
Page | 1

Efficiency of LTTng as a Kernel and
Userspace Tracer on Multicore

Environment
Master Thesis in Software Engineering

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

June, 2010

Romik Guha Anjoy Soumya Kanti Chakraborty
 romik.03305@gmail.com soumyakanti.chakraborty@gmail.com

Supervisors:

Alf Larsson, Ericsson AB and Daniel Flemström, Mälardalen University

Examiner:

Daniel Sundmark, Mälardalen University

mailto:romik.03305@gmail.com
mailto:soumyakanti.chakraborty@gmail.com

Page | 2

Preface

This document is a Master Thesis in the field of Software Engineering. The work described here has been

accomplished at the Industrial Research and Innovation Laboratory (IRIL), School of Innovation, Design

and Engineering, Mälardalen University in Västerås and at Ericsson AB in Stockholm in a time span

between January 2010 and June 2010.

We are grateful to Mathieu Desnoyers and Pierre-Marc Fournier from the ltt -dev team for providing us

with valuable information about LTTng and for fixing the reported bugs quickly. We are also grateful to

Francois Chouinard from Ericsson Canada and the eclipse-dev team for helping us.

We are thankful to Sten Ekman for his Innovation Science& Management course which equipped us with

skills to deal with the research work efficiently. We are also thankful to Daniel Sundmark for reviewing

the initial draft of our thesis document and providing his valuable feedback.

Special thanks go to our supervisor Daniel Flemström who dedicated much time supervising us and

pointing us in the right directions. Alf Larsson, our supervisor at Ericsson AB, also deserves special thanks

for his invaluable feedback, insight and orientations in the field.

Examiner at Mälardalen University

Daniel Sundmark
daniel.sundmark@mdh.se

Supervisor at Mälardalen University

Daniel Flemström
daniel.flemstrom@mdh.se

Supervisor at Ericsson AB

Alf Larsson
alf.larsson@ericsson.com

mailto:daniel.sundmark@mdh.se
mailto:daniel.flemstrom@mdh.se
mailto:alf.larsson@ericsson.com

Page | 3

Abstract

With the advent of huge multicore processors, complex hardware, intermingled networks and huge disk

storage capabilities the programs that are used in the system and the code which is written to control

them are increasingly getting large and often much complicated. There is increase in need of a

framework which tracks issues, debugs the program, helps to analyze the reason behind degradation of

system and program performance. Another big concern for deploying such a framework in complex

systems is to the footprint of the framework upon the setup. LTTng project aims to provide such an

effective tracing and debugging toolset for Linux systems. Our work is to measure the effectiveness of

LTTng in a Multicore Environment and evaluate its affect on the system and program performance. We

incorporate Control and Data Flow analysis of the system and the binaries of LTTng to reach for a

conclusion.

Page | 4

Thesis Summary

The Goal of the thesis is to analyze the performance of LTTng kernel and Userspace tracer in a multicore

environment under various load configurations. Control and Data Flow analysis of the system and the

application binaries is carried out to evaluate the performance measurements of the tracing tool. With

Control Flow analysis, we annotate source code of application binaries, measure the internal CPU cycles

usage, perform a call graph analysis to draw a picture about the necessary calls made by the program

and the tool during testing. Data Flow analysis helps us to find out the memory performances of the

tracing utility and its memory leaks under different load configurations.

The experiments we performed in course of finding the efficiency of LTTng kernel tracer and the

userspace tracer are:

¶ Experiment 1 ς Determination of load configuration parameters for System Under Test (SUT)

¶ Experiment 2 ς Measuring the efficiency of LTTng Kernel Tracer

¶ Experiment 3 ς Measuring the efficiency of LTTng Userspace Tracer

¶ Experiment 4 ς Measuring the impact on System as well as Traced Application when LTTng

Kernel Tracer and Userspace Tracer are executed together

¶ Experiment 5 ς Running load program and tbench on LTTng Kernel with Non Overwrite and

Flight Recorder tracing modes

¶ Experiment 6 ς Running UST tracing on load and tbench program each instrumented with 10

markers under different load configurations

¶ Experiment 7 ς Running the Kernel tracer with the help of Valgrind under various load

configurations generated by load program (system load) and tbench (process and network load)

¶ Experiment 8 ς Running the load and tbench application instrumented with 10 markers under

UST (Userspace Tracing) with the help of Valgrind

The findings from these experiments have enabled us to conclude on the following points:

¶ The impact of LTTng kernel tracer on kernel operations against vanilla kernel is 1.6%

¶ There is almost negligible difference between the performances of LTTng kernel tracer in Non

Overwrite mode and in Flight Recorder mode

¶ The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on

the performance of the userspace application against the original copy of the applications

without markers

¶ The impact of UST on userspace applications marginally increase with the increase in the

number of instrumentations compiled in, though the pattern of increase for all load

configurations are not similar

Page | 5

¶ LTT Control and Trace Daemon have minimal cache miss and Branch Misprediction rate in order

of 10-4 percent

¶ Branch Mispredictions of both LTTng Kernel Tracer and UST decreases significantly with increase

in load. Memory handling thus becomes more efficient with load increase

¶ LTT kernel Tracing Daemon is much more memory efficient than UST Daemon

¶ Memory loss though is of insignificant number but is more for UST tracing. UST also has problem

of not freeing a chunk of memory after completion of execution

¶ The impact of LTTng kernel tracer and UST together is quite similar to LTTng kernel tracer and

there is no additional impact on the percentage of CPU cycles needs to perform kernel

operations

Page | 6

Contents

1. INTRODUCTION ... 14

1.1 ORGANIZATION OF THESIS .. 15

2. PROBLEM FORMULATION ... 16

2.1 PROBLEM STATEMENT ... 17

2.2 PROBLEM ANALYSIS .. 17

3. BACKGROUND ... 19

3.1 TRACING .. 20

3.2 EMBEDDED SYSTEMS ... 21

3.2.1 Classes of Embedded Systems .. 21

3.2.2 Challenges in Embedded Systems Design.. 21

3.2.3 Real Time Architecture Constraints .. 22

3.3 MULTICORE SYSTEMS .. 24

3.3.1 Migration from Single Core to Multicore .. 24

3.3.2 Parallelism in Multicore Processing .. 25

3.3.3 Types of Multicore ... 26

3.3.4 Inter-core Communication ... 28

3.3.5 Multicore Design Approaches .. 28

3.3.6 Problems in Multicore Systems... 28

3.4 LTTNG .. 29

3.4.1 Overview ... 29

3.4.2 Features of LTTng .. 29

3.4.3 LTTng Tracer Architecture .. 30

3.4.4 LTTng Design ... 31

3.4.5 LTTng Userspace Tracer ... 34
3.4.5.1 UST Architecture ...34
3.4.5.2 UST Libraries ...35
3.4.5.3 Time Synchronization ..35
3.4.5.4 UST Data Collection ..35

3.4.6 LTT Viewer (LTTV) .. 35

3.4.7 Use of LTTng .. 35

3.4.8 How to use LTTng?... 36

3.5 CONTROL AND DATA FLOW ANALYSIS .. 37

3.5.1 Control Flow Analysis ... 37

3.5.2 Data Flow Analysis... 38

4. RELATED WORK ... 39

4.1 OVERVIEW .. 40

4.2 SEARCH METHODOLOGY .. 40

Page | 7

4.3 STATE OF THE ART .. 41

5. EXPERIMENT SETUP... 43

5.1 SYSTEM CONFIGURATION ... 44

5.1.1 Hardware Configuration .. 44

5.1.2 Software Configuration .. 44

5.2 TOOLS AND UTILITIES .. 45

5.2.1 Load Generation Tools ... 45
5.2.1.1 load ..45
5.2.1.2 tbench ..45

5.2.2 System Activity Measurement Tools ... 46
5.2.2.1 Sysstat ..46

5.2.3 Control Flow and Data Flow Analysis Tools ... 47
5.2.3.1 OProfile ..48
5.2.3.2 Valgrind ..49
5.2.3.3 gprof2dot.py...51

5.3 TEST SYSTEM SETUP .. 52

5.3.1 Tools Setup .. 52

5.3.2 Load Configuration .. 53

5.3.3 Test Automation .. 53

5.3.4 Performance Measurement ... 54

5.3.5 Result Analysis ... 54

6. EXPERIMENT METHODOLOGY ... 56

6.1 LOAD CONFIGURATION .. 57

6.1.1 Experiment 1 ς Determination of load configuration parameters for System Under Test (SUT) 57

6.2 CONTROL FLOW ANALYSIS .. 58

6.2.1 Experiment 2 ς Measuring the efficiency of LTTng Kernel Tracer ... 58

6.2.2 Experiment 3 ς Measuring the efficiency of LTTng Userspace Tracer ... 59

6.2.3 Experiment 4 ς Measuring the impact on System as well as Traced Application when LTTng Kernel

Tracer and Userspace Tracer are executed together ... 59

6.3 DATA FLOW ANALYSIS ... 61

6.3.1 Experiment 5 ς Running load program and tbench on LTTng Kernel with Non Overwrite and Flight

Recorder tracing modes ... 61

6.3.2 Experiment 6 ς Running UST tracing on load and tbench program each instrumented with 10 markers

under different load configurations .. 61

6.3.3 Experiment 7 ς Running the Kernel tracer with the help of Valgrind under various load configurations

generated by load program (system load) and tbench (process and network load) .. 62

6.3.4 Experiment 8 ς Running the load and tbench application instrumented with 10 markers under UST

(Userspace Tracing) with the help of Valgrind ... 63

7. RESULTS .. 64

7.1 LOAD CONFIGURATION .. 65

7.1.1 Load Configuration parameters for System Under Test (SUT) .. 65

7.2 CONTROL FLOW ANALYSIS .. 66

7.2.1 Efficiency of LTTng Kernel Tracer with Load utility .. 66

7.2.2 Efficiency of LTTng Kernel Tracer with Tbench utility... 67

Page | 8

7.2.3 Efficiency of LTTng Kernel Tracer .. 68

7.2.4 Footprint of LTTng Kernel Tracer Daemon (LTTD) ... 69

7.2.5 Call Graph Analysis for LTTng Kernel Tracer .. 70

7.2.6 Efficiency of LTTng Userspace Tracer with Load utility .. 73

7.2.7 Efficiency of LTTng Userspace Tracer with Tbench utility .. 74

7.2.8 Efficiency of LTTng Userspace Tracer .. 75

7.2.9 Footprint of LTTng Userspace Tracer Daemon (USTD) ... 79

7.2.10 Call Graph Analysis of LTTng Userspace Tracer ... 81

7.2.11 Combined Impact of LTTng Kernel and Userspace Tracer .. 84

7.3 DATA FLOW ANALYSIS ... 89

7.3.1 L2 Caches Misses during execution of LTT Control Module with respect to various load configurations

generated by load program and tbench .. 89

7.3.2 L2 Cache Misses of LTT Daemon with respect to various load configurations generated by load

program and tbench .. 90

7.3.3 Branch Mispredictions exhibited by LTT Control module with respect to various load configurations

generated by load program and tbench .. 91

7.3.4 Branch Mispredictions of LTT Daemon with respect to various load configurations generated by load

program and tbench .. 93

7.3.5 Analysis of Memory Leak of LTT Control and LTT Daemon program during execution with respect to

various load configurations generated by load program and tbench ... 94

7.3.6 L2 Cache Misses for UST Daemon during tracing of load and tbench program (10 markers) under

various load configurations .. 94

7.3.7 Branch Misprediction for UST Daemon during tracing of load and tbench program (10 markers) under

various load configurations .. 96

7.3.8 Analysis of Memory Leak of UST Tracer during execution with respect to various load configurations

generated by load program and tbench .. 98

8. DISCUSSION ... 99

8.1 LIMITATIONS OF THE PERFORMED EXPERIMENTS ... 100

8.2 CHOICE OF CONTROL AND DATA FLOW ANALYSIS TOOLS .. 101

8.3 BENEFITS OF THE RESEARCH .. 103

9. CONCLUSION ... 104

10. FUTURE WORK .. 106

11. REFERENCES .. 107

APPENDIX A ς EXPERIMENT RESULTS... 109

11.1 CONTROL FLOW ANALYSIS .. 109

11.1.1 Experiment 2 ς Measuring the efficiency of LTTng Kernel Tracer... 109

11.1.2 Experiment 3 ς Measuring the efficiency of LTTng Userspace Tracer... 112

11.1.3 Experiment 4 ς Measuring the impact on System as well as Traced Application when LTTng Kernel

Tracer and Userspace Tracer are executed together ... 117

11.2 DATA FLOW ANALYSIS ... 121

11.2.1 Experiment 5 ς Running load program and tbench on LTTng Kernel with Non overwrite and Flight

recorder tracing modes. ... 121

Page | 9

11.2.2 Experiment 6 ς Running UST tracing on load and tbench program each instrumented with 10

markers under different load configurations. .. 123

11.2.3 Experiment 7 ς Running the Kernel tracer with the help of Valgrind under various load

configurations generated by load program (system load) and tbench (process and network load). 123

11.2.4 Experiment 8 ς Running the load and tbench application instrumented with 10 markers under UST

(Userspace Tracing) with the help of Valgrind ... 125

APPENDIX B ς LOAD PROGRAM SOURCE ... 127

Page | 10

Index of Tables

Table 5.1 Load Configuration

Table 6.1 Load Configuration

Table 6.2 Load Configurations to be determined

Table 6.3 Test Cases for Experiment 2

Table 6.4 Test Cases for Experiment 3

Table 6.5 Test Cases for Experiment 4

Table 6.6 Test Cases for Experiment 5

Table 6.7 Test Cases for Experiment 6

Table 6.8 Test Cases for Experiment 7

Table 6.9 Test Cases for Experiment 8

Table 7.1 Results for Load Configuration of load utility

Table 7.2 Results for Load Configuration of tbench utility

Table 7.3 Impact of LTTng kernel tracer on kernel operations (Load)

Table 7.4 Impact of LTTng kernel tracer on kernel operations (Tbench)

Table 7.5 Impact of LTTng kernel tracer on kernel operations (Average)

Table 7.6 Footprint of LTTD (Load)

Table 7.7 Footprint of LTTD (Tbench)

Table 7.8 Footprint of LTTD (Average)

Table 7.9 Libraries and functions for LTTng Kernel Tracer (Load)

Table 7.10 Libraries and functions for LTTng Kernel Tracer (Tbench)

Table 7.11 Impact of UST on Load with 1 marker

Table 7.12 Impact of UST on Load with 5 markers

Table 7.13 Impact of UST on Load with 10 markers

Table 7.14 Impact of UST on Load (Average)

Table 7.15 Impact of UST on Tbench with 1 marker

Table 7.16 Impact of UST on Tbench with 5 markers

Table 7.17 Impact of UST on Tbench with 10 markers

Table 7.18 Impact of UST on Tbench (Average)

Table 7.19 Impact of UST on userspace applications (Average)

Table 7.20 Impact of UST based on number of markers

Table 7.21 Footprint of USTD (Load)

Table 7.22 Footprint of USTD (Tbench)

Table 7.23 Footprint of USTD (Average)

Table 7.24 Libraries and functions for LTTng Userspace Tracer (Load)

Table 7.25 Libraries and functions for LTTng Userspace Tracer (Tbench)

Table 7.26 Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in load

Table 7.27 Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in load

Page | 11

Table 7.28 Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in load

Table 7.29 Average Impact of LTTng kernel tracer and UST on kernel operations (Load)

Table 7.30 Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in tbench

Table 7.31 Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in tbench

Table 7.32 Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in tbench

Table 7.33 Average Impact of LTTng kernel tracer and UST on kernel operations (Tbench)

Table 7.34 Average Combined Impact of LTTng kernel tracer and UST on kernel operations

Table 7.35 L2 Cache Miss (lttctl) for load program

Table 7.36 L2 Cache Miss (lttctl) for tbench application

Table 7.37 Average L2 Cache Miss (lttctl)

Table 7.38 Cache Miss (lttd) for load program

Table 7.39 Cache Miss (lttd) for tbench program

Table 7.40 Cache Miss (lttd)

Table 7.41 Branch Mispredictions (lttctl) for load program

Table 7.42 Branch Mispredictions (lttctl) for tbench

Table 7.43 Branch Mispredictions (lttctl)

Table 7.44 Branch Mispredictions (lttd) for load program

Table 7.45 Branch Mispredictions (lttd) for tbench

Table 7.46 Branch Mispredictions (lttd)

Table 7.47 Memory Leak for LTT Control (Kernel Tracer)

Table 7.48 L2 Cache Miss for UST Daemon

Table 7.49 L2 Cache Miss (ustd & lttd)

Table 7.50 Branch Mispredictions for UST Daemon

Table 7.51 Branch Mispredictions (ustd & lttd)

Table 7.52 Memory Leak for UST Tracer (load & tbench)

Page | 12

Index of Graphs

Graph 7.1 Impact of LTTng kernel tracer on kernel operations (Load)

Graph 7.2 Impact of LTTng kernel tracer on kernel operations (Tbench)

Graph 7.3 Average Impact of LTTng kernel tracer on kernel operations for different load configurations

Graph 7.4 Average Impact of LTTng Kernel Tracer

Graph 7.5 Call Graph Analysis of LTTng Kernel Tracer on Load

Graph 7.6 Call Graph Analysis of LTTng Kernel Tracer on Tbench

Graph 7.7 Impact of UST on userspace applications for different load configurations

Graph 7.8 Average Impact of UST on userspace applications

Graph 7.9 Impact of UST based on number of markers for different load configurations

Graph 7.10 Average Impact of UST based on number of markers

Graph 7.11 Impact of load on USTD

Graph 7.12 Impact of the number of markers on USTD

Graph 7.13 Libraries and functions for LTTng Userspace Tracer (Load)

Graph 7.14 Libraries and functions for LTTng Userspace Tracer (Tbench)

Graph 7.15 Impact of LTTng kernel tracer and UST on kernel operations (Load)

Graph 7.16 Impact of LTTng kernel tracer and UST on kernel operations (Tbench)

Graph 7.17 Average Combined Impact of LTTng kernel tracer and UST on kernel operations

Graph 7.18 Overall L2 Cache Miss Rate for LTT Control

Graph 7.19 Overall L2 Cache Miss Rate for LTT Daemon

Graph 7.20 Overall Branch Misprediction for LTT Control

Graph 7.21 Overall Branch Misprediction for LTT Daemon

Graph 7.22 L2 Cache Miss for UST Daemon

Graph 7.23 L2 Cache Miss (ustd vs. lttd)

Graph 7.24 Branch Mispredictions for UST Daemon

Graph 7.25 Branch Mispredictions (ustd vs. lttd)

Page | 13

Index of Figures

Figure 4.1 Homogeneous Multicore Environment

Figure 4.2 Heterogeneous Multicore Environment

Figure 4.3 Distributed Memory Multicore Environment

Figure 4.4 Shared Memory Multicore Environment

Figure 4.5 Hybrid Memory Multicore Environment

Figure 4.6 LTTng Tracer Architecture

Figure 4.7 LTTng Tracer Components

Figure 4.8 LTTng Channel Components

Figure 4.9 UST Architecture

Figure 4.10 Example of Call Graph

Figure 4.11 Example of Annotated Source

Figure 5.1 tbench call graph output

Figure 5.2 Test System Setup

Figure 5.3 Result Analysis

Figure 8.1 Valgrind Error

Figure 8.2 Acumem Error

Page | 14

1. Introduction

Ericsson as a company is rapidly growing in telecom sector with deployment of advanced technologies

and increase in its user base. Slowly due to the pressure of the industry and hunger for more

performance, Ericsson has moved into multicore processors and PowerPC architectures. Multicore

architectures help to reduce footprint through virtualization, replacing many small processor boards and

packing it into one slot and thus giving better and higher performance per slot and much more value for

ƳƻƴŜȅΦ Lƴ ŀ ƘǳƎŜ ƳǳƭǘƛŎƻǊŜ ǎȅǎǘŜƳΣ ƛǘΩǎ ƻŦǘŜƴ ŘƛŦŦƛŎǳƭǘ ǘƻ ǘǊŀŎƪ ǇǊƻōƭŜƳǎΣ ƛǎǎǳŜǎ ŀƴŘ ǇŜǊŦƻǊƳŀƴŎŜ

ŘŜƎǊŀŘŀǘƛƻƴǎΦ aŀƴȅ ǇǊƻōƭŜƳǎ ƻŎŎǳǊ ƻƴƭȅ ƻƴŎŜ ŀƴŘ Řƻ ƴƻǘ ǊŜǇŜŀǘ ƛǘǎ ōŜƘŀǾƛƻǊΣ ŀƴŘ ƛǘΩǎ ŀ Ǉŀƛƴ ŦƻǊ ǘƘŜ

developers to look for it in large multiprocessor and multicore systems. LTTng provides a highly efficient

set of tracing tools for Linux which is used for resolving performance issues and troubleshooting

problems. Ericsson is in need for such a tool ǿƘƛŎƘ Ŏŀƴ ƘŜƭǇ ƛǘΩǎ developers to backtrack and debug the

problems and errors in the system. The research question catered in our thesis is to test the efficiency of

LTTng as a kernel and userspace tracer in a multicore environment. As even nanoseconds of delay can

cause performance degradations for telecommunication systems, we need to gauge the footprint of

LTTng over a multicore system and in case the tool has pretty low overhead, Ericsson can deploy it on

the system for helping its developers to effectively backtrack the performance loopholes.

Page | 15

1.1 Organization of Thesis

The thesis document is organized in several chapters:

The chapter Problem Formulation introduces the problem statement of our thesis work. Then it

divides the problem into several sub-problems and finally tries to offer a solution to the bigger problem

by solving the smaller problems.

The chapter Background provides the background knowledge on the technologies on which our

thesis work is based. It explains the basics of tracing and then provides an insight of embedded systems

and multicore systems. Then it provides detailed information about LTTng kernel and userspace tracer

architecture and functionality. Finally this chapter wraps up with the description of the lab environment

on which our experiments have been executed.

The chapter Related Work starts off with an overview of our goal. Then it explains our search

methodology. Finally, it concentrates on citation of the previous work done that was useful to us to

proceed in the correct direction and helped us making the correct decisions throughout our thesis work.

It also describes similar work done in past.

The chapter Experiment Setup describes in detail the use of technologies in our experiments.

These technologies include the hardware and software configurations and tools, utilities and scripts

used to perform the experiments.

The chapter Experiment Methodology describes the experiment methods in detail that are to be

performed on LTTng kernel tracer and userspace tracer.

The chapter Results presents the analysis of results that are obtained by performing the

experiments mentioned in the experiment methodology chapter.

The chapter Discussion mainly focuses upon the constraints of experiments executed and the

issues faced during the research period. The issues discussed concentrates upon the unavailability of

tools and time limitation of the thesis standing as the main barriers. Last part of the Discussion aims to

evaluate the benefits of this research to the community and the industry.

The chapter Conclusion focuses on the important findings from the experiments performed in

course of this research work and tries to draw a conclusion from the findings.

The chapter Future Work throws light on the possibilities of continuing our research work. These

also include extending our research by overcoming the limitations we faced.

The references are organized in the final chapter called References.

Page | 16

2. Problem Formulation

This chapter introduces the problem statement of our thesis work. Then it divides the problem into

several sub-problems and finally tries to offer a solution to the bigger problem by solving the smaller

problems.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

TCF Target Communication Framework

Page | 17

2.1 Problem Statement

Modern day systems are becoming more complex which invites the need of an effective and high

performance trace mechanism. LTTng being developed as a next generation tracing utility for Linux

supports both kernel space and user space tracing and claims to perform high performance tracing with

a very low overhead on the system. LTTng has the capability to dump the trace data either to the disk or

to the network.

The primary question that our research is going to address is:

How efficient is LTTng as a kernel as well as userspace tracer on a multicore environment?

2.2 Problem Analysis

¢ƻ ǉǳŀƴǘƛŦȅ ǘƘŜ ŜŦŦƛŎƛŜƴŎȅ ƻŦ ǘǊŀŎƛƴƎ ǳǘƛƭƛǘȅ ƛǘΩǎ ǾŜǊȅ necessary to size down the fingerprints of the tool on

the system or on the other applications running in it. To measure the fingerprint on the system various

data and control flow analysis on LTTng modules should be carried out. This will help us to get a broader

picture for the fingerprint involving details of how it affected the system or the user programs.

Thus the first and preliminary refinement of our research question stands as:

1. How does LTTng affect the control flow and data flow in kernelspace as well as userspace on a

multicore environment?

LTTng has a trace viewer called LTTV which helps to view the trace generated by LTTng in a GUI

environment thus helping the end user to view the system trace effectively with control flow charts and

resource viewers. For multicore AMP systems the efficiency of LTTng can be increased if the tracing can

be controlled remotely from another system and also if it can stream the trace over network effectively.

Thus our research question can be refined to the below question:

2. How to efficiently stream the trace data for multicore systems to remote host (Eclipse)?

Eclipse team is in process to develop LTTng integration tool.

Page | 18

The above mentioned sub problems are elaborated below which ultimately leads us to the final aim of

the thesis.

¶ How does LTTng affect the control flow and data flow in kernelspace as well as userspace on a

multicore environment?

Control Flow analysis involves the use of a profiler to scan through the function and system calls of the

events in the multicore environment. Data Flow study on the events focus on the Cache Behavior and

Data Path analysis. All together these both help us to reach to the conclusion regarding the effect of

LTTng on a multicore system.

¶ How to efficiently stream the trace data for multicore systems to remote host (Eclipse)?

The general approach will be to use a network protocol called Target Communication Framework (TCF)

for streaming the trace data to Eclipse. We will measure the efficiency of LTTng in streaming huge

amount of trace data, gathered from different cores, over the network to Eclipse. The results will enable

us to narrow down on an optimal architecture to stream the LTTng trace on a multicore system.

The results of the sub-problems will enable us to comment on the efficiency of LTTng as a kernel as well

as userspace tracer on multicore environment.

All the above discussion on the problem statement and analysis marks the need of a brief

background study on tracing, embedded systems, multicore environment, LTTng, Control Flow and Data

Flow analysis. We also discuss in the forthcoming Related Work chapter about similar work and

experiments carried out by other researchers and also some other useful work which helps us to get a

correct direction to proceed forward with our study and analysis.

Page | 19

3. Background

This chapter provides the background knowledge on the technologies on which our thesis work is based.

It explains the basics of tracing and then provides an insight of embedded systems and multicore

systems. Then it provides detailed information about LTTng kernel and userspace tracer architecture

and functionality. Finally this chapter wraps up with the description of the lab environment on which our

experiments have been executed.

List of technical terms

PC Personal Computer

ASIP Application Specific Instruction Set

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

I/O Input / Output

AC Alternating Current

DMA Direct Memory Access

GPP General Purpose Processor

AMP Asymmetric Multiprocessing

SMP Symmetric Multiprocessing

LTTng Linux Trace Toolkit Next Generation

UST Userspace Tracer

LTTV LTT Viewer

RCU Read Copy Update

OMAP Open Multimedia Application Platform

MIPS Microprocessor without Interlocked Pipeline Stages

NMI Non-Maskable Interrupt

PID Process ID

GUI Graphical User Interface

IBM International Business Machine

Page | 20

3.1 Tracing

Tracing is a mechanism to identify and analyze the behavior of a system. Tracing is a technique of

recording low level events that frequently occur in a system along with the timestamps and attributes of

the events [SHE99]. A tool that performs tracing on a system is known as tracer. A tracer records a huge

number of events that occur in a system in a period of time and generates large amounts of data known

as traces. The size of a trace may vary from a few megabytes to several gigabytes [LTT10].

A tracer generally records operating system kernel events that include [LTT10]:

¶ Interrupt Requests

¶ System Calls

¶ Scheduling Activities

¶ Network Activities

A tracer may also be capable of recording events that are generated by an application.

Equally important is to present the trace data in a meaningful way to the user. A trace analyzer

or trace viewer is an application that produces graphs and statistics from the trace data generated by

the tracer [LTT10].

Tracing helps in the following activities [LTT10][SHE99]:

¶ Debugging: A tracer helps to identify performance bugs and bottlenecks in complex parallel

systems and real time systems.

¶ Monitoring: A tracer helps to maintain and analyze statics of events and their timestamps,

attributes and flow of control from one event to another. These data may be utilized in a lot of

different activities.

Tracing a system involves the following steps [SHE99]:

¶ Instrumentation: Instrumentation is the modification of source code of an application where

instructions are added to the program that helps to generate trace data.

¶ Measurement: Recording different aspects of execution of an application such as resources

consumed, mapping of these resources to the application routines and statements.

¶ Analysis: Analysis of the performance data that is generated in the subsequent phases of

instrumentation and measurement.

Page | 21

3.2 Embedded Systems

As technology is climbing new heights we need more and more systems which are standalone and can

work without human intervention. An embedded system is a microprocessor-base system that is built to

control a function or range of functions and is not programmed by the end user in the same way that a

PC [Sér02]. Often embedded systems also handle time critical applications which require utmost time

precision. It can respond, monitor and control the external environment using sensors and actuators and

is based upon application level processors. One of the major considerations when designing an

embedded system is the consumption of power, which should always be less whether it is battery driven

or wall powered. Manufacturing cost is an important aspect to be maintained during design of

Embedded Systems.

3.2.1 Classes of Embedded Systems

Embedded Systems can be typically categorized into two different subclasses [NR98]. They are:

¶ Embedded Controllers: Embedded Controllers are those which are dedicated to control

particular functions and are thus reactive to external environmental events. Control systems

react to external stimuli by changing its internal state and producing desired result. Home

appliances can be cited as a example for Embedded Controllers.

¶ Embedded Data Processing Systems: Embedded data processing systems are also called

transformational systems as they are dedicated to communication and data processing. They

are data flow dominated real time systems that execute a special function within a predefined

time window. These systems require much higher performance than the embedded controllers

and thus require powerful microprocessors like ASIP (Application Specific Instruction Set) and

circuits like ASIC (Application Specific Integrated Circuit). Audio/Video Application and Wireless

Communicators can be cited a example for this

3.2.2 Challenges in Embedded Systems Design

In case of design requirements embedded systems face several challenges [Sér02][Tam05]. They are:

1) Physical size and weight restrictions: It varies greatly with the application. The high

performance processing systems tends to be much larger and heavier than the slower systems.

At system level design higher cache memory needs bigger circuit boards and at CPU level the

board size increases if there is increase in number of pines.

Page | 22

2) Performance: The main performance metrics are instructions per second, interrupt response

characteristics, context switching overhead and I/O performance.

3) Power Consumption: It should always be low in case of battery driven equipments. For direct

AC powered systems the power consumption should be kept minimal to reduce heat generation

or increase of cooling requirements.

4) Cost of the embedded system: Manufacturing cost includes cost of components and assembly.

Non-recurring engineering cost which includes personnel and other cost of system designing.

5) Reliability: Embedded systems can be subjected to extreme operative conditions like in military

or automotive sectors. The embedded system should be properly functional at extreme

conditions and deliver results within its time boundaries.

3.2.3 Real Time Architecture Constraints

Embedded systems have two important performance rules to be maintained, predictability and

determinacy. In many occasions embedded systems work in real time environments in which it must

finish operation by certain deadlines failing to which can cause major disasters or in some cases

degradation of performance. There are many architectural features which are considered as

inappropriate for hard real time embedded systems [KP90][Sér02] and are discussed below -

Cache Memory provides the biggest source of unpredictability and non-determinacy. The

problem is with scheduling the instruction cache misses because the time required to process a cache

miss is a magnitude slower than processing a cache hit. If smaller percentage of cache miss is present

during the execution, it dedicatedly reduces the speed of operation. Thus hard real time embedded

system hardware is designed with fast static memory chip that renders cache management hardware

superfluous. There is also dependability on the variable execution time of the instructions, as depending

upon the input data, different instruction sets take variable number of clock cycles for the execution.

With write buffers CPU can perform write operation to the memory without waiting for the memory

cycle to occur. Processor must be stalled in case the write buffer overflows and there are no subsequent

free bus cycles. There should also be additional stalls in case the memory read corresponds to a memory

location that is yet to be updated by the write buffer. The interaction which takes place between cache

misses, write buffer and data fetching causes loss of both predictability and determinacy of the

Embedded System.

Interrupt Response Latency increases with deep instruction pipelines. An instruction takes several clock

cycles to pass through pipelines and perform its job. The pipeline also needs some handling of delays in

memory access or data dependencies which results in either software generated instructions

rearrangement or hardware generated pipeline halts which results in unpredictability and non-

deterministic behavior. Multiple instructions can be issued in a single clock cycle by the microprocessor.

The number of instructions that can be issued together depends on the type of instructions, the

Page | 23

available hardware resources and execution history of the program. Thus these all factors make it very

difficult to calculate single instruction executed time.

Branch Target Buffers is a mechanism in which the program execution history is used for caching

instructions at branch targets for faster access. Branch target buffers are used with the context of

branch prediction strategies in which compiler guesses which branch is to be taken by the instruction

causing to fetch the next instruction or branch goal before the outcome of the ongoing instruction. The

challenge occurs to calculate the branch completion time as it depends on the matching of branch target

buffer value and the compiler guess.

Prefetch Queues affects the predictability of an operation because the time required for completion of

the instruction cycle is solely determined by the fact that whether the preceding instructions were slow

enough to allow the Prefetch queue to accumulate new instructions. Thus to determine execution time

of one instruction cycle, it is required to determine the clock (depends upon data dependent path, cache

misses etc) for several preceding instruction cycles so that there are free memory cycles or not for the

Prefetch queue to fill.

Page | 24

3.3 Multicore Systems

In the computer industry, the customers always expect faster and more powerful systems. There is a

persistent need of increase in performance in the computer industry, be it embedded systems or

desktop computing.

Multicore processing comes into the picture as a key to continuous improvement of

ǇŜǊŦƻǊƳŀƴŎŜ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ŎƻƴǎǳƳŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎΦ ¢ƘŜ ŎƻǇŜ ǳǇ ǿƛǘƘ ǘƘŜ ŎƻƴǎǳƳŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎ

is a real challenge not only for the semiconductor industry but also for the software industry.

3.3.1 Migration from Single Core to Multicore

The multicore systems can increase the performance of multi-threaded applications significantly by

increasing the processing power but with a relatively low latency. The migration from single core

systems to multicore systems requires considerable changes to the system as well as to software.

Therefore, the factors that have driven the semiconductor industry to migrate from single core to

multicore systems should be worth the additional work that is required to be done.

The most prominent driving factors [SLES09] for the migration from single core to multicore are:

¶ Performance

A way to increase the performance of a single core system is to increase the core frequency.

But, pushing up the core frequency does not always increase the performance of the system in

the same proportion. The techniques like parallelism and pipelining does not always scale with

the frequency. It is not always easy for a single core processer to handle Parallel Processing

timeline issues. If the frequency of the core does not match with frequency of off-chip memory

and I/O subsystems the core may have to wait for the off-chip busses to transfer data. This

particular phenomenon is called memory wall.

¶ Power Consumption

The power consumption for a core to operate is proportional to the frequency of the core.

Therefore, doubling the frequency of a core to gain performance increases the power

consumption by four times. The equation presented below shows the relation between power

and frequency.

ὴέύὩὶὧὥὴὥὧὭὸὥὲὧὩ ὺέὰὸὥὫὩ ὪὶὩήόὩὲὧώ

Page | 25

To overcome the processor and off-chip memory and I/O subsystems frequency lag, large fast

on-chip caches have been implemented which increases power consumption. An efficient

cooling system will consume power, whereas if the generated heat is substantially less the core

can reside even without a cooling mechanism.

¶ Simplicity in Design

Multicore architecture enables less complicated or no cooling mechanisms and better

performance with smaller caches. These contribute to simpler board design rather than

increasing the frequency of a single core.

¶ Cost

Multicore architecture enables less complicated or no cooling mechanisms and better

performance with smaller caches. These contribute to comparatively lesser costs rather than

increasing the frequency of a single core.

3.3.2 Parallelism in Multicore Processing

Parallelism is an important feature for modern day computing. Most of the modern systems are

equipped with parallelism. The different types of parallelism [SLES09] that are implemented in multicore

processing are:

¶ Bit Level Parallelism

¶ Instruction Level Parallelism

¶ Data Parallelism

¶ Task Parallelism

Bit Level Parallelism enables the hardware to operate on larger data. For example, if an 8-bit

core is performing computation on a 16-bit data, it will need two instruction cycles to complete the

computation. Therefore by increasing the word length from 8 to 16 will enable the processor to do the

computation in one instruction cycle. Currently we have 64-bit word length to perform computation on

large data in a single instruction cycle.

Instruction Level Parallelism is the method of identifying the instructions that does not depend

on one another and processing them simultaneously.

Data Parallelism is the technique of processing multiple data in a single instruction cycle. In

multicore architecture, performance improvement depends on different cores being able to work on the

data at the same time.

Task Parallelism is the method to distribute the applications, processes and threads to different

units for processing.

Page | 26

3.3.3 Types of Multicore

The multicore systems can be categorized into two distinct types based on the core topology [SLES09]:

Homogeneous Multicore System

A homogeneous multicore system consists of identical cores that execute the same instruction set.

Figure 4.1: Homogeneous Multicore Environment

Heterogeneous Multicore System

A heterogeneous system consists of cores that are not identical. Here, different types of cores execute

different instruction sets.

Figure 4.2: Heterogeneous Multicore Environment

The multicore systems can be categorized into the following types based on the memory topology

[SLES09]:

General Tasks

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

Type 1 Core

General Tasks

Type 1 Core

Type 1 Core

Data Processing

Type 2 Core

Type 2Core

Type 2 Core

Page | 27

Distributed Memory Multicore System

In distributed memory multicore systems each core has a private memory. The communication between

the cores takes place over a high speed network.

Figure 4.3: Distributed Memory Multicore Environment

Shared Memory Multicore System

In shared memory multicore systems there is a common memory which is shared by all cores in the

system.

Figure 4.4: Shared Memory Multicore Environment

Hybrid Memory Multicore System

In hybrid memory multicore systems there is a common memory which is shared across all cores in the

system. Each core also has its own private memory as well.

Figure 4.5: Hybrid Memory Multicore Environment

Private Memory

Private Memory

Private Memory

Private Memory

Core Core

Core Core

Shared Memory

Core Core

Core Core

Private Memory

Private Memory

Private Memory

Private Memory

Core Core

Core Core

Shared Memory

Page | 28

3.3.4 Inter -core Communication

In a multicore system it is very important for the individual cores to communicate within themselves. In

most multicore systems the cores can be connected to each other with the help of high speed buses or

coherent communication fabric [SLES09].

 The common network topologies in which the cores can be interconnected are bus, mesh, ring

or crossbar. The cores may also share caches or memory as a part of inter-core communication.

3.3.5 Multicore Design Approaches

The multicore system architecture focuses mostly on data and task parallelism. Multicore design

approaches vary depending on the data management and handling of tasks [SLES09]. They are:

¶ Asymmetric Multiprocessing (AMP)

¶ Symmetric Multiprocessing (SMP)

In asymmetric multiprocessing design each core operates independently and performs

dedicated tasks. Each core has its own logically or physically separated memory and can run operating

systems independent of the other cores. The operating system running on different cores communicate

with a help of hypervisor. The cores can either be homogeneous or heterogeneous in type.

In symmetric multiprocessing design all the cores share the same memory, operating system and

other resources. The operating system takes care of the distribution and tasks and resources across the

cores. The cores should be homogenous in type in order to support symmetric multiprocessing.

3.3.6 Problems in Multicore Systems

However, a few problems still exist in multicore systems [MUC09]. The memory performance does not

match the core performance thus creating a bottleneck, which results in starvation of cores. It is not

easy to create algorithms having independent tasks to execute on different cores simultaneously.

Page | 29

3.4 LTTng

3.4.1 Overview

LTTng is an effective tracing platform that has been developed to take over its previous version, the

Linux Trace Toolkit [LTT00]. The LTTng Project provides effective kernel space and user space tracing

solutions for Linux platforms for performance monitoring and debugging. The LTTng Project comprises

of the following tracing tools [LTT10]:

¶ LTTng Kernel Tracer

¶ LTTng Userspace Tracer (UST)

¶ LTT Viewer (LTTV)

3.4.2 Features of LTTng

LTTng was developed keeping in mind the requirements that a new generation tracing application

should provide [DD06]. The most distinctive features [LTT10] sported by the latest release of LTTng are:

¶ Integrated tracing of kernel space and user space: LTTng provides a way of tracing the kernel as

well as the applications that are present in the user space simultaneously. The LTTng userspace

tracer can be used along with the kernel tracer for effective debugging and performance

monitoring.

¶ High performance yet Low Impact: LTTng provides effective tracing probes without any system

calls and a good instrumentation coverage for kernel tracing that helps to get a detailed analysis

of the performance of the system. LTTng has very low observer effect on the traced system. This

is essentially done using userspace RCU, atomic data structures to have really lockless

algorithms and cache optimization. Inactive instrumentation has almost negligible performance

impact on the system. Active instrumentation points have a very low performance impact.

¶ Timestamp precision: LTTng provides effective clock synchronization technique for maintaining

timestamp precision for events.

¶ Security: LTTng has been designed keeping in mind that it has to be deployed in Linux

production systems where security is an issue. The flow of data between kernel and userspace

might not be acceptable in production environment. Therefore, use of per-CPU buffers for

reading and writing by kernel or a user process keeps it fit for use in production environment.

¶ Portable: LTTng is portable to various system architectures. The latest release of LTTng kernel

tracer supports x86-32, x86-64, PowerPC 32/64, ARMv7 OMAP3, MIPS, sh, sparc64, s390. The

latest release of LTTng userspace tracer supports x86-32 and x86-64.

Page | 30

¶ Scalable: The LTTng tracer supports multiple CPU cores and a wide range of CPU frequencies

with very little impact in performance.

¶ Flexible and extensible: LTTng provides the flexibility to add custom instrumentation. It also

provides an easy to use interface for trace analysis which is also extensible for adding new

functionalities for trace analysis.

¶ Reentrancy: LTTng provides complete NMI-reentrancy to ensure that NMI nesting does not

cause deadlocks in the system.

3.4.3 LTTng Tracer Architecture

To perform extensive analysis of traces the trace data is extracted from the kernel. The tracing process

has been divided into two phases, tracing phase and post processing phase [DES09]. Between the

tracing phase and the post processing phase, Input/output represents the extraction of trace data to

disk or network. Figure 4.6 presents the LTTng architecture with the two phases.

Figure 4.6: LTTng Tracer Architecture [DES09]

Page | 31

 The tracing phase is carried out in the target system, which uses processor, memory and I/O

resources. Initially the kernel is patched by inserting the instrumentation in the kernel. When the kernel

reaches an instrumentation point, it verifies if the instrumentation point is activated, it calls the tracing

probes attached to that instrumentation site. The probes write the trace event data into circular buffers

in a synchronized manner. Trace data can be extracted in two different modes [DES09]:

¶ Flight Recorder Mode: Trace data is not extracted when the circular buffers are full. Eventually,

when the trace is stopped that latest data in the buffers is extracted. This mode of tracing in

called flight recorder mode.

¶ Non-Overwrite Mode: Trace data is extracted whenever the circular buffers are full. Therefore,

trace data is not lost. This mode of tracing is called non-overwrite mode.

I/O operations required to write the trace data to the disk or network are costly, therefore not done by

the probes. There are specialized threads for performing the I/O operations. It can be done while the

tracing is being done as well as when the trace session is over.

 To minimizŜ ǘƘŜ ŜŦŦŜŎǘ ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ǿƘƛƭŜ ŜȄǘǊŀŎǘƛƴƎ ƭŀǊƎŜ ŀƳƻǳƴǘ ƻŦ ǘǊŀŎŜ Řŀǘŀ

a zero-copy approach has been taken at LTTng design level while data extraction. A zero-copy approach

ensures that no trace data is copied between memory locations in the tracing phases. This also ensures

an effective use of memory bandwidth.

The recording of the events in the post processing phase is done by collecting a timestamp value

from the traced processor and then the probe writes the timestamp value to the event header. The

timestamp is a time-source that is synchronized between all the traced processors.

 The tracing phase and post processing phase may be performed in the same environment or it

might be in different environments. Therefore, the trace output is a self described binary file for easy

extraction and portability.

3.4.4 LTTng Design

The kernel code can be instrumented in two ways:

¶ Static Instrumentation at source code level using Linux kernel markers and tracepoints

¶ Dynamic instrumentation using Kprobes

When an active instrumented code is reached during the execution of the kernel, the LTTng probe is

called. The probe reads the trace session and writes the events into channels. Figure 4.7 portrays the

different components of LTTng kernel tracer and their interactions [DES09].

Page | 32

Figure 4.7: LTTng Tracer Components [DES09]

Trace Session: A trace session consists of the trace configuration and a set of channels that are to be

used by the trace session. A trace session can have several channels attached to it. The trace

configuration consists of the following data:

¶ Trace session is active or not

¶ The event filters to be applied

Channel: A channel is an information pipe between the writer and the reader. It acts a buffer to

transport data efficiently. A channel consists of one buffer per CPU eliminate false sharing and at the

same time having a cache locality. A few properties can be configured at the time of trace session

creation. The configurable properties of channels are:

Page | 33

¶ Tracing mode

¶ Buffer size

¶ Buffer flush period

A channel in turn is composed of several sub-buffers and in each sub-buffer slots are reserved by the

LTTng probes to write the event data into them. The lttd extracts each sub-buffer separately to the disk

or network. The components of a channel are displayed in Figure 4.8.

Slot: A slot is a part of sub-buffer reserved for exclusive write access by the LTTng probe. The data

written by the probe to each slot is the sub-buffer header, event header or payload.

Figure 4.8: LTTng Channel Components [DES09]

DebugFS: DebugFS is a virtual file system which provides an interface to extract data from kernelspace

to userspace. The trace session and channel data structures are represented as DebugFS virtual files so

that lttctl and lttd can interact with them.

lttctl: The command-line application lttctl is an interface that interacts with the DebugFS in order to

control the kernel tracing. The lttctl is responsible for the following:

¶ Configuration of the trace session before tracing is started

¶ Start tracing

¶ Stop tracing

lttd: The userspace daemon lttd is responsible to interact with the DebugFS an extract the channels data

to disk or network. The lttd does not have in interaction with the trace session directly.

Page | 34

3.4.5 LTTng Userspace Tracer

LTTng provides a highly efficient kernel tracer but lacks a userspace tracer with similar performance. The

LTTng userspace tracer (UST) is basically ported from the LTTng static kernel tracer to userspace, and is a

work in progress.

3.4.5.1 UST Architecture

The userspace tracer has the following design level goals that should reflect in its architecture

[FDD09]:

¶ UST is completely independent of the kernel tracer during trace time. The UST trace and the

kernel trace can be correlated during the analysis time.

¶ UST is completely reentrant

¶ UST supports tracing of event handlers and multithreaded applications in userspace.

¶ To achieve better performance and low impact UST does not have system calls.

¶ UST employs zero-copy, therefore data is never copied.

¶ UST is able to trace code in executables as well as shared libraries

¶ The instrumentation point whether it is a marker or a tracepoint, should support unlimited

number of arguments.

¶ UST does not require any compiler or linker support to generate trace data.

¶ UST produces a compact and coherent trace format for analysis.

Figure 4.9 shows the architecture of UST:

Figure 4.9: UST Architecture [FDD09]

Page | 35

3.4.5.2 UST Libraries

The programs must be linked with two libraries in order to get traced. The libraries are [FDD09]:

¶ Userspace tracing library ς libust

¶ Userspace RCU library ς liburcu

3.4.5.3 Time Synchronization

The LTTng userspace tracer does on have any dependency on the LTTng kernel tracer or vice versa

[FDD09]. However, in order to do a combined analysis of the userspace and kernel traces it is necessary

that the event timestamps of both the traces should be from the same time-source. The UST currently

runs only on x86_32, x86_64 and ppc32 architectures [FDD09].

3.4.5.4 UST Data Collection

A userspace process called ustd collects data for all the processes that are being traced. The ustd opens

a socket named ustd in the same directory as the traced application and wait for the command to collect

the traced data from a certain buffer for a PID. On command ustd creates a consumer thread that

eventually writes the trace data into the trace file [FDD09].

3.4.6 LTT Viewer (LTTV)

The LTT Viewer is a common GUI based trace analysis tool for kernel tracer as well as userspace tracer.

LTTV is a trace viewer and is independent of LTTng tracer. It can open and filter traces based on different

plugins.

 As LTTV is easily extensible, developers can extend the functionality of LTTV by developing

plugins. To get better performance results LTTV is written in C and uses glib and GTK graphical library.

3.4.7 Use of LTTng

LTTng has been used by some organizations for debugging and performance monitoring. IBM used

LTTng successfully to solve some of their distributed filesystem related issue. Autodesk used LTTng to

solve some real time issues in their application development. Siemens used LTTng to do some internal

debugging and performance monitoring. The Linux distributions Montavista, Wind River, STLinux and

Suse have included LTTng in their package [LTT10].

Page | 36

3.4.8 How to use LTTng?

LTTng kernel tracer has good instrumentation coverage, which are basically code changes to insert

LTTng probes into a kernel. Therefore, the LTTng instrumentation set is distributed as a kernel patch

series. LTTng has the flexibility to build the kernel instrumentation inside the kernel as well as build

them as modules. Another package called ltt -control contains the lttctl and the lttd userspace

applications needed for tracing.

 LTTng userspace tracer comes as a package called ust that installs userspace tracer in a system.

The ust package depends on the userspace-rcu library, which has to be installed before the ust package.

 LTTV acts as a trace viewer and analyzer for both LTTng kernel and userspace trace files. LTTV

comes as a separate lttv package and does not have any dependency on LTTng kernel or userspace

tracer. But the lttv depends on the trace format the LTTng tracer produces. Therefore, the lttv package

should be compatible with the LTTng kernel and userspace tracer trace format to be able to view trace

files.

Page | 37

3.5 Control and Data Flow Analysis

3.5.1 Control Flow Analysis

In the context of this thesis report we define control flow as the order or pattern in which the

application program calls or executes various other applications or snippets of code (like functions and

procedures). Control Flow analysis helps to optimize the work flow execution of application programs

and to determine functions and system calls which takes more amount of time [LPGF08]. If the

execution of any program is getting more delayed than usual, the control flow analysis can easily help to

find out the reason for the delay. For the whole system and the running application programs the

control flow analysis can be done by a system profiler who takes time based samples of all the

applications depending upon its footprint on the system and displays it at the end of sampling. From

such sampling we can generate call graph which diagrammatically represents the functions and the

system calls that the application made during its time of execution.

An example of a call graph which gets generated during the program execution is shown in Figure 4.10.

Figure 4.10: Example of Call Graph

The call graph in Figure 4.10 shows how the application program tbench makes calls to functions and

programs during its sample run. We can also see how much time is spent in each of the functions and

Page | 38

system calls. We can either optimize the program checking in which function it spends more time and

refractor it or otherwise can trace the delay of execution of the particular application program.

3.5.2 Data Flow Analysis

Data Flow analysis also helps to optimize the program to run better and faster than usual with effective

use of system and memory. By annotating the source code of the application program we can get the

lines of code which are using more number of CPU cycles and thus can be modified. One of the biggest

performance measurement criteria in a multicore system is effective usage of memory and the CPU

resources [ACU09]. The reason behind a line of code taking more CPU cycles can be improper memory

management, irresponsible cache usage or improper data structures being used. Thus with certain tools

we can gauge the usage of cache, rectify the temporal and spatial locality problem, hide the latencies

involved in memory access and thus adding more Prefetch instructions. Increasing the cache line

utilization of an application program decreases its execution timings and thus optimizes it further. We

know that different ways of data representation and data access pattern can affect the performance of

an application program. Thus Data and Control Flow analysis detects issues in application source code

and also helps in optimizing the source program.

An example of annotated source code of an application program is shown in Figure 4.11.

Figure 4.11: Example of Annotated Source

The annotated source code provides the details of how many samples were taken for the particular line

of code and its percentage of the total samples for that line. If the sample count for a particular

line/block of code is more then it shows that it spends more CPU cycles than other lines of code.

 : while (1) {

 : kill(child, SIGSTOP);

 1 2.8e - 05 : usleep((100 - load_percent) * 1000);

 4 1.1e - 04 : kill(child, SIGCONT);

 7 2.0e - 04 : usleep(load_percent * 1000);

 10 2.8e - 04 : end = (long) time(NULL);

 : sec = (end - start);

 : //printf("%d \ n",sec);

 1 2.8e - 05 : if(sec >= duration)

 : break;

 : counter++;

 : }

 : /* never here at this moment */

 : printf("sending SIGTERM to the child \ n");

 : kill(child, SIGTERM);

 : printf("loops execut ed = %d \ n", counter);

 :

 : } else if (child == 0) {

 : /*

 : * child process

 : */

 : while (1) {

 66 0.0019 : if (syscall) {

 : getpid();

 : }

3560000 99.9958 : }

Page | 39

4. Related Work

This chapter starts off with an overview of our goal. Then it explains our search methodology. Finally, it

concentrates on citation of the previous work done that was useful to us to proceed in the correct

direction and helped us making the correct decisions throughout our thesis work. It also describes

similar work done in past.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

I/O Input / Output

CPU Central Processing Unit

RCU Read Copy Update

ASCI Accelerated Strategic Computing Initiative

RAM Random Access Memory

SATA Serial Advanced Technology Attachment

RPM Revolutions Per Minute

GB Gigabyte

Page | 40

4.1 Overview

LTTng comes with a set of efficient tracing tools for Linux which helps in solving performance and

debugging issues involving multi threads and processes. LTTng aims to provide low disturbance and

architecture neutral tracing tools which helps to track the pains in the system without involving much

overhead.

Our goal mainly focuses on effectively gauging the fingerprint of LTTng as a tracing tool in a

multicore Environment. There have been quite similar researches undergone before in getting either the

effectiveness of tracing or the efficiency of LTTng in different architectures and environments which are

described and explained in this chapter.

4.2 Search Methodology

LTTng was developed by Mathieu Desnoyers and was presented in his PhD thesis [DES09], so his thesis

was the base for searching all the initial papers relating to LTTng and various other tracers which are

there at present in the Linux Systems. The [LTT10] carries lots of invaluable papers from various

conferences and journals which are somehow related to LTTng. As the thesis goal involved us to

ŘŜǘŜǊƳƛƴŜ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƳŜŀǎǳǊŜǎ ŦƻǊ [¢¢ƴƎ ƛƴ ŀ ƳǳƭǘƛŎƻǊŜ ŜƴǾƛǊƻƴƳŜƴǘΣ ǎƻ ǘƘŜ άƳǳƭǘƛŎƻǊŜ ǎȅǎǘŜƳέ

keyword search in Databases like IEEE and ACM gave us a lot of results and references to scientific

ƧƻǳǊƴŀƭǎΦ ²Ŝ Ǝƻǘ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ǘƘŜ vƻǊLvϰ tплул aǳƭǘƛŎƻǊŜ ǇǊƻŎŜǎǎƻǊ ōƻŀǊŘ ŦǊƻƳ ǘƘŜ

ƳŀƴǳŦŀŎǘǳǊŜǊΩǎ ǿŜōǎƛǘŜ ǿƘƛŎƘ ŎƻƴǘŀƛƴŜŘ ŘƻŎǳƳŜƴǘǎ ŜȄǇƭŀƛƴƛƴƎ ǘƘŜ ǿƘƻƭŜ ǎǘǊǳŎǘǳǊŜ ŀƴŘ ŦŜŀǘǳres of

P4080. Our next objective was to do Control Flow and Data Flow Analysis of the System and LTTng

respectively and thus we went through the details of what those terms actually meant and what are the

ŘŜǘŀƛƭǎ ǘƘŀǘ Ŏŀƴ ōŜ ŦƻǳƴŘ ƻǳǘ ŦǊƻƳ ǘƘŀǘΦ YŜȅǿƻǊŘ ά/ƻƴǘǊƻƭ Cƭƻǿ !ƴŀƭȅǎƛǎέ ŀƴŘ ά5ŀǘŀ Cƭƻǿ !ƴŀƭȅǎƛǎέ ǿƘŜƴ

ǎŜŀǊŎƘŜŘ ƛƴ DƻƻƎƭŜ {ŎƘƻƭŀǊ ϰ ƭŜŀŘ ǘƻ ƳǳƭǘƛǇƭŜ ǇŀǇŜǊǎ ƭŜŀŘƛƴƎ ǘƻ ŜƛǘƘŜǊ L999 ƻǊ !/a ƻǊ ŘƛŦŦŜǊŜƴǘ

university Lecture sessions. The Cited papers in those papers also contained the tools for doing Control

and Data Flow Analysis and from there we got profiling tools like OProfile, TAU, Gprof, Valgrind and

many others in which we chose OProfile for Control Flow based upon the results and its effectiveness of

working in different architectures. The other part of our thesis goal focuses in Streaming of the LTTng

Trace to Eclipse over the TCF Framework. We got research material regarding TCF Framework from

Google Scholar ϰ which pointed us to Eclipse website and LTT Tools plugin page. All the scientific

research papŜǊǎ ŀƴŘ ōƻƻƪǎ ǊŜŦŜǊǊŜŘ ǘƻ ƘŜǊŜ ŀǊŜ ŦǊƻƳ DƻƻƎƭŜ {ŎƘƻƭŀǊ ϰΣ L999 ŀƴŘ !/a 5ŀǘŀōŀǎŜǎΦ

Page | 41

4.3 State of the Art

LTTng was developed by Mathieu Desnoyers as his PhD project and his PhD dissertation [DES09] shows

how he tested LTTng performance for different load conditions on different type of architectures and

compared it with the existing tracer tools. He took the load simulator tools like dbench (Disk load) and

tbench (Network Load) to get the scalability of the tracer in multicore environments and benchmarking

tool lmbench to measure the tracing effect on important system components like system calls and traps.

Running 8 tbench clients with warm up of 120 seconds and execution time of 600 seconds revealed that

tracing had very low impact on the overall performance with the network load on a 100Mb/s network

card. During the test for scalability it was noticed that tbench linearly increases its workload in absence

of tracing and LTTng tracing overhead was linearly maintaining same line with increase in processors

thus showing that the overhead being totally independent on the number of processors. The dbench

tests showed that disk throughput gets affected in heavy I/O workloads in tracer non-overwrite mode.

In non-overwrite mode the tracer suffers from a lot of event loss than normal. lmbench tests showed

that how the performance of the system get affected by a tracer running in the background. Results

from lmbench proved that the instrumented code portions and paths suffered from more overhead

than normal. All the existing tracers are compared with the performance results of LTTng and it shows it

has quite low overhead and affect on the system performance than the other tracing tools.

Before that in 2006 performance of LTTng was determined by Mathieu Desnoyers and Michel

Dagenais with micro and macro benchmarks [DD06]. The test was conducted on a 3 GHz Intel Pentium 4

without hyper threading and CPU clock calibrated to 3,000.607 MHz. For micro benchmarks kernel

probe tests are done, without enabling interrupts. Results suggested that LTTng probe points do not

increase the latency measure as they work without disabling the interrupts. The LTTng scheduler time

gets affected due to the instrumentation as it needs the disabling of preemption on RCU list which is

used for control. With macro benchmarks the time spent in the lttd and in the probe site was measured

on application of variable loads on the system. Under kernel tracing it was found out that during high

and medium load scenarios CPU time utilized by the tracing varies from 1.54 % to 2.28 % [DD06]. In user

space tracing gcc application was instrumented and it showed an execution time variation. It execution

time was 1.73 % more than the normal runtime. 2 % of the CPU time is taken by LTTng in case of a high

workload to the system.

During December 2006 there was a study conducted by Kathryn Mohror and Karen L. Karavanic

to find out the tracing overhead on the High Performance Linux clusters. The experiment setup was

designed with three contexts; firstly execution times of execution of applications that contained

instrumentation and wrote file to the disk. Secondly, executions having trace instrumentations but the

trace file was not written to the disk and the Third condition involved no instrumentation and normal

execution of a program [MLK06]. The tracing overhead was also measured due to scaling the number of

processors. Execution time was compared by ASCI Purple Benchmark SMG2000. TAU was the main

tracing tool and PerfTrack was the software used for collecting results. In the results of the experiment it

Page | 42

was found that the overhead of writing the trace data to disk was nearly 27 % of the normal execution

time. Also the execution time of the application depended on the trace buffer size, as if it was larger the

memory used by the buffer and the amount of time required to flush that off, largely varied. When the

number of processors were increased it was seen that the overhead due to the was quite interrelated

with the number of events generated in the whole trace session, though the overhead of writing trace

ōǳŦŦŜǊ ǘƻ ǘƘŜ Řƛǎƪ ŘƛŘƴΩǘ ƘŀŘ ƳǳŎƘ ǊŜƭŀǘƛƻƴ ǿƛǘƘ ǘƘŜ ƛƴŎǊŜŀǎŜ ƛƴ ƴǳƳōŜǊ ƻŦ ŜǾŜƴǘǎΦ

During 2008 there was another study conducted by Parisa Heidari, Mathieu Desnoyers and

Michel Dagenais to measure the overhead caused due to tracing and virtualization in a system [HDD08].

The experiment was setup considering 3 scenarios in which the one related to tracing was the impact

caused by LTTng observed on a Domain 0 (Linux running over Xen), Domain U (one or more virtual

system) and a normal system in 4 different scenarios ς LTTng not compiled in the kernel, compiled in

kernel but disabled the markers, flight recorder mode active, fully active with trace data being written to

the disk. The tests were grouped into two parts one consisting of original application creating system

stress (compiling, archiving, compression) and other part was standard benchmarks which simulates the

load (dbench). The whole experiment was carried out in a machine having Intel Pentium 4, 3GHz hyper

threaded processor, 2 GB RAM and a single 320 GB 7200 RPM SATA. The results showed that the cost

associated with tracing is less than 3 % which when compared with the correctness, compactness and

completeness of the information collected was a very small amount of disturbance. In the scenario

when LTTng was compiled in but the probe was disabled, it caused a very less impact. LTTng without

loading the probes fast completes the test but the difference is smaller and lesser than standard

deviation. There is a effect of less than 2 % in the performance scale when probes are not loaded and

less than 5 % deviation in performance when the trace is written by LTTng [HDD08]. There was no

impact on scheduling or real time response as LTTng uses atomic operations.

 During late 2009 Pierre-Marc Fournier, Mathieu Desnoyers and Michel Dagenais gauged the

performance of UST and also compared it with the performance of DTrace on an equivalent tracing task

[FDD09]. The tests were conducted on a cache hot dual quad-core Xeon 2 GHz with a RAM of 8GB.

DTrace was run under Solaris environment. The command,

ὪὭὲὨ Ⱦόίὶ ὶὩὫὩὼ ΩȢzὥΩȢ [FDD09]

was run 60 times. This regular expression was chosen to prove malloc / free activity and they were also

instrumented. The UST performance was measured with and without instrumentation compiled in. The

difference in the two measures came to much less significant value. When the probes were connected

but there was no tracing then there was a slight increase in the execution timing. With Tracing on the

cost/event was found to be approximately 698 ns [FDD09]. The LTTng and UST together have a cost per

events 7 times lower than that of DTrace.

Page | 43

5. Experiment Setup

This chapter describes in detail the use of technologies in our experiments. These technologies include

the hardware and software configurations and tools, utilities and scripts used to perform the

experiments.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

AMD Advanced Micro Devices, Inc.

DDR Double Data Rate

SDRAM Synchronous Dynamic Random Access Memory

I/O Input / Output

CPU Central Processing Unit

SMP Symmetric Multiprocessing

L2 cache Level 2 cache

Page | 44

5.1 System Configuration

The first step is to configure the system on which we should run our experiments. System configuration

consists of two parts:

¶ Hardware Configuration

¶ Software Configuration

5.1.1 Hardware Configuration

The hardware on which we performed our experiments is an x86 ōŀǎŜŘ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ ǇǊƻŎŜǎǎƻǊ

desktop. The specifications of the system are:

¶ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ ǿƛǘƘ ŦƻǳǊ 64 bit Q9550 SMP cores operating at frequency 2.83 GHz

¶ 3 GB of DDR2 SDRAM operating at frequency 667 MHz

¶ 100 Mbps Ethernet

5.1.2 Software Configurat ion

The ōŀǎŜŘ LƴǘŜƭϯ /ƻǊŜϰ н vǳŀŘ 5Ŝǎƪtop has been running openSUSE 11.2 Desktop Linux operating

system with dual kernels. One of the kernels are kernel version 2.6.33.2 patched with LTTng 0.211

instrumentation set built as loadable modules. Therefore, unless the LTTng modules are loaded using

modprobe the LTTng instrumentation set will remain dormant. The other kernel is kernel version

2.6.31.5 without LTTng instrumentation in it.

 Apart from the LTTng kernel patch series, the application package ltt -control version 0.84 has

been installed in the system to control the tracing activity. Userspace tracer has also been installed in

the system by installing the packages userspace-rcu and ust version 0.4.3

 LTT Viewer has been installed in the system to view the trace files, by installing the lttv package

version 0.12.31, according to the compatible trace format.

Page | 45

5.2 Tools and Utilities

5.2.1 Load Generation Tools

The tools described under this section generate various types of load on the system and in varying

amount. The purpose of using these tools in our experiment is to apply varying amount of load in the

test system.

5.2.1.1 load

The load is a command line program written in C, which can generate specified amount of load on a

single CPU core for a specific period of time.

Usage:

load is executed with 20% CPU load for 180 seconds.

Output:

5.2.1.2 tbench

The tbench is a command line utility that can generate network and process load by simulating similar

socket calls as done by the Samba daemon during a Net Bench run in real environment. The tbench

utility has two components:

¶ tbench_srv: The tbench_srv is the server utility that listens to tbench client connections

¶ tbench: The tbench utility which has the capability of spawning multiple clients to connect to

the tbench_srv

Usage:

tbench_srv is executed and waiting for tbench clients to run.

romik@linux - 2t0w:~> tbench_srv

waiting for connections

romik@linux - 2t0w:~> gcc ïg ïo load load.c

romik@linux - 2t0w:~> ./load ïl 50 ït 180

generating CPU load : 20 %

running for 180 seconds

sending SIGTERM to the child

loops executed = 1789

Page | 46

tbench is executed for a time span of 5 seconds with 5 clients for tbench_srv running in localhost.

Output:

5.2.2 System Activity Measurement Tools

The tools described under this section are used to record the activity of the system related to CPU,

memory, I/O and other parameters. The purpose of using these tools in our experiment is to record and

analyze the activity and performance of the system.

5.2.2.1 Sysstat

Sysstat is a set of utilities that can monitor and record system activities that can be used to measure

system performance. The tools present in the Sysstat package are sar, sadf, iostat, mpstat, pidstat, sa1

and sa2.

 The utilities we used to capture various system activities are:

romik@linux - 2t0w:~> tbench - t 5 5 localhost

dbench version 4.00 - Copyright Andrew Tridgell 1999 - 2004

Running for 5 seconds with load '/usr/local/share/client.txt' and minimum warmup 1 secs

0 of 5 processes prepared for launch 0 sec

5 of 5 processes prepared for launch 0 sec

releasin g clients

 5 14603 226.10 MB/sec execute 1 sec latency 11.225 ms

 5 23155 227.33 MB/sec execute 2 sec latency 7.511 ms

 5 31630 227.18 MB/sec execute 3 sec latency 11.902 ms

 5 40197 228.05 MB/sec execute 4 se c latency 8.037 ms

 5 cleanup 5 sec

 0 cleanup 5 sec

Operation Count AvgLat MaxLat

 --

 NTCreateX 36535 0.097 8.020

 Close 26932 0.084 11.663

 Rename 1546 0.107 2.934

 Unlink 7291 0.096 8.132

 Qpathinfo 33225 0.096 7.894

 Qfi leinfo 5823 0.085 2.981

 Qfsinfo 6042 0.085 2.905

 Sfileinfo 2958 0.086 2.988

 Find 12839 0.097 10.371

 WriteX 18078 0.236 11.887

 ReadX 57510 0.108 11.761

 LockX 120 0.085 0.206

 UnlockX 120 0.089 0.209

 Flush 2540 0.085 0.344

Throughput 228.048 MB/sec 5 clients 5 procs max_latency=11.902 ms

Page | 47

¶ sar: The sar utility collects and saves the system activity information. It includes information

about CPU, memory, I/O, interrupts, disk and other parameters.

Usage:

sar is executed to run 3 times at an interval of 2 seconds, output statistics to file sysdata and display CPU

activity information.

Output:

¶ sadf: The sadf utility is used to export the data collected by sar in multiple human readable

formats such as CSV, XML etc.

Usage:

sadf is executed to read information from file sysdata (created by sar) and display CPU activity

information.

Output:

5.2.3 Control Flow and Data Flow Analysis Tools

The tools described under this section are useful for control flow analysis of a system or an application.

These tools are basically profilers and utilities to generate call graphs. The purpose of using these tools

in our experiment is to generate profiling data, annotations and call graphs that will help us in control

flow analysis of the system or a binary compiled with debug information.

linux - 2t0w:~ # sar - u - o sysdata 2 3

Linux 2.6.33.2 - 0.1 - desktop (linux - 2t0w) 04/21/10 _i686_ (2 CPU)

20:46:29 CPU %user %nice %system %iowait %steal %idle

20:46:31 all 4.27 0.00 1.07 0.00 0.00 94.67

20:46:33 all 5.91 0.00 2.06 0.77 0.00 91.26

20:46:35 all 6.22 0.00 2.24 0.50 0.00 91.04

Average: all 5.49 0.00 1.80 0.43 0.00 92.28

linux - 2t0w:~ # sadf - d sysdata -- - u

hostname;interval;timestamp;CPU;%user;%nice;%system;%iowait;%steal;%idle

linux - 2t0w;2;2010 - 04- 21 18:46:31 UTC;- 1;4.27;0.00;1.07;0.00;0.00;94.67

linux - 2t0w;2;2010 - 04- 21 18:46:33 UTC; - 1;5.91;0.00;2.06;0.77;0.00;91.26

linux - 2t0w;2;2010 - 04- 21 18:46:35 UTC; - 1;6.22;0.00;2.24;0.50;0.00;91.04

Page | 48

5.2.3.1 OProfile

OProfile is the most commonly used system-wide profiler for Linux based systems. It is capable of

profiling all running code in the system with very little overhead. The OProfile package consists of a

kernel driver, a daemon and several profile analysis tools. OProfile supports collection of data from

various hardware performance counters. Therefore, applications, shared libraries, kernel modules,

kernel as well as software and hardware interrupt handlers can be profiled using OProfile. OProfile

supports a wide range of architecture from 32 and 64 bit x86 to PowerPC, MIPS, ARM etc. In a work,

OProfile is a useful utility to determine performance bottlenecks within a system. opcontrol is used to

control the profiler and opreport is used to extract the profiled data.

Usage:

Start OProfile.

Dump profile data or stop OProfile.

Output:

opreport output (clipped).

linux - 2t0w:~ # opcontrol -- reset

linux - 2t0w:~ # opcontrol -- vmlinux=/usr/src/linux - 2.6.33.2/vmlinux -- separate=lib --

callgraph=32

linux - 2t0w:~ # opcontrol -- start

Using default event: CPU_CLK_UNHALTED:100000:0:1:1

Using 2.6+ OProfile kernel interface.

Reading module info.

Using log file /var/lib/oprofile/samples/oprofiled.log

Daemon start ed.

Profiler running.

linux - 2t0w:~ # opcontrol -- dump

linux - 2t0w:~ # opcontrol -- shutdown

Stopping profiling.

Killing daemon.

CPU: AMD64 processors, speed 800 MHz (estimated)

Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a unit mask of 0x00 (No

unit mask) count 100000

CPU_CLK_UNHALT...|

 samples| %|

 17675 38.9463 vmlinux

 8649 19.0578 kdeinit4

 CPU_CLK_UNHALT...|

 samples| %|

 4050 46.8262 libQtGui.so.4.5.3

 1220 14.1057 libQtCore.so.4.5.3

 1155 13.3541 libc - 2.10.1.so

 503 5.8157 libkonsoleprivate.so

 392 4.5323 libX11.so.6.2.0

 196 2.266 2 libglib - 2.0.so.0.2200.1

 195 2.2546 libpthread - 2.10.1.so

 160 1.8499 libplasma.so.3.0.0

 133 1.5378 libkdeui.so.5.3.0

 113 1.3065 libxcb.so.1.1.0

Page | 49

 In our experiments for Control Flow analysis we have used OProfile with the performance

counter event CPU_CLK_UNHALT and with libraries separated. The CPU_CLK_UNHALT event gives the

number of CPU clock cycles outside the halt state of CPU which implies the amount of time spent by a

binary image while execution. We have also generated call graphs of binary images using OProfile

[PZWSS07].

In our experiments for Data Flow Analysis we have used OProfile with two performance counter

events LII_MISSES and INST_RETIRED_ANY_P and with the libraries separated [PZWSS07]. Caches are

high speed memories placed closest to the CPU. It takes less number of CPU cycles to fetch data stored

in cache memory rather than the main memory. Therefore, performance will increase if the cache

misses decreases. The LII_MISSES event gives the number of L2 cache misses for a particular binary

image while execution. Branch prediction is an important technique to achieve parallelism in multicore

systems. Branch prediction is a technique to predict and process instructions for a particular branch

even before the decision is made. In case of a branch misprediction the processed instructions have to

be retired. The event INST_RETIRED_ANY_P helps us determine the number of times branch

mispredictions have happened for a particular binary image while execution [PRA03].

5.2.3.2 Valgrind

Valgrind is a tool suite consisting of debugging and profiling tools. It consists of utility Memcheck

(Memory leak Checker), Cachegrind (Cache Profiler), Callgrind (Cachegrind with Callgraphs), Massif

(Heap Profiler) and Helgrind (Thread debugger) [VAL10]. In our experiments we use Memcheck, which

detects the memory errors in programs during runtime. Memcheck mainly has 4 different kinds of

Memory checking [SN05]:

¶ It tracks addressability of each byte of memory getting updated with the information of whether

the memory is free or allocated.

¶ It keeps a note of all heaps which gets allocated with malloc () and new, so that it can detect

leaking of memory at program termination time.

¶ Lǘ ŎƘŜŎƪǎ ǘƘŀǘ ǎǘǊŎǇȅ όύ ŀƴŘ ƳŜƳŎǇȅ όύ ŘƻŜǎƴΩǘ ƘŀǾŜ ǎŀƳŜ ƳŜƳƻǊȅ ōƭƻŎƪǎ ŀǎ ŀǊƎǳƳŜƴǘǎΦ

¶ It performs definedness checking which ensures the definedness of every data bit in memory

and registers.

Usage:

linux - 2t0w:~ # valgrind -- tool=memcheck -- leak - check=full -- trace - children=yes -- show-

reachable=yes - v lttctl - C - w /tmp/trace trace

Page | 50

Output:

In our experiments of Data Flow, Memcheck is used here to detect memory leaks in LTTng

YŜǊƴŜƭ ŀƴŘ ¦ǎŜǊǎǇŀŎŜ ǘǊŀŎŜǊΦ ²Ŝ ŀǊŜ ǳǎƛƴƎ ǘƘŜ ƻǇǘƛƻƴ ά-- leak - check=full έ to get a full report of any

ǘȅǇŜǎ ƻŦ ƳŜƳƻǊȅ ƭŜŀƪǎ ŦǊƻƳ ǘƘŜ ǇǊƻƎǊŀƳΦ ¢ƘŜ ŀǊƎǳƳŜƴǘ ά-- trace - children=yes έ is used to track any

forked program from the main program, so that the Memcheck utility can even show memory leaks of

ŦƻǊƪŜŘ ŎƘƛƭŘ ǇǊƻƎǊŀƳǎΦ ¢ƘŜ ƻǘƘŜǊ ǘǿƻ ŀǊƎǳƳŜƴǘǎ ά-- show- reachable=yes έ ŀƴŘ ά- vέ ŀǊŜ ǳǎŜŘ ǘƻ ƎŜǘ ƳƻǊŜ

detailed report about memory mismanagement of the application program.

==3531== Memcheck, a memory error detector

==3531== Copyright (C) 2002 - 2009, and GNU GPL'd, by Julian Seward et al.

==3531== Using Valgrind - 3.5.0 and LibVEX; rerun with - h for copyright info

==3531== Command: lttctl - C - w /tmp/trace - o channel.all.overwrite=1 trace

==3531==

-- 3531 -- Valgrind options:

-- 3531 -- -- tool=memcheck

-- 3531 -- -- leak - check=full

-- 3531 -- -- trace - children=yes

-- 3531 -- -- show- reachable=yes

-- 3531 -- - v

-- 3531 -- Contents of /proc/version:

-- 3531 -- Linux version 2.6.33.2 - Lttng0.203 (root@linux - ambr) (gcc version 4.4.1 [gcc - 4_4 -

branch revision 150839] (SUSE Linux)) #3 SMP Wed May 5 17:15:59 CEST 2010

-- 3531 -- REDIR: 0x40cad00 (rindex) redirected to 0x4027840 (rindex)

-- 3531 -- REDIR: 0x40ca260 (index) redirected to 0x40278d0 (index)

-- 3531 -- REDIR: 0x40ca970 (strlen) redirected to 0x4027c00 (strlen)

-- 3531 -- REDIR: 0x40cca20 (memcpy) redirected to 0x4028080 (memcpy)

-- 3531 -- REDIR: 0x40ca440 (strcpy) redirected to 0x4027c60 (strcpy)

-- 3531 -- REDIR: 0x40c7050 (malloc) redirected to 0x4026c07 (malloc)

-- 3531 -- REDIR: 0x40ca3d0 (strcmp) redirected to 0x4027f20 (strcmp)

-- 3531 -- REDIR: 0x40ca0b0 (strcat) redirected to 0x4 0279c0 (strcat)

-- 3531 -- REDIR: 0x40cc550 (mempcpy) redirected to 0x4028d10 (mempcpy)

-- 3531 -- REDIR: 0x40cf510 (strchrnul) redirected to 0x4028cc0 (strchrnul)

-- 3531 -- REDIR: 0x40c6f70 (free) redirected to 0x4026821 (free)

==3531== 152 bytes in 17 blocks are definitely lost in loss record 1 of 5

==3531== at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)

==3531== by 0x40CA6C0: strdup (in /lib/libc - 2.10.1.so)

==3531== by 0x4051297: lttctl_set_channel_enable (liblttctl.c:472)

==3531== by 0x8049E1F: main (lttctl.c:631)

==3531==

==3531== 152 bytes in 17 blocks are definitely lost in loss record 2 of 5

==3531== at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)

==3531== by 0x40CA6C0: strdup (in /lib/libc - 2.10.1.so)

==3531== by 0x4051117: lttctl_set_channel_overwrite (liblttctl.c:536)

==3531== by 0x8049E49: main (lttctl.c:637)

==3531==

==3531== 284 bytes in 1 blocks are still reachable in loss record 3 of 5

==3531== at 0x4026C8C: malloc (in /usr/lib/valgrind/vgpreload_memcheck - x86 - linux.so)

==3531== by 0x8049346: parst_opt (lttctl.c:238)

==3531== by 0x80496DA: main (lttctl.c:425)

==3533==

==3533== HEAP SUMMARY:

==3533== in use at exit: 0 bytes in 0 blocks

==3533== total heap usage: 0 allocs, 0 frees, 0 bytes allocated

==3533==

==3533== All heap blocks were freed -- no leaks are possible

==3533==

==3533== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 4)

Page | 51

5.2.3.3 gprof2dot.py

The gprof2dot.py is a Python script that can convert the call graph output from different profilers into a

dot graph. It supports different profilers such as gprof, OProfile, callgrind, sysprof and others. The script

has dependencies on Python and Graphviz to run.

Usage:

Output:

Figure 5.1: tbench call graph output

 We have used gprof2dot.py to convert OProfile generated call graphs into dot graphs for better

understanding and comparison.

linux - 2t0w:~ # opreport image:/usr/local/bin/dbench - cgf | gprof2dot.py - f oprofile | dot -

Tpng - o output.png

Page | 52

5.3 Test System Setup

5.3.1 Tools Setup

The different tools mentioned in the previous section are used to set up the test system. Figure 5.2

describes how the different tools are used in combination in Test System Setup.

Figure 5.2: Test System Setup

The system runs LTTng tracer which comprises of the kernel tracer and the userspace tracer. The

tools load and tbench are used to generate load on the system in different configurations while the

Page | 53

tracing in on or off. The system activity is recorded by sar utility of the SYSSTAT tools bundle, and the

sadf utility from the same bundle converts the sar generated data into human readable form and stores

the data in the disk. The system is also profiled using a system wide profiler called OProfile. It stores the

system profile data and the source annotations of binary files in the disk. These profile data and source

annotations are used for Control Flow Analysis and Data Flow Analysis of the traced system. OProfile

passes the control flow information to a call graph generation script named Gprof2dot.py that generates

visual call graphs from the control flow information. It saves the call graphs to the disk.

5.3.2 Load Configuration

Two different types of load generators have been used to generate load on the test system.

The load program generates specified amount of CPU load on a single core. Therefore for a

fourςcore processor, four instances of the load program have to be executed. The load program is a

program written in C language and generates CPU load by forking child processes continuously. The

source code of the load program has been provided in Appendix B.

The tbench utility produces process and network load on the test system. In our experiments tbench is

run on the loopback interface adapter with a standard of 10 clients. The amount of load on the system is

varied by varying the throughput data rate of tbench clients.

Table 5.1 describes the load configuration for the experiments to be performed:

Configuration Load Generator Load Level Load %

CNF-01 Load Low 20

CNF-02 Load Medium 50

CNF-03 Load High 90

CNF-04 Tbench Low 30

CNF-05 Tbench Medium 50

CNF-06 Tbench High 80

Table 5.1: Load Configuration

5.3.3 Test Automation

The experiments are automated with the help of shell scripts. These shell scripts are responsible for

running the tools and utilities in proper order and recording all the test data in the disk for analysis at a

later period.

Page | 54

5.3.4 Performance Measurement

Various criteria have been measured in order to judge the performance of LTTng kernel trace and

userspace tracer in a 4-core SMP system under various load configurations. Performance measurement

has been done in system level, program level and function level. Following are the different criteria for

performance measurement.

System Level Performance Measurement

¶ CPU usage by a user program

¶ CPU usage due to system activities

¶ CPU usage due to I/O waits

Program Level Performance Measurement

¶ Percentage of CPU cycles needed for an image execution

¶ Percentage of L2 cache misses

¶ Percentage of retired instructions

¶ Percentage of memory leaks

Function Level Performance Measurement

¶ Call Graph analysis

¶ Source annotation evaluation

5.3.5 Result Analysis

The results obtained from the experiments are stored in the disk in form of system activity data,

OProfile data, VALGRIND memory report, call graphs and source annotations. These result data provide

a valuable input for system level, program level and function level performance measurement.

 The system level performance measurement includes analyzing and comparing percent CPU

utilization for user programs, system and I/O waits. The program level performance measurement

includes CPU cycles needed for execution, L2 cache misses, memory leaks while execution and the

retired instructions while branch mispredictions for a binary image. The function level performance

measurement includes call graph analysis and source annotation evaluation for percent CPU cycles at

instruction level. The program level and function level performance measurement comprise the Control

Flow and Data Flow Analysis.

The results analysis will help us to zero down on the efficiency of the LTTng kernel tracer and userspace

trace on a multicore SMP system. Figure 5.3 presents the different phases of result analysis.

Page | 55

Figure 5.3: Result Analysis

Page | 56

6. Experiment Methodology

This chapter describes the experiment methods in detail that are to be performed on LTTng kernel

tracer and userspace tracer.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

UST Userspace Tracer

SUT System Under Test

CFG Control Flow Graph

CPU Central Processing Unit

Page | 57

6.1 Load Configuration

6.1.1 Experiment 1 ɀ Determination of l oad configuration parameters

for System Under Test (SUT)

Objective ς Setting up the parameters for load configurations as described in Table 6.1 in chapter

Experiment Setup. These load configurations are to be used in forthcoming experiments.

Explanation ς For the Control Flow and the Data Flow analysis the idea is to generate a substantial load

in the whole system. For the determination of low, medium and high load of CPU, the idle time of the

CPU will be collected by the sar utility of SYSTAT bundle. Table 6.1 shows the desired percentage of idle

time for each low, medium and high load configurations of the CPU.

Configuration of LOAD CPU Idle Time (%)

Low 67-100

Medium 33-66

High 0-32

 Table 6.1: Load Configuration

The load program generates specified percentage of load on a single CPU core. As the system under test

has four SMP cores, 4 instances of load program is executed simultaneously in vanilla kernel to generate

the specified percentage of CPU load on the system. The total number of clients that will be required for

tbench (network load) is kept fixed at 10 and by running the tbench (in loopback) in a fresh vanilla kernel

with controlled throughput. Table 6.2 provides the details of six different load configurations to be

determined.

Utility Instances/Clients Target CPU Idle Time (%) Load Configuration

load 4 80 CNF-01

load 4 50 CNF-02

load 4 10 CNF-03

tbench 10 70 CNF-04

tbench 10 50 CNF-05

tbench 10 20 CNF-06

Table 6.2: Load Configurations to be determined

After the determination of the load configuration parameters, Control and Data Flow analysis are done

on empty vanilla kernel and kernel compiled with LTTng with variation of different parameters thus

differentiating between their usages of CPU cycles.

Page | 58

6.2 Control Flow Analysis

6.2.1 Experiment 2 ɀ Measuring the efficiency of LTTng Kernel Tracer

Objective ς Measuring the efficiency of LTTng kernel tracer for different load configurations. Detailed

program level and function level performance analysis is to be performed on the gathered results.

Explanation ς The OProfile tool is used to get the Control Flow parameters in the whole system with

different load configurations. The opcontrol command is run with kernel image and separate libraries as

the argument (to get the control flow of any process inside the libraries) to get the appropriate opreport

depicting the CPU cycles spent by each of the functions and binaries. The CPU usage is also collected

during the load generation with the help of sar tool. This experiment helps us to determine the CPU

activity of the system having upon different load configurations along with a generalized sample report

of individual CPU cycles used by separate functions of binaries under varied load. OProfile was run with

the CPU_CLK_UNHALTED hardware performance counter to get the actual CPU time spend by the

binaries and source annotations. OProfile output was fed into a python script to generate control flow

graphs for LTT Daemon. Table 6.3 describes all the test cases to be executed. To get better results all

test cases are run 3 times.

Test Case Kernel Markers LTTng Armed Tracing Tracing Mode Load Configuration

T1 Vanilla Off No Off NA CNF-01, CNF-04

T2 Vanilla Off No Off NA CNF-02, CNF-05

T3 Vanilla Off No Off NA CNF-03, CNF-06

T4 Instrumented Off No Off NA CNF-01, CNF-04

T5 Instrumented Off No Off NA CNF-02, CNF-05

T6 Instrumented Off No Off NA CNF-03, CNF-06

T7 Instrumented On No Off NA CNF-01, CNF-04

T8 Instrumented On No Off NA CNF-02, CNF-05

T9 Instrumented On No Off NA CNF-03, CNF-06

T10 Instrumented On Yes Off NA CNF-01, CNF-04

T11 Instrumented On Yes Off NA CNF-02, CNF-05

T12 Instrumented On Yes Off NA CNF-03, CNF-06

T13 Instrumented On Yes On Non Overwrite CNF-01, CNF-04

T14 Instrumented On Yes On Non Overwrite CNF-02, CNF-05

T15 Instrumented On Yes On Non Overwrite CNF-03, CNF-06

T16 Instrumented On Yes On Flight Recorder CNF-01, CNF-04

T17 Instrumented On Yes On Flight Recorder CNF-02, CNF-05

T18 Instrumented On Yes On Flight Recorder CNF-03, CNF-06

 Table 6.3: Test Cases for Experiment 2

Page | 59

6.2.2 Experiment 3 ɀ Measuring the efficiency of LTTng Userspace

Tracer

Objective ς Measuring the efficiency of LTTng userspace tracer for different load configurations.

Detailed program level and function level performance analysis is to be performed on the gathered

results. The effect of the number of instrumentations is also measured.

Explanation ς The Profiling tools are having same configurations for all the experiments. For this

experiment the UST is installed on vanilla kernel and load and tbench are freshly compiled with UST

instrumentation inside. The profiler is started after running the load generating programs with the

instrumentation ON/OFF. The profiler (OProfile) gathers sample generating opreport which shows the

CPU cycles usage at program level, the annotations of the source files of UST and load generation

programs with the time spend in the CPU and the call graph which helps into digging deep regarding the

reason of the overhead (if any). Overall system overhead is also measured. The experiment helps in

determining that either or not User Space Tracing Instrumentation has an overhead on the execution

time of the binary and also on the system performance. Table 6.4 shows the test cases executed for this

experiment. All test cases are repeated 3 times to get better results. To determine the effect of the

number of instrumentations all the test cases are repeated with 1, 5 and 10 instrumentation(s) compiled

in the source code of both load and tbench.

Test Case Kernel UST Markers Tracing Load Configuration

T1 Vanilla Off Off CNF-01, CNF-04

T2 Vanilla Off Off CNF-02, CNF-05

T3 Vanilla Off Off CNF-03, CNF-06

T4 Vanilla On Off CNF-01, CNF-04

T5 Vanilla On Off CNF-02, CNF-05

T6 Vanilla On Off CNF-03, CNF-06

T7 Vanilla On On CNF-01, CNF-04

T8 Vanilla On On CNF-02, CNF-05

T9 Vanilla On On CNF-03, CNF-06

Table 6.4: Test Cases for Experiment 3

6.2.3 Experiment 4 ɀ Measuring the impact on System as well as

Traced Application when LTTng Kernel Tracer and Userspace

Tracer are executed together

Objective ς This experiment aims to find out the overhead in the system and the instrumented

application in case LTTng kernel tracing and userspace Tracing is both running together and the

application binaries are instrumented with UST markers.

Page | 60

Explanation ς In an LTTng installed kernel we already have tested all variations to test the overhead of

LTTng kernel tracing in Experiment 2. In this case we also install UST (Userspace Tracing) in the LTTng

patched kernel and instrument the UST markers in the binaries. With all combination of LTTng tracing

along with UST instrumentation we take a set of test cases for which we generate an annotated source

code for LTT Daemon and UST Daemon. We get overall sample report showing the CPU cycles taken in

all the possible conditions by LTTng binaries and UST binaries. There is also control flow graph of the

binaries helping us to find the effect of LTTng kernel tracer on UST and vice versa, and also the effect of

both on the system and the traced application. Table 6.5 provides the test cases to be executed for this

experiment. All test cases are executed 3 times to get better results. As we are running userspace tracer

we have repeated all test cases with 1, 5 and 10 UST markers compiled in with the userspace

applications to find out the impact of increasing number of instrumentations as well.

Test Case Kernel Kernel Tracing Tracing Mode UST Load Configuration

T1 Instrumented On Non Overwrite On CNF-01, CNF-04

T2 Instrumented On Non Overwrite On CNF-02, CNF-05

T3 Instrumented On Non Overwrite On CNF-03, CNF-06

T4 Instrumented On Flight Recorder On CNF-01, CNF-04

T5 Instrumented On Flight Recorder On CNF-02, CNF-05

T6 Instrumented On Flight Recorder On CNF-03, CNF-06

Table 6.5: Test Cases for Experiment 4

Page | 61

6.3 Data Flow Analysis

6.3.1 Experiment 5 ɀ Running load program and tbench on LTTng

Kernel with Non Overwrite and Flight R ecorder tracing modes

Objective ς The objective of this experiment is to find out any LII cache misses or branch misprediction

of LTT Control module or the LTT daemon during tracing when there is a low, medium and high load

generated on the system by a child forking program load and process and network load generated by

the benchmarking utility tbench. This is an effort to make the tracer run through different type of loads

and check the internal memory allocation issues for the LTT Control and Daemon modules.

Explanation ς In LTTng kernel we use load program and tbench to generate low, medium and high load

according to the load configuration matrix of Experiment 1. We start the LTTng kernel tracer in Non

overwrite and Flight recorder tracing modes one after the other and use OProfile Hardware Events

LII_MISSES and INST_RETIRED_ANY_P to sample LTT Control and LTT Daemon to find out respective

Cache Misses and Branch Mispredictions in it. All the experiments are controlled by automated script

which initially triggers the load program under different load configuration and then starts OProfile

sampling and LTTng Kernel Tracer parallely. The trace gets destroyed after 180 sec when the load

program ends. For tbench also the same process is followed where the trace gets destroyed after the

completion of tbench. Table 6.6 provides all test cases for this experiment.

Test Case Kernel Tracing Mode Load Configuration

T1 LTTng Non Overwrite CNF-01, CNF-04

T2 LTTng Non Overwrite CNF-02, CNF-05

T3 LTTng Non Overwrite CNF-03, CNF-06

T4 LTTng Flight Recorder CNF-01, CNF-04

T5 LTTng Flight Recorder CNF-02, CNF-05

T6 LTTng Flight Recorder CNF-03, CNF-06

Table 6.6: Test Cases for Experiment 5

6.3.2 Experiment 6 ɀ Running UST tracing on load and tbench

program each instrumented with 10 markers under different

load configurations

Objective ς The aim of this experiment is to find out any L2 cache misses or branch misprediction of UST

daemon and UST Libraries during userspace tracing when there is a low, medium and high load

generated on the process and network by the benchmarking utility tbench and on the system by the

load program. The tests are done under various load circumstances to gauge the memory management

efficiency of the UST Daemon and the Libraries during Userspace tracing.

Page | 62

Explanation ς In plain vanilla kernel the program load and tbench are instrumented with 10 markers

and are recompiled for current experiment use.UST Tracer triggers Load program and tbench are again

triggered to generate the respective loads in the system according to the load generation matrix. An

automated script is fired which triggers OProfile sampling with hardware counters same as Experiment

5. After 180 sec UST tracer dumps the trace file for both load and tbench program and the OProfile

sampling also ends. Table 6.7 represents the test cases for this experiment.

Test Case Kernel Tracing Load Configuration

T1 Vanilla UST CNF-01, CNF-04

T2 Vanilla UST CNF-02, CNF-05

T3 Vanilla UST CNF-03, CNF-06

 Table 6.7: Test Cases for Experiment 6

6.3.3 Experiment 7 ɀ Running the Kernel tracer with the help of

Valgrind under various load configurations generated by load

program (system load) and tbench (proce ss and network load)

Objective ς The experiment aims to find out the memory leaks with the help of Valgrind tool within LTT

Control module during its run under different load configurations generated by load and tbench.

Explanation ς In LTTng kernel we use load and tbench program one after the other to generate

necessary load configurations in the system. We use the Memcheck utility of the Valgrind tool under the

arguments of complete memory leak check and tracing of forked programs turned on. The usage detail

of the tool is explained in the tools section of the Experiment Setup chapter. The Valgrind tool starts the

Kernel Tracer in both Non Overwrite and in Flight Recorder tracing modes. After the load and tbench

program completes the execution the trace is destroyed to get the Valgrind memory report. The report

generated by Valgrind helps to get down to the functional level of instruction which is responsible for

memory leaks in the LTT Control application (lttctl). Table 6.8 shows the test cases involved in the above

experiment.

Test Case Kernel Tracing Mode Valgrind Tool Load Configuration

1 LTTng Non Overwrite Memcheck CNF-01, CNF-04

2 LTTng Non Overwrite Memcheck CNF-02, CNF-05

3 LTTng Non Overwrite Memcheck CNF-03, CNF-06

4 LTTng Flight Recorder Memcheck CNF-01, CNF-04

5 LTTng Flight Recorder Memcheck CNF-02, CNF-05

6 LTTng Flight Recorder Memcheck CNF-03, CNF-06

Table 6.8: Test Cases for Experiment 7

Page | 63

6.3.4 Experiment 8 ɀ Running the load and tbench application

instrumented with 10 markers under UST (Userspace Tracing)

with the help of Valgrind

Objective ς The objective of this experiment is to run UST Tracing on the load and tbench applications

instrumented with 10 markers with the help of Valgrind Memcheck tool. This experiment will give us the

detailed report of any memory leak issues faced by UST tracer under different load configurations.

Explanation ς In fresh vanilla kernel we instrument the tbench and load with 10 markers and recompile

it. We run the UST tracing on the instrumented load and tbench programs with Memcheck utility of

Valgrind tool. The argument of tracing of forked programs are disabled for this experiment as it is not

able to recognize the system call made by the forked child programs inside usttrace (Userspace Tracer)

utility. After the load and tbench ends after its stipulated duration the Valgrind report gets generated.

The reports generated by Valgrind are more detailed and drills down to functional level of the

application program, i.e. we will get the line numbers of the application program which is responsible

for the memory leaks. Table 6.9 shows the set of test cases designed for the experiment.

Test Case Kernel Tracing Valgrind Tool Load Configuration

T1 Vanilla UST Memcheck CNF-01, CNF-04

T2 Vanilla UST Memcheck CNF-02, CNF-05

T3 Vanilla UST Memcheck CNF-03, CNF-06

Table 6.9: Test Cases for Experiment 8

Page | 64

7. Results

This chapter presents the analysis of results that are obtained by performing the experiments

mentioned in the experiment methodology chapter. Detailed Results have been presented in Appendix

A.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

UST Userspace Tracer

CPU Central Processing Unit

LTTD Linux Trace Toolkit Daemon

USTD Userspace Tracer Daemon

Page | 65

7.1 Load Configuration

7.1.1 Load Configuration parameters for System Under Test (SUT)

Experiment 1 enabled us to determine the load configuration parameters for the load generation

utilities. Table 7.1 provides the parameters for different load configurations for load utility.

Load Configuration Instances Specified Load (%) Execution Time (s) Average CPU Usage (%)

CNF-01 4 20 180 21.16

CNF-02 4 50 180 50.53

CNF-03 4 90 180 89.52

Table 7.1: Results for Load Configuration of load utility

Table 7.2 provides the parameters for different load configurations for tbench utility.

Load Configuration Clients Specified Data Rate Execution Time (s) Average CPU Usage (%)

CNF-03 10 12 180 29.05

CNF-04 10 31 180 53.45

CNF-05 10 60.55 180 81.81

Table 7.2: Results for Load Configuration of tbench utility

From Table 7.1 and Table 7.2 we can observe that the average CPU usages for all load configurations are

close to the target load described in Table 5.1. Therefore, we can proceed with these load configurations

for the other experiments.

Page | 66

7.2 Control Flow Analysis

7.2.1 Efficiency of LTTng Kernel Tracer with Load utility

We have identified the performance impact of LTTng Kernel Tracer on the kernel operations of the

system while the system is under varied amount of stress exerted by the Load utility. The percentage of

impact has been calculated in terms of percentage of CPU cycles needed for performing kernel

operations in different scenarios against the percentage of CPU cycles needed for performing kernel

operations on a vanilla kernel. Table 7.3 provides the results.

KERNEL OPERATIONS - LOAD

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Instrumented -0.01 0.62 0.42 0.34

Markers On 0.04 0.62 0.45 0.37

LTTng Armed 0.07 0.71 0.41 0.40

Non Overwrite 0.34 0.81 0.53 0.56

Flight Recorder 0.29 0.86 0.53 0.56

Table 7.3: Impact of LTTng kernel tracer on kernel operations (Load)

Graph 7.1 presents the impact of LTTng kernel tracer on kernel operations with Load utility executing in

various configurations.

Graph 7.1: Impact of LTTng kernel tracer on kernel operations (Load)

From Graph 7.1 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing

in non overwrite and flight recorder modes. Here, the impact varies with the amount of load exerted by

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Vanila Instrumented Markers On LTTng Armed Non
Overwrite

Flight
Recorder

LTTng Kernel Tracer (Load)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 67

the load utility, low load having the least impact, high in between and medium load having the most

impact. The percentage impact on kernel operations, calculated by measuring the percentage of CPU

cycles needed, ranges between 0.25% to 0.85% with tracing on with almost negligible difference

between non overwrite and flight recorder modes and average impact near 0.56%.

7.2.2 Efficiency of LTTng Kernel Tracer with Tbench utility

We have identified the performance impact of LTTng Kernel Tracer on the kernel operations of the

system while the system is under varied amount of process and network load exerted by the Tbench

utility. The percentage of impact has been calculated in terms of percentage of CPU cycles needed for

performing kernel operations in different scenarios against the percentage of CPU cycles needed for

performing kernel operations on a vanilla kernel. Table 7.4 provides the results.

KERNEL OPERATIONS - TBENCH

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Instrumented -0.21 0.49 -1.20 -0.31

Markers On -0.41 0.05 -1.25 -0.54

LTTng Armed -0.52 0.52 -0.82 -0.27

Non Overwrite 2.45 3.34 1.89 2.56

Flight Recorder 2.24 3.43 2.43 2.70

Table 7.4: Impact of LTTng kernel tracer on kernel operations (Tbench)

Graph 7.2 presents the impact of LTTng kernel tracer on kernel operations with Tbench utility executing

in various configurations.

Graph 7.2: Impact of LTTng kernel tracer on kernel operations (Tbench)

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

Vanila Instrumented Markers On LTTng Armed Non
Overwrite

Flight
Recorder

LTTng Kernel Tracer (Tbench)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 68

From Graph 7.2 we can identify the effect of instrumented kernel, markers on, LTTng armed and tracing

in non overwrite and flight recorder modes. Here, the impact varies with the amount of load exerted by

the tbench utility, high load having the least impact, low in between and medium load having the most

impact. The percentage impact on kernel operations ranges between 1.85% to 3.45% with tracing on

with almost negligible difference between non overwrite and flight recorder modes, the average impact

with tracing on being approximately near 2.6%.

7.2.3 Efficiency of LTTng Kernel Tracer

The efficiency of LTTng kernel tracer is determined by calculating the average percentage CPU cycles

needed for kernel operations between the load generators load and tbench. The averaged results are

displayed in Table 7.5.

KERNEL OPERATIONS - AVERAGE

Load
Configuration

% CPU Cycles AVERAGE
%IMPACT Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Instrumented -0.11 0.56 -0.39 0.02

Markers On -0.19 0.34 -0.40 -0.08

LTTng Armed -0.23 0.62 -0.21 0.06

Non Overwrite 1.40 2.08 1.21 1.56

Flight Recorder 1.27 2.15 1.48 1.63

Table 7.5: Impact of LTTng kernel tracer on kernel operations (Average)

Graph 7.3 presents the impact of LTTng kernel tracer on kernel operations in low, medium and high load

configurations.

Graph 7.3: Average Impact of LTTng kernel tracer on kernel operations for different load configurations

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

Vanila Instrumented Markers On LTTng Armed Non
Overwrite

Flight
Recorder

LTTng Kernel Tracer (AVERAGE)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 69

From Graph 7.3 we can observe the effect of instrumented kernel, markers on, LTTng armed and tracing

in non overwrite and flight recorder modes. Here, the impact varies with the amount of load, high and

low load performing similarly and medium load having the most impact. The percentage impact on

kernel operations ranges between 1.2% and 2.15%, the average impact being near 1.5%. Graph 7.4

provides the average impact on kernel operations for all scenarios of LTTng kernel tracer.

Graph 7.4: Average Impact of LTTng Kernel Tracer

Therefore, from Graph 7.4, we can see that the impact of LTTng on kernel operations in terms of

percentage of CPU cycles against vanilla kernel is (1.56 + 1.63)/2 = 1.6%. We can also observe that there

is marginal difference between the performances of LTTng kernel tracer in Non Overwrite mode and in

Flight Recorder mode.

7.2.4 Footprint of LTTng Kernel Tracer Daemon (LTTD)

Table 7.6 and Table 7.7 records the footprint of LTTng Kernel Tracer Daemon (LTTD) in terms of

percentage of CPU cycles utilized by LTTD to operate through the trace sessions for load utility and

tbench utility respectively.

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.00 0.02 -0.08 0.06

1.56 1.63

AVERAGE IMPACT

AVERAGE %IMPACT

Page | 70

LTTD - LOAD

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Non Overwrite 0.0003 0.0000 0.0000 0.0001

Flight Recorder 0.0005 0.0001 0.0001 0.0002

Table 7.6: Footprint of LTTD (Load)

LTTD - TBENCH

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Non Overwrite 0.0002 0.0001 0.0002 0.0002

Flight Recorder 0.0002 0.0004 0.0003 0.0003

Table 7.7: Footprint of LTTD (Tbench)

From the data in Table 7.6 and Table 7.7 we can identify that LTTD has very less footprint within the

ǎȅǎǘŜƳ ŀƴŘ ŘƻŜǎ ƴƻǘ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ōȅ ŀƴȅ ƳŜŀƴǎΦ ¢ŀōƭŜ 7.8 provides the average

results for the footprint of LTTD in terms of percentage of CPU cycles needed for execution of LTTD.

LTTD - AVERAGE

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Non Overwrite 0.0003 0.0001 0.0001 0.0001

Flight Recorder 0.0004 0.0003 0.0002 0.0003

Table 7.8: Footprint of LTTD (Average)

From Table 7.8 we can see that LTTD has almost negligible footprint on both Non Overwrite mode and

Flight Recorder mode. We have already seen that both the modes have almost similar amount of impact

ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜrformance, but still LTTD takes more CPU cycles in flight recorder mode than in Non

Overwrite mode.

7.2.5 Call Graph Analysis for LTTng Kernel Tracer

In our experiment we have generated call graphs for LTTng kernel tracer those help us to know in which

libraries and functions are explored by the LTTng kernel tracer in course of its execution. We have

identified the libraries and the respective functions where the LTTng kernel tracer spends time.

 Table 7.9 provides the list of libraries and functions called during the execution of LTTng kernel

tracer with the load utility and the average percentage of CPU time spent within the functions.

Page | 71

Library Function(s) Average

ld-2.10.1.so /lib/ld -2.10.1.so 49.61

libc-2.10.1.so /lib/libc-2.10.1.so 46.97

liblttd.so.0.0.0

liblttdvfs_on_read_subbuffer 0.73

frame_dummy 0.35

__i686.get_pc_thunk.bx 0.35

libpthread-2.10.1.so

pthread_mutex_trylock 0.26

_init 0.35

pthread_rwlock_unlock 0.21

__pthread_diaable_asynccancel 0.21

__close_nocancel 0.62

__pthread_initialize_minimal 0.55

Table 7.9: Libraries and functions for LTTng Kernel Tracer (Load)

Graph 7.5 displays the average percentage of CPU time spent by LTTng on each function that in turn

belongs to a library, with load utility.

Graph 7.5: Call Graph Analysis of LTTng Kernel Tracer on Load

From Graph 7.5 we can observe that LTTng kernel tracer spends most of its time in libc and ld standard C

libraries. It spends only 3.42% of the time in other functions and libraries which includes liblttd.

Table 7.10 provides the list of libraries and functions called during the execution of LTTng kernel

tracer with the tbench utility and the average percentage of CPU time spent within the functions.

Call Graph - LTTng Kernel Tracer on Load

/lib/ld -2.10.1.so

/lib/libc -2.10.1.so

liblttdvfs_on_read_subbuffer

frame_dummy

__i686.get_pc_thunk.bx

pthread_mutex_trylock

_init

pthread_rwlock_unlock

49.61%

46.97%

3.42%

Page | 72

Library Function(s) Average

ld-2.10.1.so /lib/ld -2.10.1.so 43.83

libc-2.10.1.so /lib/libc-2.10.1.so 50.34

liblttd.so.0.0.0

liblttdvfs_on_read_subbuffer 0.00

open_channel_trace_pairs 0.23

frame_dummy 0.00

__i686.get_pc_thunk.bx 0.00

lttd parse_arguments 1.72

libpthread-2.10.1.so

pthread_mutex_trylock 0.00

pthread_mutex_unlock 0.46

_init 0.00

sigaction 0.43

pthread_rwlock_unlock 0.00

__pthread_disable_asynccancel 0.00

__reclaim_stacks 1.62

__close_nocancel 0.00

__do_global_dtors_aux 0.63

pthread_create@@GLIBC_2.1 0.37

__errno_location 0.37

__pthread_initialize_minimal 0.00

Table 7.10: Libraries and functions for LTTng Kernel Tracer (Tbench)

Graph 7.6 displays the average percentage of CPU time spent by LTTng on each function that in turn

belongs to a library, with tbench utility.

Graph 7.6: Call Graph Analysis of LTTng Kernel Tracer on Tbench

Call Graph - LTTng Kernel Tracer on Tbench

/lib/ld -2.10.1.so

/lib/libc -2.10.1.so

liblttdvfs_on_read_subbuffer

open_channel_trace_pairs

frame_dummy

__i686.get_pc_thunk.bx

parse_arguments

pthread_mutex_trylock

pthread_mutex_unlock

_init

43.83%

50.34%

5.83%

Page | 73

From Graph 7.6 we can observe that LTTng kernel tracer spends most of its time in libc and ld standard C

libraries. It spends only 5.83% of the time in other functions and libraries which includes liblttd.

Therefore, we can say that as LTTng kernel tracer spends so less time in executing its own

functions it has so little impact in the systems performance.

7.2.6 Efficiency of LTTng Userspace Tracer with Load utility

We have identified the performance impact of LTTng Userspace Tracer or UST on the Load utility while

the system is under varied amount of stress exerted by the Load utility itself. The percentage of impact

has been calculated in terms of percentage of CPU cycles needed for executing the instrumented Load

binary in different scenarios against the percentage of CPU cycles needed for executing an original copy

of the Load binary image. The instrumentation compiled within the Load utility has also been varied as

1, 5 and 10 instrumentations in order to observe the effect of varying markers as well. Table 7.11, Table

7.12 and Table 7.13 provides the results for load program compiled with 1, 5 and 10 markers

respectively.

LOAD - 1 Marker

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.33 0.30 0.33 0.32

UST On 0.02 0.26 0.23 0.17

Table 7.11: Impact of UST on Load with 1 marker

LOAD - 5 Markers

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.57 0.56 0.18 0.44

UST On 0.53 0.45 0.33 0.44

Table 7.12: Impact of UST on Load with 5 markers

LOAD - 10 Markers

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.47 0.46 0.48 0.47

UST On 0.50 0.54 0.56 0.53

Table 7.13: Impact of UST on Load with 10 markers

Page | 74

Table 7.14 provides the average data for the impact of UST on varying markers on Load utility executed

with markers compiled without UST and with UST running, against an original run of the load utility

without the markers.

LOAD ς AVERAGE

Load
Configuration

% CPU Cycles AVERAGE
%IMPACT Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.46 0.44 0.33 0.41

UST On 0.35 0.42 0.37 0.38

Table 7.14: Impact of UST on Load (Average)

From Table 7.14 we can identify that the userspace trace similar to the kernel tracer has very less impact

on the userspace application. We know, when markers are compiled in, even if UST is not running, the

control goes to the marker site and returns back. Therefore the impact of the compiled markers on UST

can be justified. It is seen that UST has an impact of 0.38% on the load application.

7.2.7 Efficiency of LTTng Userspace Tracer with Tbench utility

We have identified the performance impact of LTTng Userspace Tracer or UST on the Tbench utility

while the system is under varied amount of stress exerted by the Tbench utility itself. The percentage of

impact has been calculated in terms of percentage of CPU cycles needed for executing the instrumented

Tbench binary in different scenarios against the percentage of CPU cycles needed for executing an

original copy of the Tbench binary image. The instrumentation compiled within the Tbench utility has

also been varied as 1, 5 and 10 instrumentations in order to observe the effect of varying markers as

well. Table 7.15, Table 7.16 and Table 7.17 provides the results for Tbench utility compiled with 1, 5 and

10 markers respectively.

TBENCH - 1 Marker

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.81 0.57 0.50 0.63

UST On 0.89 0.49 0.57 0.65

Table 7.15: Impact of UST on Tbench with 1 marker

Page | 75

TBENCH - 5 Markers

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.49 0.56 0.63 0.56

UST On 0.55 0.54 0.54 0.54

Table 7.16: Impact of UST on Tbench with 5 markers

TBENCH - 10 Markers

Load
Configuration

% CPU Cycles
AVERAGE

 Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.72 0.47 0.58 0.59

UST On 0.57 0.49 0.63 0.56

Table 7.17: Impact of UST on Tbench with 10 markers

Table 7.18 provides the average data for the impact of UST on varying markers on Tbench utility

executed with markers compiled without UST and with UST running, against an original run of the

Tbench utility without the markers.

TBENCH - AVERAGE

Load
Configuration

% CPU Cycles AVERAGE
%IMPACT Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.67 0.53 0.57 0.59

UST On 0.67 0.51 0.58 0.59

Table 7.18: Impact of UST on Tbench (Average)

From Table 7.18 it can be seen that both markers and UST has an impact of 0.59% on the Tbench

application.

7.2.8 Efficiency of LTTng Userspace Tracer

The efficiency of LTTng userspace tracer is determined by calculating the average percentage impact on

CPU cycles needed for the execution of the load generators load and tbench. The average is calculated

from the already averaged data for load and tbench in Table 7.14 and Table 7.18 respectively. The final

averaged results are displayed in Table 7.19.

Page | 76

AVERAGE

Load
Configuration

% CPU Cycles AVERAGE
%IMPACT Low Load Medium Load High Load

Original 0.00 0.00 0.00 0.00

Markers On 0.57 0.49 0.45 0.50

UST On 0.51 0.46 0.48 0.48

Table 7.19: Impact of UST on userspace applications (Average)

Graph 7.7 presents the impact of LTTng userspace tracer on userspace applications in low, medium and

high load configurations.

Graph 7.7: Impact of UST on userspace applications for different load configurations

From Graph 7.7 we can observe that there is an impact of both compiled instrumentation as well as the

userspace tracer on the traced application, but the impact is as low as between 0.45% and 0.51%

depending on the load configurations. Graph 7.8 shows the average impact of UST on userspace

applications.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Original Markers On UST On

UST % IMPACT- Average

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 77

Graph 7.8: Average Impact of UST on userspace applications

From Graph 7.8 we can identify that the LTTng userspace tracer and the compiled markers both have an

effect of around 0.50% on the performance of the userspace application.

 Table 7.20 provides the average impact of UST on userspace applications based on the number

of markers for low, medium and high load configurations.

AVERAGE

Markers
% CPU Cycles AVERAGE

%IMPACT Low Load Medium Load High Load

1 0.46 0.38 0.40 0.41

5 0.54 0.50 0.44 0.49

10 0.54 0.52 0.60 0.55

Table 7.20: Impact of UST based on number of markers

Graph 7.9 represents the impact of the number of markers compiled into the userspace application for

low, medium and high load configurations.

0

0.1

0.2

0.3

0.4

0.5

Original Markers On UST On

0.00
0.50 0.48

AVERAGE %IMPACT

AVERAGE %IMPACT

Page | 78

Graph 7.9: Impact of UST based on number of markers for different load configurations

From Graph 7.9 we can observe that the impact of UST on userspace applications marginally increase

with the increase in the number of instrumentations compiled in, though the pattern of increase for all

load configurations are not similar.

Graph 7.10 provides the average impact of UST based on the number of markers.

Graph 7.10: Average Impact of UST based on number of markers

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 5 10

UST - % Impact due to markers

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 5 10

0.41 0.49
0.55

% IMPACT due to number of Markers

AVERAGE %IMPACT

Page | 79

From Graph 7.10 we can observe that the percentage impact of UST on the userspace application

increases with the increase of number of markers.

7.2.9 Footprint of LTTng Userspace Tracer Daemon (USTD)

Table 7.21 and Table 7.22 records the footprint of LTTng Userspace Tracer Daemon (USTD) in terms of

percentage of CPU cycles utilized by USTD to operate through the trace sessions for load utility and

tbench utility respectively for 1, 5 and 10 number of instrumentations in userspace application.

USTD - LOAD

Markers
% CPU Cycles

AVERAGE
 Low Load Medium Load High Load

1 0.0017 0.0007 0.0005 0.0010

5 0.0018 0.0008 0.0003 0.0010

10 0.0017 0.0007 0.0005 0.0010

Table 7.21: Footprint of USTD (Load)

USTD - TBENCH

Markers
% CPU Cycles

AVERAGE
 Low Load Medium Load High Load

1 0.0003 0.0002 0.0002 0.0002

5 0.0003 0.0002 0.0002 0.0002

10 0.0003 0.0003 0.0002 0.0003

Table 7.22: Footprint of USTD (Tbench)

From the data in Table 7.21 and Table 7.22 we can identify that USTD has very less footprint within the

ǎȅǎǘŜƳ ŀƴŘ ŘƻŜǎ ƴƻǘ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ōȅ ŀƴȅ ƳŜŀƴǎΦ ¢ŀōƭŜ 7.23 provides the average

results for the footprint of USTD in terms of percentage of CPU cycles needed for execution of USTD.

USTD ς AVERAGE

Markers
% CPU Cycles

AVERAGE
 Low Load Medium Load High Load

1 0.0010 0.0005 0.0004 0.0006

5 0.0011 0.0005 0.0003 0.0006

10 0.0010 0.0005 0.0004 0.0006

Table 7.23: Footprint of USTD (Average)

From Table 7.23 we can see that USTD has almost negligible footprint on the system for different load

configurations or different number of markers. But it is noticeable that the footprint of USTD is not as

good as compared to the footprint of LTTD. USTD has got a footprint a little higher than LTTD but still is

ŀƭƳƻǎǘ ƴŜƎƭƛƎƛōƭŜ ǘƻ ŀŦŦŜŎǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΦ

Page | 80

Graph 7.11 represents the impact of load on the footprint of USTD.

Graph 7.11: Impact of load on USTD

From Graph 7.11 we can observe that the footprint of USTD decreases as the load increases in the

system. Therefore, the performance of USTD gets better with increasing amount of load.

 Graph 7.12 presents the impact of the number of markers on USTD.

Graph 7.12: Impact of the number of markers on USTD

From Graph 7.12 we can observe that the footprint of UST is liner to the increasing number of markers.

Therefore, the number of markers compiled in does not have any effect on the footprint of USTD.

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

- Low Load - Medium Load - High Load

%IMPACT of Load on USTD

1 5 10

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

1 2 3

%IMPACT of number of Markers on
USTD

- Low Load - Medium Load - High Load

Page | 81

7.2.10 Call Graph Analysis of LTTng Userspace Tracer

In our experiment we have generated call graphs for LTTng userspace tracer as well those help us to

know in which libraries and functions are explored by the LTTng userspace tracer in course of its

execution. We have identified the libraries and the respective functions where the LTTng userspace

tracer spends time.

 Table 7.24 provides the list of libraries and functions called during the execution of LTTng

userspace tracer with the load utility and the average percentage of CPU time spent within the

functions.

Library Function(s) Average

ld-2.10.1.so /lib/ld -2.10.1.so 23.51

libc-2.10.1.so /lib/libc-2.10.1.so 59.50

ustd

__init 0.17

start_thread 0.38

start_ustd 0.20

consumer_thread 0.51

consumer_loop 0.55

ustcomm_init_connection 0.38

ustcomm_connect_app 0.38

ustcomm_connect_path 0.33

ustcomm_send_requrst 0.19

ustcomm_recv_message 0.56

ustcomm_close_app 0.16

get_subbuffer 0.21

put_subbuffer 0.34

unwrite_last_subbuffer 0.20

connect_buffer 0.41

__i686.get_pc_thunk.bx 0.51

finish_consuming_dead_subbuffer 0.38

__do_global_dtors_aux 0.44

send_message_fd 0.66

recv_message_fd 1.21

libpthread-
2.10.1.so

__pthread_enable_asynccancel 1.65

__pthread_disable_asynccancel 1.50

__init 0.20

connect 0.21

send 0.17

recv 0.42

write 0.16

pthread_create@@GLIBC_2.1 0.86

Page | 82

__deallocate_stack 0.34

__free_stacks 0.17

pthread_mutex_lock 0.37

pthread_mutex_unlock_usercnt 0.17

__pthread_unregister_cancel 0.16

__pthread_initialize_minimal 0.16

__pthread_cleanup_push_defer 0.51

[heap] [heap] 1.44

Table 7.24: Libraries and functions for LTTng Userspace Tracer (Load)

Graph 7.13 displays the average percentage of CPU time spent by LTTng on each function that in turn

belongs to a library, with load utility.

Graph 7.13: Libraries and functions for LTTng Userspace Tracer (Load)

From Graph 7.13 we can observe that LTTng userspace tracer spends a bulk of time in libc and ld

standard C libraries. It spends only 16.99% of the time in other functions and libraries which includes

liblttd.

Table 7.25 provides the list of libraries and functions called during the execution of LTTng

userspace tracer with the tbench utility and the average percentage of CPU time spent within the

functions.

Library Function(s) Average

ld-2.10.1.so /lib/ld -2.10.1.so 21.47

Call Graph - LTTng Userspace Tracer on Load

/lib/ld -2.10.1.so

/lib/libc -2.10.1.so

__init

start_thread

start_ustd

consumer_thread

consumer_loop

ustcomm_init_connection

ustcomm_connect_app

ustcomm_connect_path

23.51%

59.50%

16.99%

Page | 83

libc-2.10.1.so /lib/libc-2.10.1.so 64.99

ustd

__init 0.00

start_thread 0.00

start_ustd 1.39

parse_args 0.69

consumer_thread 0.00

consumer_loop 0.00

ustcomm_init_connection 0.00

ustcomm_connect_app 0.69

ustcomm_connect_path 0.00

ustcomm_send_requrst 0.85

ustcomm_recv_message 0.00

ustcomm_close_app 0.00

get_subbuffer 0.00

put_subbuffer 0.00

unwrite_last_subbuffer 0.00

connect_buffer 0.93

__i686.get_pc_thunk.bx 0.69

finish_consuming_dead_subbuffer 0.00

__do_global_dtors_aux 0.00

send_message_fd 0.85

recv_message_fd 0.69

liburcu-bp.so.0.0.0 rcu_bp_register 1.39

libpthread-2.10.1.so

__pthread_enable_asynccancel 3.01

__pthread_disable_asynccancel 1.60

__init 0.00

connect 0.00

send 0.00

recv 0.00

write 0.00

pthread_create@@GLIBC_2.1 0.00

__deallocate_stack 0.00

__free_stacks 0.00

pthread_mutex_lock 0.00

pthread_mutex_unlock_usercnt 0.00

__pthread_unregister_cancel 0.00

__pthread_initialize_minimal 0.00

__pthread_cleanup_push_defer 0.00

[heap] [heap] 0.74

Table 7.25: Libraries and functions for LTTng Userspace Tracer (Tbench)

Page | 84

Graph 7.14 displays the average percentage of CPU time spent by LTTng on each function that in turn

belongs to a library, with tbench utility.

Graph 7.14: Libraries and functions for LTTng Userspace Tracer (Tbench)

From Graph 7.14 we can observe that LTTng userspace tracer spends a lot of its time in libc and ld

standard C libraries. It spends only 13.54% of the time in other functions and libraries which includes

liblttd.

We can observe that unlike LTTng kernel tracer, LTTng userspace tracer spends greater amount

of its execution time in the C libraries, still it spends a lot of time (approximately 13% to 17%) in

executing its own functions. Therefore, we can say that the LTTng userspace tracer is not as efficient as

the LTTng kernel tracer and there is a scope of improving its performance.

7.2.11 Combined Impact of LTTng Kernel and Userspace Tracer

We have already evaluated the performance of LTTng kernel tracer and the userspace tracer separately.

We also wanted to know if there is any additional impact on the system if LTTng kernel tracer and

userspace tracer are executed together. LTTng kernel tracer was executed with instrumented load utility

together with the LTTng userspace tracer. The impact can be identified against the percentage of CPU

cycles required for the kernel operations for a vanilla kernel and a load program compiled without the

markers. Table 7.26, Table 7.27 and Table 7.28 shows the results for 1, 5 and 10 instrumentations

respectively.

Call Graph - LTTng Userspace Tracer on Tbench

/lib/ld -2.10.1.so

/lib/libc -2.10.1.so

__init

start_thread

start_ustd

parse_args

consumer_thread

consumer_loop

ustcomm_init_connection

ustcomm_connect_app

ustcomm_connect_path

ustcomm_send_requrst

21.47%

64.99%

13.54%

Page | 85

KERNEL OPERATIONS - LOAD - 1 UST Marker

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.67 0.95 0.64 0.75

Flight Recorder + UST 0.84 0.88 0.61 0.78

Table 7.26: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in load

KERNEL OPERATIONS - LOAD - 5 UST Markers

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.61 0.88 0.60 0.70

Flight Recorder + UST 0.53 0.85 0.57 0.65

Table 7.27: Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in load

KERNEL OPERATIONS - LOAD - 10 UST Markers

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.68 0.96 0.70 0.78

Flight Recorder + UST 0.67 1.01 0.52 0.73

Table 7.28: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in load

Table 7.29 provides the average data for the combined impact of LTTng kernel tracer and UST on varying

markers on load utility.

KERNEL OPERATIONS - LOAD - AVERAGE

Load Configuration
% CPU Cycles

AVERAGE
%IMPACT

Low
Load

Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.65 0.93 0.65 0.74

Flight Recorder + UST 0.68 0.91 0.57 0.72

Table 7.29: Average Impact of LTTng kernel tracer and UST on kernel operations (Load)

Graph 7.15 shows the average combined impact of LTTng kernel tracer and userspace tracer on load

utility for varying load configurations.

Page | 86

Graph 7.15: Impact of LTTng kernel tracer and UST on kernel operations (Load)

From Graph 7.15 we can observe that the impact is quite similar to LTTng kernel tracer with load utility

where the average impact ranges between 0.5% and 1%.

LTTng kernel tracer was executed with instrumented tbench utility as well together with the

LTTng userspace tracer. The impact can be identified against the percentage of CPU cycles required for

the kernel operations for a vanilla kernel and a tbench utility compiled without the markers. Table 7.30,

Table 7.31 and Table 7.32 shows the results for 1, 5 and 10 instrumentations respectively.

KERNEL OPERATIONS - TBENCH - 1 UST Marker

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.93 1.80 1.19 1.31

Flight Recorder + UST 1.10 2.31 1.86 1.76

Table 7.30: Impact of LTTng kernel tracer and UST on kernel operations for 1 marker in tbench

KERNEL OPERATIONS - TBENCH - 5 UST Markers

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 1.24 2.36 1.27 1.62

Flight Recorder + UST 1.65 2.81 1.82 2.09

Table 7.31: Impact of LTTng kernel tracer and UST on kernel operations for 5 markers in tbench

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Vanila Non Overwrite + UST Flight Recorder + UST

LTTng Kernel Tracer + UST (Load)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 87

KERNEL OPERATIONS - TBENCH - 10 UST Markers

Load Configuration
% CPU Cycles

AVERAGE
Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 1.12 2.27 1.07 1.49

Flight Recorder + UST 1.59 2.95 1.86 2.13

Table 7.32: Impact of LTTng kernel tracer and UST on kernel operations for 10 markers in tbench

Table 7.33 provides the average data for the combined impact of LTTng kernel tracer and UST on varying

markers on tbench utility.

KERNEL OPERATIONS - TBENCH - AVERAGE

Load Configuration
% CPU Cycles AVERAGE

%IMPACT Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 1.10 2.14 1.18 1.47

Flight Recorder + UST 1.45 2.69 1.85 1.99

Table 7.33: Average Impact of LTTng kernel tracer and UST on kernel operations (Tbench)

Graph 7.16 shows the average combined impact of LTTng kernel tracer and userspace tracer on load

utility for varying load configurations.

Graph 7.16: Impact of LTTng kernel tracer and UST on kernel operations (Tbench)

From Graph 7.16 we can observe that the impact is quite similar to LTTng kernel tracer with tbench

utility where the average impact ranges around 1.5% to 2%.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Vanila Non Overwrite + USTFlight Recorder + UST

LTTng Kernel Tracer + UST (Tbench)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 88

 Table 7.34 shows the average combined impact of LTTng kernel tracer and userspace tracer on

varying load configurations.

KERNEL OPERATIONS - AVERAGE

Load Configuration
% CPU Cycles AVERAGE

%IMPACT Low Load Medium Load High Load

Vanilla 0.00 0.00 0.00 0.00

Non Overwrite + UST 0.88 1.54 0.91 1.11

Flight Recorder + UST 1.06 1.80 1.21 1.36

Table 7.34: Average Combined Impact of LTTng kernel tracer and UST on kernel operations

Graph 7.17 displays the average impact of LTTng kernel tracer and UST on kernel operations based on

the percentage of CPU cycles for kernel operations against the kernel operation of a vanilla kernel with

the load generator running without the markers compiled in.

Graph 7.17: Average Combined Impact of LTTng kernel tracer and UST on kernel operations

From Graph 7.17 we can observe that the impact is quite similar to LTTng kernel tracer and there is no

additional impact on the percentage of CPU cycles needs to perform kernel operations. We can also

observe that the LTTng Kernel tracer Non Overwrite mode has performed a bit better then the Flight

Recorder mode while executed with Userspace Tracer in terms of CPU cycles needed for kernel

operations.

0.00

0.50

1.00

1.50

2.00

Vanila Non Overwrite + USTFlight Recorder + UST

LTTng Kernel Tracer + UST
(AVERAGE)

% CPU Cycles - Low Load % CPU Cycles - Medium Load

% CPU Cycles - High Load

Page | 89

7.3 Data Flow Analysis

7.3.1 L2 Caches Misses during execution of LTT Control Module with

respect to various load configurations generated by load

program and tbench

We sampled the whole system with OProfile Hardware event LII_MISSES to evaluate the cache misses of

LTT Control Application (lttctl) under various load parameters generated by the load program and

Tbench Application separately. The results are presented in Table 7.35 and Table 7.36 shows the L2

Cache Misses for LTT Control Module during Non Overwrite and Flight Recorder Tracing Modes for load

program and tbench separately.

Table 7.35: L2 Cache Miss (lttctl) for load program

Tbench Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.000029 0.000056

Medium 0.000023 0.000022

High 0.000014 0.000022

Table 7.36: L2 Cache Miss (lttctl) for tbench application

From Table 7.35 and Table 7.36 we can see that the Cache Miss of LTT Control (lttctl) is very less and in

order of 10-4 percentage of samples collected by OProfile. For both the application and the different kind

of load generated the cache miss trend seems to vary. Table 7.37 shows average L2 cache miss for lttctl.

Load/Tbench Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.001681 0.0014945

Medium 0.0015615 0.000011

High 0.007257 0.0093275

Table 7.37: Average L2 Cache Miss (lttctl)

We now draw Graph 7.18, an average graph to conclude the overall Cache Miss rate for LTT Control

Application with the effect of both load and tbench taken together.

Load Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.003333 0.002933

Medium 0.003100 0.000000

High 0.014500 0.018633

Page | 90

Graph 7.18: Overall L2 Cache Miss Rate for LTT Control

From Graph 7.18 we can see that Non Overwrite Tracing and Flight Recorder tracing have similar L2

Cache misses for Low load configuration but maintains a steady difference in medium and high load for

lttctl. Also the Cache misses dips for medium load and shoots up for high load configuration for both

tracing modes.

7.3.2 L2 Cache Misses of LTT Daemon with respect to various load

configurations generated by load program and tbench

When lttd (LTT Daemon) was sampled with OProfile for the same hardware counters as section 7.1.1 for

L2 Cache Misses against different load configurations for load and tbench program we got the results as

shown in Table 7.38 and Table 7.39.

Load Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.003500 0.002933

Medium 0.000000 0.000000

High 0.000000 0.000000

Table 7.38: Cache Miss (lttd) for load program

Tbench Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.000029 0.000085

Medium 0.000011 0.000055

High 0.000007 0.000070

Table 7.39: Cache Miss (lttd) for tbench program

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Low Medium High

L2 Cache Miss of LTT Control

Non Overwrite (lttctl) Flight Recorder (lttctl)

Page | 91

Overall cache misses are very low for LTT Daemon as seen previously for LTT Control. For lttd the cache

Ƴƛǎǎ ƛǎ ƻŦǘŜƴ ƴƻǘ ǘƘŜǊŜ ƳŜŀƴǎ ƛǘΩǎ ƘƛƎƘƭȅ ƳŜƳƻǊȅ ŜŦŦƛŎƛŜƴǘΦ ²Ŝ ǘŀƪŜ ŀƴ ŀǾŜǊŀƎŜ ƻŦ ǘƘŜ cache miss result

for lttd in Table 7.40 and represent in the Graph 7.19.

Load/Tbench Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.0017645 0.001509

Medium 0.0000055 0.0000275

High 0.0000035 0.000035

Table 7.40: Cache Miss (lttd)

Graph 7.19: Overall L2 Cache Miss Rate for LTT Daemon

Graph 7.19 shows that Cache Miss is highest for LTT Daemon in case the load configuration is low and

reduces largely to be almost NULL when the load increases in system, process or network by load

program and tbench respectively. The difference in Non Overwrite mode and Flight Recorder mode is

almost negligible in any of load configurations.

7.3.3 Branch Mispredictions exhibited by LTT Control module with

respect to various load configurations generated by load

program and tbench

The whole system was sampled with OProfile Hardware event INST_RETIRED_ANY_P to evaluate the

branch mispredictions of LTT Control Application (lttctl) under various load parameters generated by the

load program and Tbench Application separately and in different tracing modes. The results are

presented in Table 7.41 and Table 7.42.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

Low Medium High

L2 Cache Miss of LTT Daemon

Non Overwrite (lttd) Flight Recorder (lttd)

Page | 92

Load Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.000049 0.000052

Medium 0.000035 0.000033

High 0.000027 0.000011

Table 7.41: Branch Mispredictions (lttctl) for load program

Tbench Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.000140 0.000123

Medium 0.000043 0.000021

High 0.000024 0.000033

Table 7.42: Branch Mispredictions (lttctl) for tbench

Branch Mispredictions are also much low at 10-4 samples of OProfile. For Non Overwrite tracing mode

for both the load and tbench program the Branch Misprediction rate of lttctl decreases upon the

increase of load on the system. We calculate the average effect for both the programs in Table 7.43 and

form Graph 7.20 from the result to determine the average Branch Mispredictions rate for LTT Control.

Load/Tbench Non Overwrite (lttctl) Flight Recorder (lttctl)

Low 0.0000945 0.0000875

Medium 0.000039 0.000027

High 0.0000255 0.000022

Table 7.43: Branch Mispredictions (lttctl)

Graph 7.20: Overall Branch Misprediction for LTT Control

In Graph 7.20 the trend shows that the Branch Mispredictions differ much less between Non Overwrite

and Flight Recorder tracing modes on any different load configurations. We can also see that when load

increases, Branch Mispredictions decrease.

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

Low Medium High

Branch Mispredictions for LTT Control

Non Overwrite (lttctl) Flight Recorder (lttctl)

Page | 93

7.3.4 Branch Mispredictions of LTT Daemon with respect to various

load configurations generated by load program and tbench

When LTT Daemon was sampled for Branch Mispredictions under various load configurations generated

by load program and tbench, we got results which are tabulated in the Table 7.44 and Table 7.45.

Load Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.000040 0.000237

Medium 0.000031 0.000113

High 0.000029 0.000115

Table 7.44: Branch Mispredictions (lttd) for load program

Tbench Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.000080 0.000330

Medium 0.000043 0.000210

High 0.000030 0.000101

Table 7.45: Branch Mispredictions (lttd) for tbench

The LTT Daemon was also sampled with same Hardware counter by OProfile as the earlier 7.3.3 Section.

The consolidated average result for the Branch Mispredictions for LTT Daemon is represented in Table

7.46 and Graph 7.21.

Load/Tbench Non Overwrite (lttd) Flight Recorder (lttd)

Low 0.00006 0.0002835

Medium 0.000037 0.0001615

High 0.0000295 0.000108

Table 7.46: Branch Mispredictions (lttd)

Graph 7.21: Overall Branch Misprediction for LTT Daemon

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

Low Medium High

Branch Mispredictions for LTT
Daemon

Non Overwrite (lttd) Flight Recorder (lttd)

Page | 94

From Graph 7.21, we can see the branch predictions of LTT Daemon also scales down similarly like the

LTT Control application with increase in system, process or network load from load program and tbench.

But unlike the LTT Control module, the LTT Daemon exhibits a difference in Branch Mispredictions

between Non Overwrite and Flight Recorder tracing modes. Branch Mispredictions is more in Flight

Recorder mode for LTT Daemon.

7.3.5 Analysis of Memory Leak of LTT Control and LTT Daemon

program during execution with respect to various load

configurations gener ated by load program and tbench

When we used Valgrind memory checking tool Memcheck to trigger the kernel tracing (firing up lttctl) it

was seen that for any types of load configuration the memory leaks for LTT Control is very minimal and

constant. LTT Daemon showed a zero memory loss during its execution. The Summarized results are in

Table 7.47.

Tracing Modes Lost Blocks Lost Memory Blocks(Not Free) Memory not Freed

Non Overwrite 17 152 bytes 3 988

Flight Recorder 34 304 bytes 3 988

Table 7.47: Memory Leak for LTT Control (Kernel Tracer)

From Table 7.47 we see that Flight Recorder mode registered a memory loss of 304 bytes double to that

of Non Overwrite tracing mode under any load circumstances. Also the there is a equal amount of

memory, 988 bytes which are not released or rather freed after completion of execution in both the

tracing modes. The lines of code in the LTT Control application responsible for the memory losses are

also captured and are given in details in Appendix A.

7.3.6 L2 Cache Misses for UST Daemon during tracing of load and

tbench program (10 markers) under various load

configurations

To find out L2 Cache misses for UST, OProfile was run with LII_MISSES hardware event. The UST Tracing

was done on the load program and tbench program one after the other instrumented with 10 markers.

The result is displayed in Table 7.48.

Page | 95

Load Load 10 Markers Tbench 10 Markers

Low 0.142800 0.000293

Medium 0.129433 0.000116

High 0.149700 0.000096

Table 7.48: L2 Cache Miss for UST Daemon

Graph 7.22 displays the L2 cache miss of UST Daemon with respect to load and tbench.

Graph 7.22: L2 Cache Miss for UST Daemon

From Table 7.48 and the Graph 7.22 we can see for load program the L2 Cache miss dips a bit for

Medium load and shoots up for high load. For Tbench program the UST Daemon Cache miss shows it is

very minimal and decreases with increase in load.

We tried to compare the performances with respect to cache misses for both LTT Daemon (lttd)

and UST Daemon (ustd) from the experiments done in Table 7.49 and we came up with Graph 7.23.

Load ustd lttd

Low 0.07154650 0.00163675

Medium 0.06477450 0.00001650

High 0.07489800 0.00001930

Table 7.49: L2 Cache Miss (ustd & lttd)

0.000000

0.050000

0.100000

0.150000

0.200000

Low Medium High

L2 Cache miss of UST Daemon w.r.t
load and tbench

Load 10 Markers Tbench 10 Markers

Page | 96

 Graph 7.23: L2 Cache Miss (ustd vs. lttd)

From Graph 7.23 we can see that though both ustd and lttd have very less percentage of cache misses

but UST daemon has a big scope to improve in L2 Cache hits with respect to LTT Daemon. For different

load configuration UST Daemon has lot more cache misses when compared to LTT Kernel Tracer

daemon.

7.3.7 Branch Misprediction for UST Daemon during tracing of load

and tbench program (10 mar kers) under various load

configurations

To find out Branch Mispredictions, OProfile was run with INST_RETIRED_ANY_P hardware event. UST

was tracing under varying load configurations the tbench and load program which was each

instrumented with 10 markers and recompiled in the system. Table 7.50 shows the result data.

Load Load 10 Markers Tbench 10 Markers

Low 0.000300 0.000230

Medium 0.000111 0.000117

High 0.000061 0.000068

Table 7.50: Branch Mispredictions for UST Daemon

Graph 7.24 represents the branch mispredictions of UST Daemon with respect to load and tbench.

0.00000000

0.02000000

0.04000000

0.06000000

0.08000000

Low Medium High

L2 Cache Misses (ustd vs. lttd)

ustd lttd

Page | 97

 Graph 7.24: Branch Mispredictions for UST Daemon

From the Graph 7.24 and the Table 7.50 we can say that Branch Mispredictions for UST DaeƳƻƴ ŘƻŜǎƴΩǘ

depend on the application it is tracing as for both load and tbench it shows similar trend of higher

branch mispredictions during low load and lower branch mispredictions during higher load. The branch

mispredictions gradually decrease with increase in load.

We also compared the average branch misprediction rate of both lttd and ustd which is

represented by the Table 7.51 and Graph 7.25.

Load ustd lttd

Low 0.000265 0.000172

Medium 0.000114 0.000099

High 0.000065 0.000069

Table 7.51: Branch Mispredictions (ustd & lttd)

0.000000

0.000050

0.000100

0.000150

0.000200

0.000250

0.000300

0.000350

Low Medium High

Branch Mispredictions of UST Daemon
w.r.t load and tbench

Load 10 Markers Tbench 10 Markers

Page | 98

Graph 7.25: Branch Mispredictions (ustd vs. lttd)

The Branch Mispredictions graph plotted for ustd and lttd shows that LTT Kernel Tracer Daemon

performs better than UST daemon is low load but in High load there is no performance difference

between the two.

7.3.8 Analysis of Memory Leak of UST Tracer during execution with

respect to various load configurations gener ated by load

program and tbench

Load and tbench which are instrumented with 10 markers and UST tracing was done on it one after the

other. During the UST tracing on each load and tbench, it was run with the help of Memcheck utility of

Valgrind which helped to get the report of any memory leaks during execution. In Table 7.52 is the result

from the experiment.

Application Blocks (Lost) Memory Lost Blocks (Not Free) Memory not Freed

load 1 654 bytes 1267 33599 bytes

tbench 1 654 bytes 1270 33658 bytes

 Table 7.52: Memory Leak for UST Tracer (load & tbench)

From the Table 7.51 we Ŏŀƴ ŦƛƴŘ ƻǳǘ ǘƘŀǘ ǿƛǘƘ ƛƴŎǊŜŀǎŜ ƻŦ ƭƻŀŘ ƛƴ ǎȅǎǘŜƳ ŘƻŜǎƴΩǘ ŀŦŦŜŎǘ ǘƘŜ ƳŜƳƻǊȅ ƭŜŀƪ

of the User Space Tracer. During tracing of both load program and tbench Userspace Tracer lost 1 Block

of data (654 bytes), and that was during saving the trace data to the disk. But the problem with

¦ǎŜǊǎǇŀŎŜ ¢ǊŀŎŜǊ ǎŜŜƳŜŘ ǘƻ ōŜ ǘƘŜ ƴǳƳōŜǊ ƻŦ ŀƭƭƻŎŀǘŜŘ ƳŜƳƻǊȅ ǎǇŀŎŜǎ ǿƘƛŎƘ ƛǘ ŘƻŜǎƴΩǘ ŦǊŜŜ ǿƘŜƴ ƛǘ

completes its execution. It has approximately 33600 bytes in 1270 blocks of blocked data after

completion of execution. The memory blƻŎƪǎ ƴƻǘ ŦǊŜŜŘ ŘƻŜǎƴΩǘ ŘŜǇŜƴŘ ǘƻƻ ƳǳŎƘ ƻƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƛǘ

traces as we can see from Table 7.52 where the difference is very less among tbench and load program.

0

0.0001

0.0002

0.0003

Low Medium High

Branch Mispredictions (ustd vs. lttd)

ustd lttd

Page | 99

8. Discussion

This chapter mainly focuses upon the constraints of experiments executed and the issues faced during

the research period. The issues discussed concentrates upon the unavailability of tools and time

limitation of the thesis standing as the main barriers. Last part of the Discussion aims to evaluate the

benefits of this research to the community and the industry.

List of technical terms

LTTng Linux Trace Toolkit Next Generation

AMP Asymmetric Multiprocessing

SMP Symmetric Multiprocessing

CPU Central Processing Unit

LTTD Linux Trace Toolkit Daemon

USTD Userspace Tracer Daemon

Page | 100

8.1 Limitations of the performed experiments

Initially all the experiments were scheduled to be carried out in a P4080 multiprocessor board with 8

cores having an AMP setup. But due to unavailability of hardware setup, all the experiments were

performed on an Intel Quad Core multiprocessor having a SMP setup. Due to SMP setup and Quad Core

ŀƭƭ ǘƘŜ ŀǊŜƴŀǎ ŀƴŘ ǇƻǎǎƛōƛƭƛǘƛŜǎ ƻŦ ƳǳƭǘƛŎƻǊŜ ŜƴǾƛǊƻƴƳŜƴǘ ŎƻǳƭŘƴΩǘ ōŜ ŜȄǇƭƻǊŜŘΦ Lƴ {at ǘƘŜ hǇŜǊŀǘƛƴg

System controls the cores, rather than in AMP where every core has a separate Operating System.

Due to the time constraint all the experiments were run only 3 times, but to get appropriate

expected result we needed 20 runs approximately. The consistency of the results could only have been

judged by such extensive experiments as the percentage of CPU samples varied within a range of 10-4 to

10-6.

We used the profiling and sampling tool called OProfile as we found it quite efficient than other

tools for the particular set of information we were looking for. But the main drawback of this tool is it

Ŏŀƴƴƻǘ ŜȄŜŎǳǘŜ ǇǊƻǇŜǊƭȅ ƛƴ ŀ ǾƛǊǘǳŀƭ ǎȅǎǘŜƳ ƭƛƪŜ ±ƛǊǘǳǘŜŎƘ {ƛƳƛŎǎ ƻǊ ±ƛǊǘǳŀƭ ōƻȄ ŀǎ ƛǘ ŘƻŜǎƴΩǘ ƎŜǘ ŀŎŎŜǎǎ ǘƻ

respective hardware events. When we were using OProfile we faced an issue during experimentation in

which there was significant amount of buffer overflows due to high rate of sampling and longer run

durations. We minimized the sampling frequency and thus the overflow got down below 1%.

During the execution of the experiments when OProfile continuously was collecting samples,

after certain point of time the Opreport failed to gather data from the system to generate a sample

report. This was due to memory stack overflow and memory flush errors, by which the sysǘŜƳ ŎƻǳƭŘƴΩǘ

dump the earlier samples collected. For every case like this the system was rebooted and the test cases

were rerun and it completed successfully.

For gauging the efficiency of LTTng and measuring its footprint we only could analyze the

binaries which were running in the system, i.e. the LTTD (LTTng daemon for kernel tracing) and USTD

(User Space Tracing daemon). The major portions of code and additions of LTTng are inside the kernel as

patches. For Data Flow analysis and code coverage especially the patched kernel should have been

tested extensively with respect to kernel analysis tools which we left out of the scope of the thesis

because of time constraints.

For testing the working of LTT agent with Eclipse LTTng tool we found many hiccups during

successfully setting up the system for the test configurations. We reported the errors for many of them.

Still there is a absence of proper manual for carrying out the setup and also due to lack of time we

decided not carrying on further with the LTT agent and Eclipse LTTng tool experiments.

We used benchmark tool such as tbench for generating load into the system. More benchmark tools

could have been used to make the experiment real time with minimal amount of limitations.

Page | 101

8.2 Choice of Control and Data Flow Analysis Tools

Control Flow tools such as OProfile, Gprof and sysprof came in our first set of tools marked to measure

the control flow of the system. But from the above three OProfile was chosen best to serve our purpose.

Problems with Gprof

¶ It couldƴΩǘ ƘŀƴŘƭŜ ƳǳƭǘƛǘƘǊŜŀŘŜŘ ŀǇǇƭƛŎŀǘƛƻƴ ŀƴŘ ǘƘǳǎ ŀǇǇƭƛŎŀǘƛƻƴ ōƛƴŀǊƛŜǎ ǿƛǘƘ Ƴǳƭǘƛ ǘƘǊŜŀŘƛƴƎ

were not profiled appropriately.

¶ ¢ƘŜ ǇǊƻƎǊŀƳ ƴŜŜŘǎ ǘƻ ōŜ ŎƻƳǇƛƭŜŘ ǿƛǘƘ Ψ-ǇƎΩ ǇŀǊŀƳŜǘŜǊǎ ǘƘǳǎ ƛƴŎǊŜŀǎƛƴƎ ǘƘŜ ƻǾŜǊƘŜŀŘ ƻŦ

statically linking it before execution. For this reason third part binaries are difficult to be

sampled with Gprof [LYN10].

Problems with sysprof

¶ [¢¢5 ŀƴŘ ¦{¢5 Ƙŀǎ ǎǳŎƘ ƭƻǿ ŦƻƻǘǇǊƛƴǘǎ ǘƘŀǘ ǎȅǎǘŜƳ ǿƛŘŜ ǇǊƻŦƛƭŜǊ ŎƻǳƭŘƴΩǘ ŎƻƭƭŜŎǘ ǘƘŜ ǎŀƳǇƭŜ

needed for it. During the LTTng run when the system was profiled there was no samples for

either LTTD or USTD. But we had to get results to proof the low footprint and thus this tool was

also not used.

For Data Flow analysis we had in mind many tools based on their usage and way of working. The main

tools decided upon were Zoom, Valgrind, Acumem and OProfile. Acumem was a very efficient tool and

exactly served our purpose for getting the pain points inside the LTTD and USTD application but due to

having its evaluation license there was limitations in capturing of samples and thus we had to opt out

from this tool. For our experiments we needed a tool which can attach itself with the running program

and sample it so that during its run the issues in the code can be gathered, but no tool provided this

except Acumem.

Problems with Zoom system profiler

¶ Again because of very low foot print Zoom cannot capture very low sampled events like LTTD

and USTD.

¶ Zoom cannot attach itself to running programs, though provides all sorts of valuable code

refactoring guidelines for a hugely sample application.

Problems with Valgrind

¶ Though Valgrind cannot attach itself to running programs but it can follow a forked child

program from a master program. Trying to check memory errors in LTTD code, Valgrind gave an

unhandled syscall error as shown in Figure 8.1.

Page | 102

Figure 8.1: Valgrind Error

¶ Valgrind eats up a lot of memory and the thus the programs running under it is typically slowed

down from 20 to 30 times than the usual run [SN05].

Problems with Acumem

¶ Acumem was the required and most focused tool for doing Data Flow Analysis, but the only

problem with it was the unavailability of the License file. We were using the Evaluation License

to test the tool and we found out that Acumem in its evaluation license cannot handle the no. of

sample it gets from the running LTTD or USTD program. The error displayed during the test run

is shown in Figure 8.2.

Figure 8.2: Acumem Error

With all the problems faced we decided to do Data Flow Analysis with Valgrind and OProfile. Valgrind

was used to check the memory leaks occurring during running of LTT Control during non overwrite and

ŦƭƛƎƘǘ ǊŜŎƻǊŘŜǊ ǘǊŀŎƛƴƎΦ ¢ƘƻǳƎƘ ƛǘ ŎƻǳƭŘƴΩǘ ŎŀǇǘǳǊŜ ƳŜƳƻǊȅ ƭŜŀƪǎ ƻŦ ǘƘŜ [¢¢ 5ŀŜƳƻƴ ǎǇŀǿƴŜŘ ōȅ ǘƘŜ [¢¢

Control binary but it gave out memory leak errors for the LTT Control binary during execution. Valgrind

also could capture the memory leak errors for UST Daemon.

OProfile was used with two events, one of LII_MISSES and another of INSTRUCTION_RETIRED_P

to get the details of which part of the code has most no. of L2 Cache misses and branch misprediction.

WARNING: unhandled syscall: 313

-- 2089 -- You may be able to write your own handler.

-- 2089 -- Read the file README_MISSING_SYSCALL_OR_IOCTL.

-- 2089 -- Nevertheless we consider this a bug. Please report

-- 2089 -- it at http: //valgrind.org/support/bug_reports.html.

Page | 103

8.3 Benefits of the Research

Ericsson has the need to deploy a well performing, low overhead tracing tool and thus the results from

this above experiments will help Ericsson to think over LTTng as the needed tracing utility across its

multicore systems.

During our experimentations we did found few bugs in UST (Userspace Tracer). We reported

them to the development team, and they were corrected immediately.

Lƴ Ƴŀƴȅ ŀ ŎŀǎŜǎ ǿŜ ŎƻǳƭŘƴΩǘ ŀŘǾŀƴŎŜ ŘǳŜ ǘƻ ǾŀǊƛƻǳǎ constraints like unavailability of proper

tools, licenses or resources. We documented the methodology to do the experiments for the future

research community, so that in case all things are proper this thesis report will guide new researchers to

further carry on our work with greater precision.

Page | 104

9. Conclusion

The experiments performed in course our research works have produced a variety of results. By

analyzing those results we can conclude the following points:

LTTng Kernel Tracer

The impact of LTTng on kernel operations in terms of percentage of CPU cycles against vanilla kernel is

1.6%.

There is almost no difference between the performances of LTTng kernel tracer in Non Overwrite mode

and in Flight Recorder mode.

LTTD has almost negligible footprint on both Non Overwrite mode and Flight Recorder mode. We have

ŀƭǊŜŀŘȅ ǎŜŜƴ ǘƘŀǘ ōƻǘƘ ǘƘŜ ƳƻŘŜǎ ƘŀǾŜ ŀƭƳƻǎǘ ǎƛƳƛƭŀǊ ŀƳƻǳƴǘ ƻŦ ƛƳǇŀŎǘ ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΣ

but still LTTD takes more CPU cycles in flight recorder mode than in Non Overwrite mode. The difference

is almost negligible as it is in the order of 10-4 percent.

Memory loss is of very negligible amount but it doubles itself in case of flight recorder mode with

respect to Non Overwrite mode during kernel tracing.

LTTng kernel tracer spends most of its time in libc and ld standard C libraries. It spends only 5.83% of the

time in other functions and libraries which includes liblttd. Therefore, we can say that as LTTng kernel

tracer spends so less time in executing its own functions it has so little impact in the systems

performance.

LTT Control and Trace Daemon have minimal Cache miss and Branch Misprediction rate in order of 10-4

percent.

Branch Mispredictions of LTTng Kernel Tracer decreases significantly with increase in load. Memory

handling thus becomes more efficient with load increase.

Branch Mispredictions in case of different tracing modes vary in case of LTT Control and LTT Daemon.

For LTT Daemon branch misprediction rate is high in case of flight recorder mode. LTT Control exhibits

no major change with change in tracing modes.

Page | 105

LTTng Userspace Tracer

The LTTng userspace tracer and the compiled markers both have an effect of around 0.50% on the

performance of the userspace application in terms of percentage of CPU cycles against the original copy

of the applications without markers.

The impact of UST on userspace applications marginally increase with the increase in the number of

instrumentations compiled in, though the pattern of increase for all load configurations are not similar.

USTD has almost negligible footprint on the system for different load configurations or different number

of markers. But it is noticeable that the footprint of USTD is not as good as compared to the footprint of

LTTD. USTD has got a footprint a little higher than LTTD but still is almost negligible to affect the

ǎȅǎǘŜƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜΦ

The footprint of USTD decreases as the load increases in the system. Therefore, the performance of

USTD gets better with increasing amount of load.

The footprint of UST is liner to the increasing number of markers. Therefore, the number of markers

compiled in does not have any effect on the footprint of USTD.

Unlike LTTng kernel tracer, even if LTTng userspace tracer spends greater amount of its execution time

in the C libraries, still it spends a lot of time (approximately 13% to 17%) in executing its own functions.

Therefore, we can say that the LTTng userspace tracer is not as efficient as the LTTng kernel tracer and

there is a scope of improving its performance.

Branch Mispredictions of LTTng Userspace Tracer decreases significantly with increase in load. Memory

handling thus becomes more efficient with load increase.

Memory loss though is of insignificant number but is more for UST tracing with respect to kernel tracing.

UST also has problem of not freeing a chunk of memory after completion of execution.

A memory leak for UST Daemon happens with a loss of small amount of data during saving trace data to

disk.

LTTng Kernel and Userspace Tracer Together

The impact is quite similar to LTTng kernel tracer and there is no additional impact on the percentage of

CPU cycles needs to perform kernel operations.

The LTTng Kernel tracer Non Overwrite mode has performed a bit better then the Flight Recorder mode

while executed with Userspace Tracer in terms of CPU cycles needed for kernel operations.

LTT kernel Tracing Daemon is much more memory efficient than UST Daemon.

Page | 106

10. Future Work

We were originally set out to do experiment in the P4080 Freescale board with AMP setup for each of

the 8 cores. But due to the unavailability of the hardware and setup we ended up doing experiments in a

Quad Core SMP Setup. Our experiments methodology can be used to do experiments in the real

hardware for evaluating LTTng on a multicore platform.

hƴŜ ǇŀǊǘ ƻŦ ǘƘŜ ǊŜǎŜŀǊŎƘ ǉǳŜǎǘƛƻƴ ŎƻǳƭŘƴΩǘ ōŜ ŀƴǎǿŜǊŜŘ ƛƴ ǘƘŜ ǘƘŜǎƛǎ ǊŜǇƻǊǘ ǿƘƛŎƘ ǇŜǊǘŀƛƴŜŘ ǘƻ

the use of LTTng agent and Eclipse LTT Tools. This was mainly unaccomplished due to immature build of

the LTTng agent and lack of documentation related to its use. There are still few bugs which are

reported and yet to be corrected. This all needed much more time and thus was skipped. This work can

be carried on after these issues are resolved as it will open new doors to monitor and stream LTTng

traces in remote systems.

In some part of the result analysis we found that both the Kernel and Userspace Tracer Daemon

performs better with respect to memory handling incase the load increases on the system. While

analyzing with Valgrind we also found that the number of time the data gets collected and buffered for

high load is very high. So from above two sentences the reason of this may be that the prefetcher

already gets to know the branch to be taken, due to large rate of trace data collection, but this requires

ŦǳǊǘƘŜǊ ŀƴŀƭȅǎƛǎ ǿƘƛŎƘ ŎƻǳƭŘƴΩǘ ōŜ ŘƻƴŜ ōŜŎŀǳǎŜ ƻŦ ƭŀŎƪ ƻŦ ǘƛƳŜΦ

.ŜŎŀǳǎŜ ƻŦ ƭŀŎƪ ƻŦ ǇǊƻǇŜǊ ǘƻƻƭǎ ǿŜ ŎƻǳƭŘƴΩǘ ŘƛƎ ŘŜŜǇ ƛƴǘƻ 5ŀǘŀ Cƭƻǿ !ƴŀƭȅǎƛǎ ǘƻ ŎƘŜŎƪ ŦƻǊ

incorrect data structures or cyclic loop issues. Acumem is suitable tool, pǊƻǾƛŘŜŘ ƛǘΩǎ ǿƛǘƘ ŀ Ŧǳƭƭ ǾŜǊǎƛƻƴ

license. We could only gauge the memory performances of the LTTng and UST tracer with the help of

OProfile and Valgrind. Deeper data flow analysis can be taken up as a future work.

We could only limit our studies to the binaries and the running programs of LTTng Kernel Tracer,

but the main involvement of LTTng is inside the kernel where its code gets patched. Thus in future, if the

Control and Data Flow analysis can be carried out for that part of LTTng then it can give more interesting

and useful data to analyze.

GDB (GNU Debugger) has tracepoints to collect trace data which can be analyzed later with help

of GDB commands. An interesting future work will be involving this with UST tracepoints and LTTng to

see the performance tradeoff.

Page | 107

11. References

[LTT10] LTTng Project, http://lttng.org/, Last Updated: 2010-04-20

[SHE99] Sameer Shende, Profiling and Tracing in Linux, In Proceedings of the Extreme Linux

Workshop 2, Monterey, CA, June 1999 USENIX

[Tam05] Tammy Noergaard, Embedded Systems Architecture, Pages (5 ς 13), Newnes Publisher,
ISBN-13: 978-0750677929, February 2005

[Sér02] Sérgio de Jesus Duarte Dias, Embedded Systems Architecture, International Conference

on Computer Architecture 2001/02

[NR98] Niemann, Ralf, Hardware/Software Co-Design for Data Flow Dominated Embedded

Systems, Kluwer Academic Publishers, (1998)

[KP90] Koopman, Philip, Design Constraints on Embedded Real Time Control Systems,

Systems, Design & Networks Conference, (1990)

[SLES09] Jonas Svennebring, John Logan, Jakob Engblom, Patrik Strömblad, Embedded Multicore:

An Introduction, Published: 2009-07

[MUC09] Philip Mucci, Linux Multicore Performance Analysis and Optimization in a Nutshell,

NOTUR 2009

[FRE10] P4 Series P4080 multicore processor, Freescale Semiconductor, 2010

[LTP10] Eclipse.org, Linux Tools Project ς LTTng Integration, Last Updated: 2010-04-20

[LTT00] Karim Yaghmour and Michel R. Dagenais, The Linux Trace Toolkit, Linux Journal,

Published: May 2000

[DD06] Mathieu Desnoyers and Michel R. Dagenais, The LTTng tracer: A low impact

performance and behavior monitor for GNU/Linux, Linux Symposium 2006

[DES09] Mathieu Desnoyers, Low-Impact Operating System Tracing, Ph.D. dissertation, École

Polytechnique de Montréal, Published: December 2009

[FDD09] Pierre-Marc Fournier, Mathieu Desnoyers, Michel R. Dagenais, Combined Tracing of the

Kernel and Applications with LTTng, Linux Symposium 2009

Page | 108

[MLK06] K. Mohror and K.L. Karavanic, A Study of Tracing Overhead on a High-Performance

Linux Cluster, Portland State University Computer Science Technical Report number TR-

06-06, December 2006

[HDD08] Heidari, P.; Desnoyers, M.; Dagenais, M.; Performance analysis of virtual machines

through tracing, Electrical and Computer Engineering, 2008, CCECE 2008. Canadian

Conference on, vol. no. pp.000261-000266, 4 - 7 May 2008

[FDD09] Fournier, Pierre-Marc; Desnoyers, M.; Dagenais, M.; Combined Tracing of the Kernel

and Applications with LTTng, In Linux Symposium, Ottawa, Ontario, Canada, July 2010

[DEB10] Dbench Readme, http://samba.org/ftp/tridge/dbench/README, Last Visited: 2010-04-

20

[BYFS10] Beyond Linux® From Scratch, Chapter 11. System Utilities,

http://www.linuxfromscratch.org/blfs/view/svn/general/sysstat.html, Last Visited:

2010-04-20

[SYS10] SYSTAT, http://pagesperso-orange.fr/sebastien.godard/documentation.html, Last

Visited: 2010-04-20

[OPR10] OProfile, http://oprofile.sourceforge.net/, Last Visited: 2010-04-20

[PRA03] Prasanna S. Panchamukhi, Smashing performance with OProfile, Linux Technology

Center, IBM India Software Labs, http://www.ibm.com/developerworks/linux/library/l-

oprof.html, Last Updated: 2003-10-16

[PZWSS07] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G. Shin, Performance

Evaluation of Virtualization Technologies for Server Consolidation, Enterprise Systems

and Software Laboratory, HP Laboratories Palo Alto, Published: 2007-04-11

[GPR10] gprof2dot, http://code.google.com/p/jrfonseca/wiki/Gprof2Dot

[LPGF08] Li, Peng; Park, Hyundo; Gao, Debin; Fu, Jianming; Bridging the Gap between Data-flow

and Control-flow Analysis for Anomaly Detection, 2008 Annual Computer Security

Applications Conference, December 8ς12, 2008, Anaheim, California, USA

[ACU09] Acumem SlowSpotter | Optimization Tutorial,

http:// www.acumem.com/images/stories/articles/tutorial-slowspotter.pdf, 2009

[VAL10] Valgrind, http://valgrind.org/info/tools.html, Last Visited: 2010-05-31

[SN05] Seward, Julian; Nethercote Nicholas; Using Valgrind to detect undefined value errors

with bit -precision, Proceedings of the USENIX'05 Annual Technical Conference,

Anaheim, California, USA, April 2005

[LYN10] Jaqui Lynch, UNIX and Web PERFORMANCE, Last Visited: 2010-05-31

Page | 109

Appendix A ɀ Experiment Results

11.1 Control Flow Analysis

11.1.1 Experiment 2 ɀ Measuring the efficiency of LTTng Kernel

Tracer

CPU CYCLES

LOAD
TEST
CASE

RUNS LOAD
KERNEL

OPS
OPROFILE LTTD

LOW T1

R1 94.140000 4.200900 0.948300 0.000000

R2 94.089200 4.371600 0.957800 0.000000

R3 93.765200 4.610700 1.016600 0.000000

LOW T4

R1 93.896600 4.392600 1.001600 0.000000

R2 93.730900 4.510600 1.000200 0.000000

R3 94.081500 4.237300 0.989600 0.000000

LOW T7

R1 94.062200 4.422400 0.986200 0.000000

R2 94.170800 4.358800 0.990400 0.000000

R3 93.957100 4.515100 0.984700 0.000000

LOW T10

R1 93.851200 4.573400 0.999200 0.000000

R2 93.965300 4.487700 0.985500 0.000000

R3 94.131300 4.340200 0.985100 0.000000

LOW T13

R1 93.514300 4.759500 1.032000 0.000600

R2 93.786500 4.662500 1.001200 0.000110

R3 93.353200 4.776100 1.047700 0.000160

LOW T16

R1 93.962900 4.502200 1.007600 0.000740

R2 93.741000 4.537100 0.997900 0.000330

R3 93.142800 5.003500 1.054800 0.000430

MED T2

R1 96.239700 2.537700 0.865200 0.000000

R2 96.038300 2.722500 0.870100 0.000000

R3 96.302400 2.470500 0.865400 0.000000

MED T5

R1 95.446900 3.227900 0.901400 0.000000

R2 95.540300 3.139100 0.905100 0.000000

R3 95.505900 3.217900 0.909800 0.000000

Page | 110

CPU CYCLES

LOAD
TEST
CASE

RUNS LOAD
KERNEL

OPS
OPROFILE LTTD

MED T8

R1 95.499900 3.220500 0.904700 0.000000

R2 95.604400 3.167000 0.907700 0.000000

R3 95.598500 3.196500 0.893500 0.000000

MED T11

R1 95.450500 3.272100 0.917900 0.000000

R2 95.319200 3.346600 0.937900 0.000000

R3 95.363200 3.250400 0.936200 0.000000

MED T14

R1 95.159700 3.448900 0.933900 0.000051

R2 95.313200 3.342500 0.923900 0.000041

R3 95.343600 3.381900 0.926800 0.000051

MED T17

R1 95.137500 3.488300 0.959200 0.000093

R2 95.234600 3.402000 0.954100 0.000200

R3 95.098400 3.427700 0.971600 0.000093

HIG T3

R1 96.712300 2.197100 0.829800 0.000000

R2 96.697300 2.191400 0.842200 0.000000

R3 96.754000 2.129200 0.848200 0.000000

HIG T6

R1 96.270600 2.612600 0.845700 0.000000

R2 96.395600 2.557300 0.766200 0.000000

R3 96.328000 2.603800 0.780900 0.000000

HIG T9

R1 96.329100 2.603300 0.799500 0.000000

R2 96.244500 2.627800 0.806300 0.000000

R3 96.246400 2.647300 0.807100 0.000000

HIG T12

R1 96.157100 2.668800 0.838400 0.000000

R2 96.368800 2.574900 0.785200 0.000000

R3 96.399700 2.500500 0.788000 0.000000

HIG T15

R1 96.136000 2.630100 0.886900 0.000006

R2 95.957200 2.822500 0.848200 0.000035

R3 96.120600 2.645900 0.876300 0.000029

HIG T18

R1 96.112400 2.673400 0.844800 0.000081

R2 96.230200 2.658000 0.811100 0.000081

R3 96.032900 2.765600 0.865100 0.000093

Table A1: Experiment 2 Results (Load)

CPU CYCLES

LOAD
TEST
CASE

RUNS TBENCH
KERNEL

OPS
OPROFILE LTTD

LOW T1

R1 11.055100 81.445400 4.339800 0.000000

R2 11.075800 81.483000 4.332000 0.000000

R3 11.165000 81.622600 4.246500 0.000000

Page | 111

CPU CYCLES

LOAD
TEST
CASE

RUNS TBENCH
KERNEL

OPS
OPROFILE LTTD

LOW T4

R1 10.123600 81.328400 5.619600 0.000000

R2 10.013900 81.276600 5.696000 0.000000

R3 10.059500 81.329100 5.717700 0.000000

LOW T7

R1 10.015100 81.032100 5.776800 0.000000

R2 10.108500 81.229200 5.720000 0.000000

R3 10.143000 81.057800 5.651800 0.000000

LOW T10

R1 9.143100 80.982700 5.620800 0.000000

R2 9.141700 81.013800 5.667500 0.000000

R3 9.155100 80.989700 5.694300 0.000000

LOW T13

R1 7.206800 84.049300 4.989700 0.000160

R2 7.304000 83.782900 5.090000 0.000160

R3 7.041100 84.061200 4.992800 0.000130

LOW T16

R1 6.496400 83.607200 6.295200 0.000180

R2 6.548900 84.070500 5.807100 0.000180

R3 6.577500 83.594300 6.034400 0.000360

MED T2

R1 12.385100 81.652800 3.551600 0.000000

R2 12.456400 81.572800 3.507400 0.000000

R3 12.587100 81.568200 3.481300 0.000000

MED T5

R1 12.200700 82.388300 3.110700 0.000000

R2 12.595800 81.838200 3.314900 0.000000

R3 12.229800 82.035700 3.395100 0.000000

MED T8

R1 12.232800 81.949600 3.478500 0.000000

R2 12.700000 81.016800 3.841800 0.000000

R3 12.164100 81.977400 3.445500 0.000000

MED T11

R1 10.800500 82.394600 3.448100 0.000000

R2 10.930800 82.122800 3.534800 0.000000

R3 10.716500 81.826200 3.969100 0.000000

MED T14

R1 8.192400 84.960700 3.585200 0.000050

R2 8.490900 84.943200 3.254200 0.000180

R3 8.403700 84.916900 3.396500 0.000150

MED T17

R1 7.558300 85.487200 3.909500 0.000610

R2 7.920700 84.261100 4.690800 0.000300

R3 7.554500 85.329700 4.075200 0.000360

HIG T3

R1 13.017900 82.545100 2.366300 0.000000

R2 13.013900 82.563900 2.397800 0.000000

R3 13.032300 82.553000 2.387400 0.000000

Page | 112

CPU CYCLES

LOAD
TEST
CASE

RUNS TBENCH
KERNEL

OPS
OPROFILE LTTD

HIG T6

R1 13.290600 81.447300 3.102900 0.000000

R2 13.128100 81.315600 3.415900 0.000000

R3 13.220800 81.296700 3.304900 0.000000

HIG T9

R1 13.236900 81.380700 3.219900 0.000000

R2 13.181200 81.178100 3.440700 0.000000

R3 13.476500 81.341600 3.021500 0.000000

HIG T12

R1 12.028300 81.636700 3.084700 0.000000

R2 11.957200 81.845300 2.867600 0.000000

R3 11.885800 81.710900 3.021800 0.000000

HIG T15

R1 9.327400 84.284000 3.342000 0.000100

R2 9.459000 84.448500 3.057700 0.000200

R3 9.251300 84.606100 3.011500 0.000200

HIG T18

R1 8.665400 84.515200 3.767800 0.000210

R2 8.732200 85.074000 3.233600 0.000380

R3 8.758700 85.348000 2.851100 0.000280

Table A2: Experiment 2 Results (Tbench)

11.1.2 Experiment 3 ɀ Measuring the efficiency of LTTng Userspace

Tracer

CPU CYCLES

LOAD
TEST
CASE

RUNS LOAD USTD

LOW T1

R1 93.809000 0.000000

R2 93.832000 0.000000

R3 93.362200 0.000000

LOW T4

R1 94.186900 0.000000

R2 94.090300 0.000000

R3 93.715200 0.000000

LOW T7

R1 94.191900 0.001800

R2 93.170600 0.001700

R3 93.713500 0.001500

MED T2

R1 95.068800 0.000000

R2 95.962800 0.000000

R3 95.913000 0.000000

Page | 113

CPU CYCLES

LOAD
TEST
CASE

RUNS LOAD USTD

MED T5

R1 95.910900 0.000000

R2 95.961100 0.000000

R3 95.961900 0.000000

MED T8

R1 95.893200 0.000550

R2 95.919400 0.001000

R3 95.921800 0.000680

HIG T3

R1 96.785000 0.000000

R2 96.689100 0.000000

R3 95.919700 0.000000

HIG T6

R1 96.723500 0.000000

R2 96.852800 0.000000

R3 96.806100 0.000000

HIG T9

R1 96.692300 0.000570

R2 96.929200 0.000410

R3 96.768500 0.000590

Table A3: Experiment 3 Results (Load with 1 Marker)

CPU CYCLES

LOAD
TEST
CASE

RUNS LOAD USTD

LOW T1

R1 93.218300 0.000000

R2 93.625300 0.000000

R3 93.751800 0.000000

LOW T4

R1 93.914900 0.000000

R2 94.200500 0.000000

R3 94.200500 0.000000

LOW T7

R1 94.101800 0.002100

R2 94.286500 0.001900

R3 93.795000 0.001500

MED T2

R1 95.216900 0.000000

R2 95.924900 0.000000

R3 95.172700 0.000000

MED T5

R1 96.001100 0.000000

R2 95.844800 0.000000

R3 96.139300 0.000000

MED T8

R1 95.929400 0.000640

R2 95.861300 0.001100

R3 95.879300 0.000620

