 95.216900| 0.000000
MED T2 R2 95.924900| 0.000000
R3 95.172700| 0.000000
R1 96.001100| 0.000000
MED TS R2 95.844800| 0.000000
R3 96.139300| 0.000000
R1 95.929400| 0.000640
MED T8 R2 95.861300| 0.001100
R3 95.879300| 0.000620
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