Wii Remote Interaction for Industrial Use

Marcus Nielsen, Michael Stenbacka

November 16, 2009

Chapter 1

Abstract

By focusing on the potential of the Wii Remote, we have implemented a
broad spectrum of concept ideas into the same package, in an effort to give
a good overview of the Wii Remote’s properties such as mobility, direct
manipulation and generally high affordance. The purpose of this work was
to find a concept on how a Wii Remote can be used as a tool for the industry,
outside the domains of gaming and entertainment. The environment for
our investigation was ABB’s Robot Studio which is a simulation tool for
industrial robots. Creating a concept with today’s products enabled us to
discuss a present solution and also a possible future in form of a redesign
rationale that we exemplified with a set of scenarios.

ii

Contents

1 Abstract

2 Introduction

2.1 Problem Description
2.1.1 Scenario
2.1.2 Summary
2.1.3 Wii Remote for Industrial Use

2.2 Overview

2.3 The Wii Remote
2.3.1 The Accelerometer
2.3.2 ThelR-Camera

2.4 RobotStudio

3 Background
3.1 Gestures
3.2 Human Computer Interaction

3.2.1 Prototyping and evaluation

3.2.2 ScenarioSo
3.3 Gesture Based Systems
3.4 Gesture Recognition,
3.5 Wiimote-Based Gesture Recognition
3.6 3D Navigation 0.
3.7 Augmented Reality 0.
3.8 Robot Jogging o

4 Design

4.1 Creatinga Concept
4.2 Implementation

4.2.1 Parsing wiimote Data

iii

iv CONTENTS
4.2.2 Our Architectural Design 20
4.2.3 Mouse Simulation 21
4.2.4 Camera Navigation 23
4.2.5 Jogginga Robot 0. 24
4.2.6 Gesture Recognition 26
5 Results 28
5.1 Implemented Functionality 28
5.2 Demonstrating our Design 29
5.3 Observations, 30
5.3.1 Mouse Navigation 30
5.3.2 Camera Navigation 30
5.3.3 JogRobot 31
5.3.4 Gesture Recognition 31
5.4 Overall Feedback 32
6 Discussion 33
7 Redesign Rationale 35
7.1 Background o 35
7.2 Concurrent Technology 35
7.3 Suggested Wii Remote Changes 36
74 RoboBrush 36
7.4.1 Application Specification 36
7.5 Scenario Based Design 37
7.5.1 Personas. oo 37
7.5.2 Scenario: Learning the Tool 37
7.5.3 Scenario: Collaborative Design 39
7.5.4 Scenario: Adjusting Robot Instructions 40
7.6 Redesign Descisions 42
7.6.1 Aesthetic and Minimalistic Design 42
7.6.2 Visibility of System Status 43
7.6.3 Match Between System and the Real World 43
7.6.4 User Control and Freedom 43
7.6.5 Consistency and Standards 44
7.6.6 Recognition Rather than Recall 44

7.6.7 Help Users Recognize, Diagnose and Recover from Er-
) 44
7.6.8 Flexibility and Efficiency of Use 45
7.6.9 Help and Documentation 45

CONTENTS

7.6.10 Error Prevention
8 Conclusions
9 Aknowledgement
References

A Descision Map
A.1 Description e

Chapter 2

Introduction

2.1 Problem Description

The industry today uses robots to automate production and to keep humans
away from health hazardous workspaces. When a costumer has bought
a robot from ABB Robotics they need to program it themselves. Robot
tasks are programmed by using a tool called Flex Pendant. This tool is
connected to a controller that handles robot tasks and related actions. The
Flex Pendant, as well as new tools, is continuously being researched to
increase efficiency, lower the cost and increase the usability.

2.1.1 Scenario

Erik and Peter, two loyal customers to ABB, are standing inside a dirty
industrial building and programming two ABB robots. Erik, owner of Aros
Weld and expert in sheet metal welding is trying to convince his colleague
Peter how to solve their problem of welding two small metal pipes. Peter, a
master of robot programming dislikes most of the creative ideas streaming
out of Erik, because he wants his robots to act like human welders.

A lot of miscommunication arises since Erik is an old Swedish weld expert
with no academic experience and Peter is an engineer from USA. We call
this the problem of communication.

While compromising and arguing, using pen and paper, they draw models
of how the two robots should behave. But it’s finally up to Peter to actually

2 CHAPTER 2. INTRODUCTION

create paths and tasks. After some hours of debating and planning they
finally come up with a solution for the welding order of the week.

Erik calls his customer to discuss the price but unfortunately he does not
notice the thick wire from the Flex Pendant. Erik trips over the cable and
drops his cell phone in the ground while Peter yells:

- "No! Catch the Flex Pendant!” - ”Why didn’t you put that thing some-
where safer?! Erik yells!” - ”The cable was too thick to put the pedant in
the locker. It’s not my fault, Peter yells!”

A cell phone may not be the most expensive thing but a Flex Pendant, that’s
a whole different story. This leads to the problem of flexibility.

After installing a new Flex Pendant from ABB Robotics, since the last
one fell down during the accident, Peter asks Erik if he can take a trip
back to London to celebrate his honeymoon. A worried Erik asks Peter:
”Can’t you wait? We got more components arriving next week.” But Peter
thinks that Erik should be able to fix the small adjustments needed to weld
the parts by himself. Erik tries to jog the robot, using the Flex Pendant,
but fails and angrily walks into his office and calls the product manager of
the Flex Pendant: - ”Can’t you, as leaders in the robot industry, create
tools easy enough for us normal people to use and without the big stupid
cables!?”

The experience and knowledge needed to jog robots fast enough to be pro-
ductive leads to the problem of expertise.

2.1.2 Summary

From this scenario we could identify three problems of robot programming
today. The requirement of both skill and professional experience. To handle
expensive tools that require cables to be connected to it and therefore dimin-
ishing mobility. The lack of multi-interaction, so more then one engineerer
could work synchronized.

2.1.3 Wii Remote for Industrial Use

The purpose of this thesis work was to investigate how the Wii Remote
could be used as a tool for the industry, meaning outside the domains of
gaming and entertainment. The goal is not to replace mouse and keyboard

2.2. OVERVIEW 3

in areas where they are already well established and our solution is not
meant to be a full system. Instead we focused on creating a concept demo,
showing how this new technology could be used in the domains of industrial
applications.

We base our work on different types of gestures, since the Wii Remote
doesn’t have a keyboard. With only a few buttons a user should be able
to perform a large variety of actions inside RS2008 (RobotStudio 2008, see
chapter 2.4). The concept demo had some basic requirements, it should run
smoothly without crashing, be easy to use and show functionality based on
the possibilities of the Wii Remote.

2.2 Overview

This report has been split into 7 chapters starting with this introduction on
the Wii Remote and on applications we have used in our project. In chap-
ter 3 we describe the theoretical essence that is fundamental ground for our
work. This is coupled with our own experience in chapter 4 where our imple-
mentation is described. Chapter 5 show the results from our implementation
with some user feedback from a user test at Robotics partner seminar 2008.
Spin-offs and ideas of future work is described in chapter 7 showing how
a redesigned implementation could look like. A discussion on this redesign
with related theory is presented in chapter 6. This is summarized in chapter
8 with our conclusions.

2.3 The Wii Remote

On November 19, 2006 Nintendo released their seventh generation gaming
console called Nintendo Wii. Together with this new gaming console, a new
kind of game controller device was also introduced. This controller device,
called Wii Remote and also known as the Wiimote, is a wireless controller
equipped with an accelerometer and one IR-camera (see figure 2.1). On the
outside it has 6 buttons and one traditional arrow button. To give users
feedback it is equipped with blue leds, a rumble device and a little speaker.
The Wii Remote can also be extended with more devices as the Nunchuck.
This device is optional but has the same accelerometer features as the Wii
remote and is equipped with two trigger buttons and one analog stick. The

4 CHAPTER 2. INTRODUCTION

Nunchuk is held in the left hand and is connected by a chord to the Wii
Remote.

Figure 2.1: Wii Remote

The Wii Remote sends data wireless with a Bluetooth connector /receiver
to the Wii console. To be able to get this data transferred into a PC we
connect the Wii Remote using a normal Bluetooth dongle.

Referenced material of the Wii Remote has been extracted from ! since there
is no official detailed specification available.

2.3.1 The Accelerometer

The accelerometer inside the Wii Remote and Nunchuk extension is a ADXL330
accelerometer [21]. It can register acceleration in three dimensions. When
holding the Wii remote still it has continues force on its Y axis since the
gravity always expose force on the accelerometer. When tilting the Wii re-
mote we expose different axes to this gravity force and could thereby know
the angle of the Wii Remote relative to the ground. Since the Wii Remote
can only feel its angle relative to the direction of the gravity, our orientation
will lie in a two dimensional circle. This means that when we rotate the Wii
Remote perpendicular to the ground, we will not get any clear readings of
our new state.

2.3.2 The IR-Camera

The possibility to aim at a certain point on a screen was very limited using
accelerometer values only. This due to the above noted problem of rotating
perpendicular to the gravity field. Nintendo solved this issue by adding an
optical camera on the Wii remote and included a bar with some IR-LEDs

http:/ /www.wiili.com/index.php/Main_Page

2.4. ROBOTSTUDIO 5

mounted. This bar was named the ”sensor bar”, but should not be confused
with an actual sensor since it only emits IR-light. By aiming the camera
toward the sensor bar we could pinpoint the position at which we were
pointing at relative to the sensor bar. The camera can register four sources
of IR-lights, but Nintendo only use two since it is enough for calculating
distance and to keep track of its own rotation.

2.4 RobotStudio

RobotStudio 2008(RS2008) is a software made by ABB Robotics 2. It is a
CAD (computer aided design) tool for offline robot programming with the
goal to minimize production downtime. RS2008 give robot engineers a 3D
environment to create realistic robot simulations and workflows (see figure
2.2). All Robots, also known as ”mechanisms” in RS2008, are coupled to
a virtual controller that simulates the real controller used for a real ABB
robot. In RS2008 you find most of the functions viable in common CAD
programs today, different ways of creating, changing and viewing objects in
a 3D space. You can also find functions for robot programming like freehand
jogging, creating paths and run simulations.

http://www.abb.se/product /se/9AACI10011.aspx

CHAPTER 2. INTRODUCTION

i d@n-a- s RobotStdio 2008 _ox
Home | Modding Smuaion Offfce Onine Adddns
@ P |Gl B & R et i
@ .
Instructi Workobject b - ShowfHide -
G ireort | Rebot | ot Frame || worhbact Toclata, Terpe | Erty, P o | BB PRYeUSIAREN | Workcbed W”‘i[&_&m 8 shawHi
Lbrary = Lbrary = | System - | Geometry Path Curve | [0 Action Instruction | Tool KIS0 - b
Build Station Path Programming & Settings Freehand
= D FlexL 1

%8 Demo FlerLoader’
- PKI_S00_di_ 2001
> PRI_G00_di M2001_2
- PKI_S00_di M2001_3
%5 Torch_Cleaner_Binzel
i balk
@ FiColmn
- RobolStand_2
@ FiobotStand_3
g Fences
% IRCS_FlenConoller_1
- IRCS_DiiveModule_1
¥ IRCE_DiiveMadule_2
-2 IRCS_DiiveModule_3
9 IRCE_DiiveModule_4
- IRBEB00_280_175_M2000
B IRB1600_X145_M2002
-5 IRBTB00_X145_M2002_2
B IRB1800_X145_M2002_3

W CREgHxE &
ba

ONN @ L R

b s | Time
(5 Demo_FlexL_oader: Program started 20080530 100957 Controllers
(5 Demn_FlexLoader: Program started 20080530 100957 Controllers
(5 Dema_FlexLoader: Program started 20080530 100957 Conlrollers
I\ Dema_FlesLoader: Comer path faiure [2] 2008-05-30 100957 Controllers
(5 Demo_FlesLoatr: Prooram stapped 20080530 100957 Controllers
(5 Dema_FlexLoader: Program stopped 20080530 100957 Conlrollers
(5 Dema_FlexLoader: Program stopped 20080530 100957 Controllers
(3 Demo_FlesLoader. Program stopped 2008-05-30 100957 Controllers

[Movel = * 1000 - 2100 = PKIS00 ~ |

Figure 2.2: RobotStudio 2008

Chapter 3

Background

In this chapter we provide knowledge valid for understanding our project,
the terms we use and also the related work. This includes new interacting
techniques, with focus on 3D motion sensing devices, designing interactive
systems and gestures recognition.

3.1 Gestures

We will base our work in the domains of gestures. Gestures could be grouped
into deictic, gesticulation, manipulation, semaphores or sign language. Of
these five styles, we will work with deictic, manipulative and semaphorical
gestures [7].

The definition of the word deictic is ”Linguistics of or relating to a word,
the determination of whose referent is dependent on the context in which
it is said or written. In the sentence I want him to come here now, the
words I, here, him, and now are deictic because the determination of their
referents depends on who says that sentence, and where, when, and of whom
it is said.”!. In the context of gestures, we might want to drag and drop
a marked object on top of another. If we drag-and-drop a music file onto
a music player, we might add that file to a playlist. The deictic gesture
here is the actual drag-and-drop, while adding the music file to the playlist
is just a context sensitive effect of this action. Manipulative gestures are
those "whose intended purpose is to control some entity by applying a tight

"http://www.thefreedictionary.com/deictic

8 CHAPTER 3. BACKGROUND

relationship between the actual movements of the gesturing hand/arm with
the entity being manipulated.” [7]. Both the Wiimote’s accelerometer and
IR-camera register movements in a way that enables manipulative gesturing.
Translating the position of an object in a 3D world, by moving the Wii
Remote or Nunchuk, is one way of using manipulative gesturing.

A semaphore gesture is what most of us relate to when we see the word
gesture. It can be either a static pose, like ”thumbs up” or a dynamic one,
like tapping your foot to illustrate impatiens. The gesture technology can
be perceptual or non-perceptual depending on if it needs to sense the user’s
input, in which case we have a perceptual technology, or if we take the input
directly from a device as our Wiimote. Hence our Wii Remote is of the non-
perceptual nature, but can be used as a perceptual technology if we use the
camera to recognize our fingers move as Johnny Lee has shown in one of his
inventions [9)].

3.2 Human Computer Interaction

As shown in the introduction scenario, the design of the interaction between
a human and its system is of a great importance. The interface should be
user friendly and this could be achieved by studying HCI methods, Hu-
man Computer Interaction. Human Computer Interaction, is a discipline
were the interaction between people and computers are being studied. This
includes design, evaluation and implementation of interactive computing
systems for human use [6].

Computer science and applied psychology are blended to provide knowledge
and methods for designing user friendly environments. The central terms
in a user friendly environment is usability, utility and relevance [10]. The
interface between a system and a user is said to be well designed if it has
a good usability, which basically means that a system behaves as a user
thought it would [18]. To achieve this, a system should be easy to use, be
safe and efficient. By safe we mean it handles all the unexpected interaction
and prevents the user to perform faulty actions. By efficient we mean it
should take less time for a user to find the right buttons, tools and functions.
Although, the interface should not be compromised in such a way that it
have less functions or abilities necessary for its task. As users "never come
with a blank state”, research about who they are and how they act is valid
to form a relevant system with high utility.

3.3. GESTURE BASED SYSTEMS 9

There are 12 principles that provides a guideline for interactive systems de-
sign. These principles are: Visibility, consistency, familiarity, affordance,
navigation, control, feedback, recovery, constrains, flexibility, style and con-
viviality [1].

3.2.1 Prototyping and evaluation

Two other important terms in a design process is prototyping and evaluation.
With prototyping a designer could create a simplified version of the full
design in an early stage, test it and then throw it away. This prototype does
not even have to be computer based as it can be made on a simple paper.
There are of course more sophisticated types of prototyping evolving special
software.

By evaluation we mean testing or trying. This could be done as early as
trying out a conceptual idea with a scenario or inviting users to try the
present system during the design/implementation process. It’s a necessary
task to evaluate if your current design has a high amount of usability, utility
and relevance.

3.2.2 Scenarios

Using scenario based design is one way of identifying who and how users will
interact with a new system. This is also an essential part of prototyping and
evaluation. A scenario is a short story about people and their activities [3],
i.e. we used a starting scenario in this report to backup the reason for our
project. By using scenarios, it becomes easier to identify problems with a
new design and it also provides a tool for expressing a new design for people
outside the project.

3.3 (Gesture Based Systems

Gesture based interaction has been around for several decades and got more
commercial popularity with Nintendo’s console release [7]. With this console
a new device called Wii Remote was released. It was relative cheap and
introduced a new way of playing console games. Unlike old interaction

10 CHAPTER 3. BACKGROUND

methods, using buttons and sticks, the Wii remote use acceleration to create
game play, i.e. golf and tennis.

Researchers at the VI'T Technical Research centre in Finland have been
working on gesture recognition with a device called SoapBox [11]. With the
SoapBox prototype they controlled a DVD player with basic gestures. They
could boost the system so it had an average accuracy rating of 98 percent
from a set of 240 gestures.

3.4 Gesture Recognition

Gesture recognition is a research close related to our own work. A general
pipeline that is common for gesture recognition is shown in figure (3.1) and
there can be variations of this pipeline [16] [11].

Collect raw

Pre-process Recognize Execute
data P €

| | ! |

Scale, interpolate, Match an input Trigger a related
“r extrapolate, raw vector symbol with a command/function
% data and convert them pre-recorded one
! into discrete "symbols”.

Figure 3.1: Gesture pipeline

The first task in this pipeline is to collect raw un-calibrated motion data,
i.e. read 3D motion data from the accelerometer.

The second task is to pre-process the raw vector data. The first step in
the pre-process is usually to scale, interpolate or extrapolate the data and
sometimes reduce or generate noise [11]. The next step in the pre-process
stage is vector quantization. The three dimensional vector is converted
into one dimensional symbol. This is needed to reduce the amount of data
without losing any valid information. A common way is to cluster all the
raw vectors with a k-mean algorithm [16].

The third task in the pipeline is to recognize a pre-recorded gesture. There

3.5. WIIMOTE-BASED GESTURE RECOGNITION 11

are several techniques that solve this problem. Both soft computing and
more sophisticated methods, such as HMM, Kalman filtering are common
strategies.

Hidden Markov Models, HMM, is a well known strategy for motion based
recognition and is well established in speech-recognition [14]. HMM is a
stochastic process that is built on Markov chains [12]. A Markov chain is a
way of handling states, given a finite number of states. The future state is
independent on past states, so all information needed for future processing
is included in the present state only. Being a stochastic process means that
a transition between states is based on a probabilistic. The reason why
it’s called hidden is because the model hides the real states and only show
the associated observation symbols. The researchers at the VI'T Technical
Research Center describes that the actual gesture recognition is to find ”an
index of the discrete HMM which produces the maximum probability of the
observation symbol sequences” [11].

There are other techniques for gesture recognition other than pure motion.
For example, vision based tools that recognize objects and patterns are
used by a mobile robot for terrain navigation [13]. There are also image-
processing techniques that detect shapes, textures and colours for gesture
recognition.

3.5 Wiimote-Based Gesture Recognition

Schlomer et al. created a gesture recognition system which used the Wii
Remote as an input device and HMM as an model for the recognition part
[16]. Their concluding recognition results vary between 85 to 95 percent.
Worth noticing is that the simple roll gesture had lowest result with 84.3
percent while the ”tennis” gesture swinged up to 94.5 percent. Since using
the roll gesture as a semaphore filters away the speed of the roll as well
as how far the roll went, we can note that some gestures are better fitted
as strictly manipulative instead of semaphorical. Their gesture recognition
library is available to the public for further research.

Shiratori and Hodgins have implemented an accelerometer-based user in-
terface to control a physically simulated character [17]. With two or three
Wiimotes and the use of Kalman filtering, they simulate actions such as
running, jumping, and turning.

12 CHAPTER 3. BACKGROUND

Lee, Kim et al. uses the Wii Remote to create collaborative art with the
use of the Wii Remote’s infra-red camera [8]. The main purpose lies in
the fact that this study has worked with ”the user’s ‘reflexive’ awareness to-
wards their own body” which means that they worked towards a transparent
controlling interface which has high affordance.

Guo and Sharlin makes a comparative study between the Wii Remote as a
general tangible user interface and the keyboard [5]. Although the results
suffer somewhat from a non-optimized keyboard scheme, the results points
towards the possibilities of an effective, non-discrete posture controller. The
learning curve seemed to vary with the conclusion that a higher ”degree
of integration” and ”degree of compability” of the tangible user interface
and the robot meant that beginners did not do as many faults. One ges-
ture mapping scheme was based on the analogy of horseback riding, but
in real-time, the user still needs to recall rather than recognize [23]. This
can lead to erroneous output especially when the user needs to act fast or
continuously.

3.6 3D Navigation

Navigation tools in three dimensional (3D) based applications is something
familiar for those working with 3D CAD, 3D studio max [20] and ABB’s
Robot Studio. But for some users it can be very difficult to learn [4], result-
ing in users rejecting 3D tools and continuing to work with 2D even thou a
3D application would provide more utility, if mastered correctly.

3D navigation involves the repositioning and reorientation of a view, often
analogized with a camera. The most common tools needed for navigating a
3D camera are pan, zoom and orbit [19]. Pan will only change the position
of the camera without affecting the orientation of it. Zoom will move the
camera closer to a certain focus point, most often a selected point or an
object. Orbit enables us to move around a focus point while continuously
keeping the camera directed towards the same focus point.

Issues in 3D navigation involve disorientation due to an empty view or the
lack of transition animations between different views as well as users inability
to choose the right tools appropriate to navigate efficiently. New 3D users
try to use the tools with the skills and knowledge derived from their work
with 2D tools [4]. Fitzmaurice et al. have also found that users have a strong

3.7. AUGMENTED REALITY 13

idea of how a tool should work without knowing about the real terminology
for 3D [4].

3.7 Augmented Reality

Augmented reality is a combination between the real- and the virtual world.
It is interactive in real-time as well as being three dimensional [22]. Aug-
mented reality is a sub domain of virtual reality and focuses heavily on
enhancing real objects digitally. Augmented reality still has technological
and ergonomic issues, but certain areas such as ”Spatial Augmented Real-
ity” has gained in interest due to a fall in cost and increased availability [2].
Spatial augmented reality is famous for its hologram concept as seen in sci-
ence fiction movies, but also for transparent screens that can mark moving
objects behind the screen or show some details about the moving object and
is of use for the military pilots and soldiers as well as civil drivers.

The application domains that are mentioned by Bimber and Raskar are of
importance to us. It ranges from mobile and ubiquitous to virtual- and
augmented reality[2]. Mobile applications are a well known fact due to the
everyday mobile phones and will not be further explained. Ubiquitous appli-
cations tend to be small, cheap and integrated in our everyday environment
[24]. The user may thus interact with a system without its own explicit
knowledge. Smart fridges are a good example, where it can keep track of
food and give possible menus or a shopping list.

An augmented reality display needs to intersect the optical path from the
real object and the user’s eye to be able to modify the visual content received
by our eyes. Typical displays can be planar, as a normal desktop flat-screen,
or non-planar, as a hologram would be. Depending on how the display is
placed, different technological implications are bound to the display. We can
group the displays into the following categories: Retinal-, Head-Mounted-,
Hand-Held- and Spatial displays.

Retinal displays send the augmented view directly onto the retina of the
eye. In the future this can enable high resolutions and large field-of-views.
Note that today, only monochrome, non-stereoscopic versions exist. Head-
Mounted displays can be either video see-through, where a camera input
mixes with the augmented layer and then sent as a complete view, or opti-
cal see-through, where different transparent materials that can display the

14 CHAPTER 3. BACKGROUND

augmented layer while letting through normal light from behind. This kind
of technology has issues concerning ergonomics and picture quality [2].

Hand-Held displays range from today’s PDAs and cell-phones to more spe-
cialized tools. These units have limited field-of-view and processing power.
Bimbar and Raskar points out that moving a display over a static scene
can effectively count as a ”large” view than a static display of similar size
where the scene is moved [2]. The broad market and game industry drives
the mobile products forward, and makes the hand-held alternative viable for
augmented reality.

Spatial displays are divided into video see-through, optical see-through and
direct augmentation. Both methods for the ”see-through” has obvious issues
of field-of-view. Video see-through has general problems with merging the
less quality of real world objects with the virtual, augmented ones. Opti-
cal see-through displays are generally less stressful on the eyes, has higher
resolution, large field-of-views and scales with the environment[2].

Projection-based spatial displays have many domain-specific issues including
shadow casting of real objects, no possibility to project virtual objects in
free space and non-zero parallax removing multiple user possibilities. A
good thing about projections is their close bounds to the real world as well
as the ergonomically benefits and the scalability. As a whole, this kind of
technology enables available and intuitive interfaces[2].

More about augmented reality will be discussed in our design rationale were
Augmented reality could be mixed with Wii Remote interaction to create
new possible ways of interaction and visualization.

3.8. ROBOT JOGGING 15

3.8 Robot Jogging

An industrial robot can be programmed to perform preprogrammed opera-
tions in a working area. To program an ABB robot, you can manually write
code on how the robot should move, or jog a robot with a Flex Pendant
(see figure 3.2). Jogging the robot means that you use an analog stick to
move the robot arm to the desired positions with different types of path
settings.

There are three types of jogging capabilities in RS2008, jog linear, jog joint
and jog reorient. Linear jogging is kinematic motion of the whole robot
were the flange is moved along a linear path. The flange is the endpoint of
the robot where a tool can be mounted. Joint wise jogging is an operation
which can rotate one joint. With Jog reorient it’s possible to change the
angle flange without changes it’s coordinate.

Figure 3.2: Flex Pendant

Chapter 4
Design

To be able to test Wii remote interaction techniques in the domains of ABB,
RS2008 was choosen as the pilot environment. It was a perfect match, since
it simulates a 3D world and robot programming.

4.1 Creating a Concept

To familiarize ourselves with RS2008 and robot programming we went down
to Gothenburg to meet the developers of RS2008. After a workshop with
the developers and a interaction designer we ended up with two main design
goals: robot jogging and camera navigation. We also looked at an already
implemented product similar to the Wii Remote, the 3DCONNEXION’s
spacemouse !. This device is used for smooth camera navigation. With
this spacemouse you could push, pull, twist or tilt the cap of the circular

"mouse” to pan, zoom, and rotate the 3D view inside RobotStudio.

During the design stage of our project we were under considerable time
pressure and did not have the time to gather real user stories. Instead
we based our concept ideas on the information we got from the workshop
with the RobotStudio developers. We used internal workshops, discussing
scenarios on what and how the users would interact with our system and a
brief design document was created including common RS2008 functionality
(see table 4.1).

"http://www.3dconnexion.com/

16

4.1. CREATING A CONCEPT 17

Functionality Description

Object selection Select a 3D object

Move objects Move a selected 3D object

Attach/Detach objects | Attach selected object on a robot

Linear jogging Robot Jogging

Joint jogging Robot Jogging

Camera strafing Move the camera up/down and sideways
Camera rotation Rotate the camera around an object

Camera Zoom in/out Zoom in and out on an object

Start simulation Robot simulation of pre-recorded movements

Table 4.1: Implementation table

We focus our research on robot jogging and camera navigation based on
many reasons. We did not want to replace a mouse and keyboard as they are
2D devices made for 2D interaction. The Wii Remote is a 3D controller that
sense acceleration on three axes and can thereby know its own movement
direction in 3D space. This controller was designed for gaming purposes and
not for GUI interaction. For example in modern 3D games, i.e. Zelda, you
navigate your character in a 3D world and the coherent camera view often
follows the character. For this type of camera navigation we decided to use
manipulative gestures.

The Wii Remote still have the capabilities of GUI navigation using IR-light
sources which provides us with an accuracy good enough for basic deictic
gestures like cursor control and object selection. To be totally free from
keyboard and mouse, which enhance mobility, a replacement of keyboard
interaction would be needed. We choose semaphorical gestures as the solu-
tion for this problem, were different symbolic gestures, like circles, perform
different commands in the system.

Before we started our implementation we made a decision to implement
all object manipulation on the main remote controller and all the camera
functionality on the Nunchuck extension. The reason was to make it easier
for users to remember which main context they are manipulating. The
Spacemouse implementation also used this hand-dependent context scheme.
The Spacemouse is used in the left hand controlling the camera, while object
manipulations and GUI operations is done by the normal mouse.

18 CHAPTER 4. DESIGN

4.2 Implementation

RS2008 have the possibility to load addins which we used to connect the
Wii remotes with. An addin to RS2008 is a .dll file that RS2008 loads at
start up. Addins can access all the internal functionality, like navigating the
camera, controlling 3D objects and manipulate the current user interface.
All this is possible because of the .NET platform which R2008 is based upon.
RS2008 developers also provided us with a great C# API documentation of
all the common functions useful for our concept.

4.2.1 Parsing wiimote Data

The accelerometer and the IR-camera operates at 100 hz frequency?. This
data could be sent to the computer, using a normal Windows Bluetooth
connection, in bit streams. With a managed library called WiimoteLib,
created by Brian Peak?, the raw bit streams are translated into real state
values.

The data provided by the library is; state changes, button states, IR-
positions and accelerometer data. Accelerometer data is raw uncalibrated
values dependent on the current acceleration state. This raw data includes
both jitter from the hardware and noise from unsteady hands. We reduce
some of this jitter and noise by taking 5-10 sample values and normalizing
them. After we have a normalized value we can calculate the angle on the
Wiimote compared to the earth. This angle is a value between —m/2 - 7/2
and is used for manipulative gestures, i.e tilting the control may rotate an
object depending on the tilt angle. Since not all angles are natural to reach
with your arms, we use the sign of the angle as direction and the absolute
value as the speed to rotate. The effect is that we do not need to move our
hands as much.

2 According to http://wiibrew.org/wiki/Main_Page
3http://www.brianpeek.com/blog/pages/wiimotelib.aspx

4.2. IMPLEMENTATION 19

Figure 4.1: Wiimote Axes

There are three methods of how you can tilt a wiimote, pan, roll and pitch.
A pan movement is a rotation around its vertical Y axis, roll is the rotation
around its horisontial Y axis and pitch is a the rotation around its horisontial
X axis, (see figure 4.1). Roll and pitch movements could be calclutated using
a Wii remote in its normal position. To calculate roll and pitch we use the
formula:

P =Atan(Z)Y)+ (4.1)

where Z and Y are values based on how much gravity force affected on each
wiimote axel.

We calculate the roll values by the formula

R=Atan(Z/X) + = (4.2)

20 CHAPTER 4. DESIGN

4.2.2 Our Architectural Design

We structured our code so it would be possible to extend functionality with-
out rebuilding the foundation (see figure 4.2). The overall base class is
called WiimoteControll and handles the startup/shutdown. It also has a Wi-
imoteCollection class that contains a list of all the connected wiimotes.

For every wiimote their is one profile. We use profiles to be able to use the wi-
imotes simultaneously (multiplayer). We also use profiles to be able to limit
or extend functionality for different purposes. The two implemented profiles
was RobotController and SwordFight. The playerBaseProfile contains the
basic timers and controll implementations, like mouse simulation. All the
Mechanism functions, like calculating new robot positions, was wrapped into
our own Robot class. In addition to the mechanism functions it also con-
tains state information, for example what part on the robot that is currently
selected.

Wiimote Control

WiimateCollection

PlayerBaseProfile Gesture Recognition System

‘ SwordFighter

RobotController EnemyRobot

Figure 4.2: UML overview

4.2. IMPLEMENTATION 21

4.2.3 Mouse Simulation

The wiimote IR-camera has a horizontal field-of-view of 41 and vertically 31
degrees. For mouse simulation we need the camera to capture one IR-source
inside its field-of-view to place the mouse cursor somewhere on the screen.
The IR-source’s position is translated to a proper position.

Some initial problems occurred when we tried to point close to the edge of
the screen, or tried to point at a small spot. Also, the offset from the middle
of the screen and the middle of the sensor bar creates a small artefact which
users need to adjust their aim for. Using more than one IR-light can cause
the pointer to jump when the IR-camera looses the currently tracked light
source and starts tracking a new one.

{ W

e Jeremn o
1 ¥ ‘,—"Ju. Bomate Cucten
] (Ep- [

| Canffar & 1 - l

[I |

I'DI-'JIH.

SRR Y g

'.-..l'-':‘-F Bernobe

a2 e J

O o j 2
; | ;’1

“VGJ ;Ir.-,’thmlr -rn'jj‘l# I'.\D“.J 1";‘_.,‘ l\,ﬂ"ﬂ‘hl’a"j

-y lr-w-.ﬂlu -]
w1 3
fomend
- _.r LED
/"";\:J wprards o 1":--*, ll war bk
Tl The ol e dye 3 .
& 3 4
= e

Figure 4.3: Sticky Edges

When moving the cursor close to the edge of the screen, we will have the
light source in the IR-camera’s corner. If we go outside the IR-camera’s
field-of-view we will lose track of where we are pointing, which will result
in the cursor not moving. This gives us a ”sticky-edges” feel when trying
to manipulate toolbars along the border of the screen (see 1,2,3 on figure

22 CHAPTER 4. DESIGN

4.3).

By using a small portion of the cameras outer field as a safety margin we
can avoid the sticky edges. This is done when transforming the camera’s
IR-source coordinates to screen coordinates. First, we translate the camera
center coordinate to our screen coordinate’s origo. Then we scale it to
the size of our screen, but add some percentage of the screen’s width or
height accordingly to the screen axis. We then translate the scaled camera
center point to the screens center point. The increased scale will create the
margin around our screen. Values outside the range of the screen will be
converted to values just inside the range, giving a more natural response to
the user’s movement at the cost of higher sensitivity due to the reduction of
the camera’s active field-of-view (see 4 in figure 4.3).

Pointing with the IR-camera manually will cause the cursor to shake notice-
ably on-screen. We would like to filter out these motions without affecting
responsibility or precision too much. We developed a simple smoothing
method, which calculates the delta vector between the current cursor point
and the next. The delta vector represents the relative movement needed
to move to the next cursor point. The code snippet implemented is as fol-
lows:

double smoothFactor =

Math.Sqrt(deltaX * deltaX + deltaY * deltaY)*2
/ Math.Sqrt(screenSize.Width * screenSize.Width
+ screenSize.Height * screenSize.Height);

if (smoothFactor < 1.0)
{

deltaX *= smoothFactor;
deltaY *= smoothFactor;

by

where smoothFactor ranges from 0.0 and upwards, but all values above 1.0 is
treated as 1.0 so we do not move past the next cursor point. The nominator
represents the length of the delta vector multiplied by a weight established
by empirical testing where a larger weight gives faster response at the cost
of less smoothing. The denominator was set to represent the largest move
that can be done in one frame, i.e. the diagonal of the screen. This can
be empirically tested, but we chose to base it on the user’s screen size since
this will vary from system to system and just use a weight to tweak the
response. This hides all noticeable shakes and gives better responsibility at

4.2. IMPLEMENTATION 23

higher speed.

To avoid the offset we could make a screen which emits IR-light in the
same manner as the sensor bar, or we could simply try to calibrate away
the offset in the software as Nintendo does. Calibrating the offset would,
however decrease the vertical range of the Wii Remote’s camera. Since the
calibration is software based, we will still loose track of the sensor bar when
we pitch the Wii Remote too much. If this calibration is needed, we found
that it might be better to put the IR sensor a bit too high than too low
since the users’ wrist can bend upwards more than downwards.

4.2.4 Camera Navigation

One benefit with the Wii Remote is the possibility to extend its function-
ality with other tools like the nunchuk extension which Nintendo uses as a
navigation tool in many 3D-games. We made use of the analogue stick to
pane, orbit and zoom the camera in RS2008.

We choose to pane in a horizontal plane by using the Nunchuk’s analogue
stick which has a horizontal layout and can be tilted in a circular plane. This
way we can move around like standing on a floor but without turning around,
which is a good starting point while trying to avoid disorientation.

By pressing the ”C” button on the Nunchuk, we enabled orbit horizontally
and vertically with the same analogue stick as with our pane functionality.
Our orbit was bound to the current selected object, which would cause an
instant jump from any view to a view with the selected object centered in
our view. It should be suggested that this kind of sudden transformation of
the camera view is to be animated [19].

The same ”C” button as orbit also activated manipulative gesturing by
reading the pitch of the nunchuk which was mapped to a zoom in / zoom
out functionality. To make the zoom more user friendly we set the current
pitch when the button was pressed as the neutral zoom value. To increase
the zoom the user needed to pitch downwards and vice versa. This way
the user could be unaware of their current pitch and just press the button
instead of first keeping its hand in the right pitch followed by the press of a
button. To make the most of the accelerometer, we wanted to use the roll
of the nunchuk as a manipulative tool as well, but discarded this idea due
to the high risk of unwanted roll input when pitching. We therefore choose
to use the roll as semaphoric gesture input as a constraint. Two semaphores

24 CHAPTER 4. DESIGN

were used; Lock View and Recall View to make navigation safer as well as
faster.

Since we could not separate rotations and linear movements of the accelerom-
eters Lock View was implemented as a static semaphore where the user ro-
tated the nunchuk and tapped the ”C” button. The semaphore mapped to
Recall View symbolized a sideway shake. Since we had both the shake and
zoom on the same accelerometer, we had to complement the nunchuk ac-
celerometer with a cool-down function that disabled accelerometer parsing
for a short period of time after a shake to prevent accidental double-shakes
or a shake followed by an unwanted zoom.

4.2.5 Jogging a Robot

As described in the background, there are three ways of freehand jog a robot
in RS2008. We decided to implement joint jog and linear jog.

4.2.5.1 Jointwise Jogging

Jog joint is the easiest function to implement as you only need to change the
position of one joint at a time. The tricky part was to actually select one
of the joints. Our solution to this is the same as the built in RS2008 joint
jog. First a part of the robot needs to be selected and then you are able to
move it by rotating it around its joint. In figure 4.2.5.1, you can see that the
third link is selected and rolled around joint nr 2. A robot part can only be

29
L
L3 'L‘r(g_.?_ﬁL(D

|91 3=D0it
=1 L=L/né&

Figure 4.4: Robot Joints

4.2. IMPLEMENTATION 25

moved in one direction but some links rotates around different axis. So we
made link 2 and 4 rotate depending on the moving factor from roll and the
rest on the pitching factor. This should create a more intuitive controlling
experience since you get a greater affordance. Rolling your arm looks like
you roll the robot arm and pitching the Wii remote creates a animation as
shown in (figure 4.2.5.1).

(a) Home position (b) Jog joint...

Figure 4.5: Example of Joint Jogging in RS2008

4.2.5.2 Linear Jogging

Jog linear was implemented as an option to the jog joint method (see figure
4.6). First we used accelerometer data from pitch and roll but realize that
it was only a hard and intuitive way of controlling. Instead we created a
1-to-1 mapped controlling function that uses IR for more accurate data.
By vertical up and down movements we translate the flange on a robot,
according to a basic difference calculation between two recorded IR points.
This translation make the flange move to another position and by using a
Inverse Kinematic calculation, viable in RS2008, all links could be translated
accordingly.

26 CHAPTER 4. DESIGN

8 CHERENEE BOR\NYeLR SaeH Ui CHEFENEE BONNYOLR /AdM
pa pa

(a) start position (b) jog forward

Ui CHEFENEE BORNNNYOLR /ACH Ui CHEFENRE MONNYOLR /ARM
ra rva

(c) jog even more (d) end position

Figure 4.6: Example of Jog Linear in RS2008

4.2.6 Gesture Recognition

We received data from the Wii Remote at 100 Hz. The raw data structure
contained acceleration data in all three dimensions and was placed in a list
sorted by time. We enabled recording by saving this list to a file for later
use as a reference. We could then match a recorded list with an input later
on to see if the two input lists were similar.

The stored data was simplified with the least square algorithm, which we
used to group ten samples together to speed up the matching process. By
measuring the difference between the two lists, we could find the best match-
ing gesture recorded earlier.

One issue we had was that the gravitation weighted the gesture data some-
times more than the actual gesture, making the level of noise quite high.
Nintendo has addressed this issue with expansion hardware to filter away
some of the noise, and increasing the precision.

The semaphorical gestures that was recorded for the demo was: A circle
for starting the simulation, a catching and a releasing gesture for attach-

4.2. IMPLEMENTATION 27

ing/detaching a selected object on the robot, a shaking gesture with the
nunchuk to reset the view and a M-like gesture for opening a menu. The
shaking gesture was an importent way to help new users to get out of trouble
when they where lost in the 3D space.

Chapter 5

Results

5.1

Implemented Functionality

We implemented the following functions inside RobotStudio 2008:

Moving windows cursor.

Camera rotation, up/down and sideways.
Camera Zoom.

Camera strafe.

Save camera view.

Get back to last saved meny by doing a shake.
Selecting objects/menu items/robot links
Joint jogging

Linear Jogging (1-to-1 mapping)

Fast link-traversing,up/down

Save different robot poses

Gesture recognition system

Make the robot move between saved positions by doing a circle gesture

Attach a selected object on the robot, doing a catch gesture

28

5.2. DEMONSTRATING OUR DESIGN 29

e Detach object, doing a release gesture.

e Opponent robot can explode and a score based upon how good your
strike it will be calculated.

e GUI items for loading the addin, connecting/disconnecting wiimotes
and swiching between profiles.

5.2 Demonstrating our Design

In May 2008 we demonstrated our prototype at the Robotics Partner sem-
inar 2008 (see figure 5.1). It was a great opportunity for us to show and
ask ABB customers and robot engineers about our prototype. To get more
attention we created a small game in RS2008; a sword fighting ABB robot
that could smash down one static opponent robot. A score was calculated
if the swing was hard enough together with a nice exploding animation of
the opponent robot.

Smmr

e
tudio With a i Conty

|
|

s in Robot Studio

B

7
B

Figure 5.1: Robotics Partner Seminar 2008

=

13

\

We do not know the exact number of visiting users but we had an official
five hours demo time and we always had someone at our station watching,
trying or discussing our prototype. We introduced our solution by showing
a few glimpses of our prototype followed by an introduction to our work by
explaining how the Wii Remote works. After our introduction we let them

30 CHAPTER 5. RESULTS

try the demo hands-on. The features we displayed were camera navigation,
robot jogging, gesture recognition and sword fight.

5.3 Observations

Since most of the users who came to our station was looking for more in-
formation, we had to spend a lot of time showing and describing this new
technology. Some were very eager to try out and discuss our solution, so we
did our best to improvise questions relevant for user testing.

(a) Deictic gestures (Pointing around) (b) Semaphorical gestures

Figure 5.2: Users trying our prototype

5.3.1 Mouse Navigation

The user was standing 3 to 6 meters from the screen and navigated in Robot-
Studio by pointing and selecting on objects (see figure 5.2(a)). Everyone was
able to navigate and select big objects like the Robot. Some were able to
select different parts on the robot. Only a few managed to select the small
GUTI icons.

5.3.2 Camera Navigation

The joystick on the Nunchuck extension was the first thing people learned
to use and it looked intuitive for almost everyone. Zoom and rotate was

5.3. OBSERVATIONS 31

tricky to explain and for users to find but as soon as they did it was easy to
use.

5.3.3 Jog Robot

Our most discussed functionality during our user test was the jogging func-
tionality. We saw that joint jog was easy to comprehend. Everyone suc-
ceeded to click on a part and jog it by tilting and rolling the control. Some
had problems knowing in what direction to tilt but after a couple of tries
they managed to get it right. You could also see that it was easier to point
the Wii Remote up than down when tilting.

Linear jogging was the most discussed function as it seemed to be the most
interesting feature for many of the customers. Our implementation of linear
jogging wasn’t fully stable as we could not reduce all the noise, lag and the
7get out of IR range”-issues. Anyhow there was a huge demand on testing
it. Our 1-to-1 mapped solution was surprisingly un-intuitive. Users tried
to move around the robot by moving the Wiimote in different arbitrary
directions. Since we only let the flange move forward /backward or up/down
according to if the users made a corresponding move, it makes it impossible
to do " free” flange moves. This was a bit confusing for many of the users who
actually wanted to move the robot like if they were the robot themselves.
We also noticed that using all axes at the same time when jogging was hard.
When users wanted to move forward they got a slight up/down movement
as well.

5.3.4 Gesture Recognition

We only had gestures using two hands at this demo. It was enough to watch
how intutive it was using gestures for basic commandings (see figure 5.2(b)).
We noticed a difference in age. Young people mastered gesture recognition
better than old. We also noticed that the Nunchuck extension cord was often
in the way when users tried to comprehend some of the gestures.

32 CHAPTER 5. RESULTS

5.4 Overall Feedback

The Wii Remote as an alternative to the Flex Pendant could be applicable in
industrial painting. A couple of painting representatives requested another
way of robot programming. Their suggestion was based on using the Wii
Remote as a real world coordinate recorder. They wanted to move the Wii
remote around the objects and create robot paths based on the location of
the Wii Remote. This idea was a big contribution for further work in this
area.

Using a Wii Remote as a robot programming tool would open the possi-
bilities for cooperative work. Robot programmers could work together and
non-engineers are able to concept their own stuff. Instead of having one
engineer sitting with RobotStudio, creating a robot cage while the customer
hangs over his shoulder, they could both work together in one common
environment.

Many thought it was interesting with a more intuitive tool. We heard that
other ABB departments had also thought of the Wii remote as a possible
tool for robot programming. They were gladly amazed that we had an actual
prototype to show.

Experienced Flex Pendant users were thrilled to see our prototype but were
concern about the accuracy. They thought it would be hard to do the
real accurate movements. They also suggested a plane-locking feature for
the linear jogging function. It would be a useful ability to lock the robot to
certain planes to stabilize the shaky hands and to get high precision on robot
paths. This feature is common in normal robot programming, according to
the robot programmers we spoke to.

Chapter 6

Discussion

Just by the working demo itself, we have shown a possible solution to the
problems defined in the introduction. With two or more Wii Remotes it’s
possible to be multi-interacting with a system. This solves the problem
of communication. A Wii remote is a small device, compared to a Flex
Pendant, and uses a cordless Bluetooth connection. This solves the problem
of flexibility. Many users saw the possibility in the Wii Remote as a tool
for robot jogging. It was intuitive and easy to learn for most users. This
shows that Wii Remote interaction, in some sense, could solve the problem
of expertise.

Altough there are many things that could be improved for a further system
and one of the biggest issues was the direct 1-to-1 mapping feature for jog-
ging the robot. Enhanced algorithms would of course minimize the issues
but would not solve the fact that human hands are shaky and therefore
accurate movements would be hard to achieve. A solution for this problem
could be a discrete step function, using the cross-arrow button for example.
This would give users the option to jog the robot with predefined length
steps.

The biggest issue we found with the concept of using a Wiimote Remote as
an industrial tool is the common use of 2D GUI. A redesign of the GUI in
RobotStudio would be necessary for efficient workflow with the Wii Remotes.
Sliding bars and navigating in hierarchical menus were tricky even with a
smooth cursor algorithm.

Our gesture recognition part shows the possibility to command and interact

33

34 CHAPTER 6. DISCUSSION

with RS2008 without using the keyboard. Using more advanced math and
algorithms like HMM would result in a better recognition. The recogni-
tion could be as good as 98% [11]. This would result in higher accuracy on
semaphorical gestures and thereby make it more intuitive since exact move-
ments would not be necessary. A full scale gesture-language could then be
implemented in RobotStudio to replace much of the button clicking inter-
action.

Other improvements that should be done in an improved addin:

e Make sure that users get relevant feedback as soon as the IR-Camera
is out of reach.

e Improved feedback system for the gesture recognition.
e Improved linear jogging algorithms.
e Ability to lock linear jogging to a plane.

Since most of the users at the ABB partner seminar were more interested
in a real robot prototype, further research could be focused on real robot
jogging rather than improving the RobotStudio addin.

Another use of the Wii Remote, inside the domains of industrial applications,
could be the suggested point marketing. Instead of jogging the robot from
position to position, you could mark points on real world objects by moving
the controller around them. This idea is not only in the heads of industrial
painters but also in robot researchers. The ability to just walk around and
create virtual robot paths is something that was so interesting that we base a
whole further work chapter on it, our redesign rationale. This type of system
is close to the Global positioning system available for navigation purpose.
Accurate coordinate tracking tools could already be found in the industry.
Laser tracking tools is already common for Robot calibration [15].

Chapter 7

Redesign Rationale

7.1 Background

The need for robots in smaller companies increases, and this changes the
requirements of robot applications. Smaller companies have a more dynamic
demand, changing production cycles more often while having less room for
hiring dedicated robot programmers. The complexity of instructing the
robot must decrease while not increasing peripheral costs.

The included possibility of having a mobile tool like the wiimote is that
we can cooperate much easier. Setting up a workflow for a production line
might be more intuitive when you are able to synchronize the instruction
sets between robots by working many persons in parallel. Although the
need is not one to be seen today, the possibility could have positive effects
on robot programming. The workflow of two programmers instructing one
robot each could be compared to choreographing a pair dance.

7.2 Concurrent Technology

The common desktop workstation today consists of mouse, keyboard, screen
and sometimes speakers. Working with a horizontal touch screen as Mi-
crosoft’s Surface !, or something as daily as our mobile phone, will impose
different work models in which the role of the Wii Remote will need to adapt

"http://www.microsoft.com/surface/press.html

35

36 CHAPTER 7. REDESIGN RATIONALE

to. Some of the more suited systems could include Augmented Reality feed-
back that can manipulate real world objects as instructed by the users Wii
Remote.

7.3 Suggested Wii Remote Changes

The cord lessens the reach and hampers mobility. If two controls are needed,
one composite solution has been suggested in the form of the Darwin control
which is two controls put together.

The IR pointer has good precision but will restrict the user to point at a
certain area. If we could triangulate the device’s position without restricting
the user’s arm movement to the direction of the light source, we could get
a much more intuitive interaction.

By changing the pitch, and maybe even the yaw, of the mounted camera
in comparison to the Wii Remote we could get a better offset mechanism
with fewer flaws. If motors are added to the camera, we can get a very large
field-of-view, although with the same offset limitations as before if we want
to maximise our range.

7.4 RoboBrush

A common scenario that we encountered when listening to current robot
programmers is that they use robots to paint objects. Although time con-
sumption or accuracy is not a big issue, some users expressed the need for
non-programmers to be able to instruct the robot themselves and then let
an operator fine-tune the robot’s path. Some requirements on the tool as
expressed by the users were 1-2 c¢cm accuracy, both orientation and posi-
tion tracking relative to another objects surface as well as velocity sensing
to mimic the speed of a brush stroke. In this section we will purpose an
redesign rationale that we call "RoboBrush”.

7.4.1 Application Specification

The RoboBrush application consists of a spatial augmented reality projector
and the Wii Remote. The projector will display different textures directly

7.5. SCENARIO BASED DESIGN 37

upon real objects, enabling us to get the immersive feel of actually colouring
something. The Wii Remote can sense its position and rotation relative to
the surface of the projected surfaces. A rudimentary way of doing this would
be for the Wii Remote to parse the coordinates of the texture projection as
seen by the camera of the Wii Remote. A prototype can simplify this by
letting the projector put marks on the texture, thus telling the Wii Remote
camera what coordinate of the object it is filming.

7.5 Scenario Based Design

To extract concrete design suggestions from our abstract ideas we create
three scenarios. These scenarios will be the fundation of our redesign.

7.5.1 Personas

Norman, 35, is a well-known cartoon sketch artist hired by ”Cars R Busses”
which specializes in manufactoring vans and mini-vans. Norman knows most
of todays technologies needed to sketch and color cartoon comics, but knows
nothing when it comes to robotics.

Robert, 52, has been programing and operating robots for over 25 years,
and is a part of the Cars R Busses robotics crew. He normally instructs the
robot how to paint, and often reminds the designers what is possible and
what is not.

Will, 27, has been working for the research department at Cars R Busses for
almost three years. He has worked with developing the RoboBrush applica-
tion and will now manage the first commersial project together with Robert
and Norman. Will has a very good insight in how RoboBrush works.

7.5.2 Scenario: Learning the Tool

Will, Robert and Norman are in a studio where Will has prepared a simple
example by hanging up a front door of their new Van ”Revolver” in the air.
Will picks up his Wii Remote, walks up to the door of the Revolver and says
to Robert and Norman: ”Before we colour, by programming the robot with
a Flex Pendant. Everything was supposed to be very exact from the get-go,
and not very artistic. This way of doing things will be more like ’shooting

38 CHAPTER 7. REDESIGN RATIONALE

from the hip’.” ”Now let’s say we want a nice blue colour”, Will do a circle
gesture to choose the marking tool, and the entire door is coloured grey. He
presses a button and follows the outline of the door, colouring everything
but some edges of the door’s outer side white. Will does a straight line with
both hands to ”smooth” the selection, making the last missing surface to
turn white as well.

”Cool!”, says Norman, "But you better have a good palette of colours, or
am [supposed to gesture every nouance there is?” Will marks a square on
a table just besides the Revolver door and then writes ”C O L” in it. The
Marked surface turns into a palette, where Will now can pick any shade of
blue he likes. He picks a turquoise shade and whips the Wii Remote towards
the door. The white-marked surface now turns into the chosen colour as Will
smirks ”like so0..7” to Norman.

Robert, however, instantly points out that this is not something that couldn’t
be done before with normal Robot programming. ” Ok, but what if we want
to be a bit more creative?” asks Will. 7 Let’s throw some more paint on
there to make it more interesting!” Will makes a circle on the table, next to
the colour palette and writes ”B U C K E T” in it. He then drag-and-drops
an orange colour from the palette to the bucket, turning it into a colouring
bucket with orange colour in it. ”Since I'm not the artist of us three, I will
let you get to work then, Norm” says Will.

Norman Grabs the Wii Remote a bit hesitantly and asks what he is supposed
to do. ”Just dip the remote in the bucket” says Will. Norman moves over
to the flat, orange circle and puts the top of the remote on the circle. ”Oh,
now you've gone and soaked the entire control in paint”, Will smiles and
points at a projected label that reads ”Soak: 92%”. ” The Remote you are
holding has an internal camera in the front. If you get close enough to the
circle representing the bucket, you get colour on your brush. If you move
the remote even closer it will get soaked even more. Now if you think it has
too much paint on it, you can just shake some off and watch the label if the
soak-level is good enough. Then try and throw some paint on the car as I
did earlier.”

Norman shakes the Wii Remote, and as he does the soak-percentage moves
down until Norman stops shaking, leaving the soak-level at 52%. ” Okay, so
now I just whip it on the car?”, Norman asks Will. Will nods. Norman
makes a quick flick with his wrist and watches as the door gets covered with
a variety of spots. He shakes the soak-level down to 5% and throws some
color onto the edges of the car, but this time the spots pulses back and forth.

7.5. SCENARIO BASED DESIGN 39

Will tells Norman that since the robot which they are using cannot produce
such small spots, those elements needs to be adjusted. ” You can just leave
those there, and let Robert take care of it since he knows the limitations of
the robot.”

”But as you said before, Will, Norman is the designer, not you nor 1.”, asks
Robert and continues, ”Shouldn’t the design be all done when the work
comes to my desk?”

Will goes to a nearby desk and takes out a second Wii Remote, presses
the connect-button, and hands it over to Robert. He tells Robert to draw a
horizontal rectangle, and write R, O B O T” in it, then do a capture gesture
to say ”I am the robot”. As Robert does so, he changes the mode of the
Wii Remote so he can instruct a robot’s path preferably in RobotStudio or
any other virtualization tool that enables playback.

7.5.3 Scenario: Collaborative Design

Norman has been put to work and is feeling comfortable with the RoboBrush
application. Robert however is not participating much which worries Will.
To convince Robert that RoboBrush is viable, he needs to make Norman
and Robert cooperate a bit more.

”Hey, Robert! Can’t you help Norman out? I bet you could prepare some
colour for him.” ”So what colour do you need Norman?”, asks Robert.
”Just blend something that matches with the blue and orange”, Norman
responds.

After watching how to mix colours, Robert confidently gets to work. He
first creates three buckets, puts colour in two of them from the palette, and
then soaks the remote with the first colour, flicks it down into the empty
bucket, making the empty bucket a ”colour mix bucket” which can mix
different colours depending on the soak and colour contributed to the colour
mix.

After adding the second colour and then a bit more of the first colour again
to give the colour just the right touch, Robert tells Norman that he is done.
”OK, then you just need to point at each other and then Robert throws
his current tool to you, Norman, which then catches it to mount it as your
current tool.”, Will instructs them both. ”But what if you want to access
both tools? Shouldn’t I be able to just lay this brush down?”, Norman asks

40 CHAPTER 7. REDESIGN RATIONALE

Will. ”Well, then you just make another rectangle object and leave the
brush there, but since Robert is up to no good, you two can just exchange
items for now. If you just do a throw gesture instead of catching Roberts,
you will do a trade instead of a catch.”

”Hey, Norman, point back, will you?” Robert encourages Norman. Robert
and Norman get a pleasant xylophonic chime from their remotes. Will nods
supportingly as to signal "go on” to them both? Robert ”throws” at which
Norman responds back with the same gesture. Another chime can be heard,
and a positive Norman tries out his new brush as he expresses: "I see the
possibilities here. Even a guy like Robert can actually give me a hand.”,
Norman continues with laugh in his voice, ” Although, even I can see that
Roberts choice of pink isn’t the best match for this car.”

7.5.4 Scenario: Adjusting Robot Instructions

Robert wants to know how his daily routine will change when using the
RoboBrush application. Although it looks good for a specific task like de-
signing the paintjobs directly on the cars, the question is if Robrt can be
satisfied when programming the robot.

”So each layer that Norman has saved can be accessed and adjusted on
a lower level, and this is where we still need you Robert.” ”Oh, so I'm
still needed? Well, some good news then I guess...”, Robert frowns. ”Even
though we could simulate the painting instructions, we cannot safely opti-
mize paths and still guarantee a good paintjob. That is up to you.”, Will re-
sponds. ”Do you feel like trying to paint that first blue layer then, Robert?”
"Nah, I'm better off if you show me first”, Robert discards Will’s request.
”"Hmm, well I haven’t done this a lot but I guess we can start out by painting
the outer lines...” As WIll sets up waypoints with his Wii Remote, Robert
notices that they cannot actually see anything happen. ”Some kind of feed-
back could be usable here” Robert murmurs. ”That is still an issue for us,
since we wanted to move away from the normal screen, we can’t simply use
every flat surface around as a virtual user interface. For system feedback like
bad gestures or other warnings, we still feel that a normal flat-screen does
its job better than our newer inventions. Feedback like where I'm placing
waypoints needs to be in 3D to be seen intuitively, which most often means
in 3D as well. If you use one of those helmets on the steel bench over at the
door, you can get visual feedback through the transparent face-visir.”

7.5. SCENARIO BASED DESIGN 41

”But how come you don’t project the waypoints as with the colours and the
other items?”, Robert asks Will. " The main issue is that we cannot project
in thin air, and we thus needs to do it virtually. The face-visir has a receiver
and a transmitter that will mix the real world with the virtual, and show
dots where you placed waypoints.” ”In 3D?”, asks Robert. ”Yes, In 3D!”
”Since we know where the door is and we film with the Wii Remote, we can
determine our relative position to the door and then ask for the absolute
coordinates of the door to calculate where the robot should spray from.”,
says Will. "But what if I require a specific pose for my robot?” ”You can
either choose a joint that you want to adjust, or simply freehand jog the
entire robot or a subpart of it. I'm sure this isn’t anything revolutionary for
you, Robert, but it’s not the functionality that we offer. It is a more fluent
solution to package the functionality in, so that it is easier to give you robot
programmers more alternatives.”

Will takes out his cell phone and starts up a camera application with a grid.
7 Let’s say you want to adjust the waypoints we just placed. I can just
hook up this camera to my remote with an extension adapter cord or by
Bluetooth. Since I am a fan of wireless, let’s do that.” Will connect his
mobile with the Wii Remote, telling the mobile application what waypoints
are present. Will goes closer to the door, showing a smaller part of it on
the screen. With his right hand he marks a waypoint by looking on his cell
phone, held in his left hand.

”By using the remote I can snap the waypoint to another grid, so by moving
closer or zooming in the picture, the grid size represents a smaller area. This
gives us higher accuracy. Also, if you feel a bit shaky on your hand, you
can just take a still-picture and then choose a grid to move to.” Robert,
listening with one ear or less, knocks on the top of a red helmet lying on the
steel table. ”So why did you mention these helmets?”

Well, as we are working with new technology, some tools we have used will
not work that well today, but holds promises for tomorrow’s products. The
helmet does basically the same thing as the cell phone but better.” ”But
if it’s so much better, why not use it instead of the cell phone.” ”We want
to integrate the normal person into new environments. By using familiar
tools, we try to give new users a familiar experience. When head-mounted
hardware gets integrated into everyday merchandise, we will surely use it as
well.”

42 CHAPTER 7. REDESIGN RATIONALE

7.6 Redesign Descisions

The information described in our RoboBrush scenarios was extracted into a
number of decisions. In this part we will talk about the decisions we made.
A structured tree-map overview of these decisions can be seen in A. Each
following subsection will describe a usability issue and promote a specific
solution as well as point out other solutions as well. The main purpose of
these details is to provide a template for designing a specific application
which means that we leave application specific details out and focus on the
general traits. If these traits fit a specific application, then the general
solution should fit as well.

7.6.1 Aesthetic and Minimalistic Design

We have strived towards a ubiquitous system that is integrated into the work
environment. We have thus chosen to interpret ubiquitous as ”aesthetic
and minimalistic” in this stage of the design although this will need more
details as the design matures. To specify more, we want to base our system
on intuitively, mobility, co-operability, cost and availability. The theme of
these cornerstones is to minimalize constraints on the user and by making
it ubiquitous also presenting it in an aesthetic way.

The system hardware consists of projectors and PC’s, which are very main-
stream and thus available. The PC will be used to parse data, while the
projector will be part of the projected augmented reality solution. This
hardware should not be in the center of attention so the user can avoid
direct interaction with them.

The user hardware is Wii Remotes and cell phones, which are relative cheap
in the eyes of a small company and are very mobile. The Wii Remote, which
is the core of the system, can be mapped to our natural body language to
create a more aesthetic feel.

Another choice could be to replace the Wii Remote and projector with some
large touch screen. The benefits would be that we make the system more
ubiquitous by using fingers as an input source instead of a hardware control
like the Wii Remote. The downside is that this system would be bound to
the output source, i.e. the screen. If the screen is not small enough to carry,
it will not be mobile and thus transfers the center of attention from the user
to the workstation.

7.6. REDESIGN DESCISIONS 43

7.6.2 Visibility of System Status

The Wii Remote only gives us efficient input, and we need to return proper
output. The Wii Remote can give haptic feedback as well as audible. The
limitations with haptic feedback are the small amount of feedback signals
which we can differentiate between as well as recall. The sound feedback
can be recognized instead of recalled, but might be hard to detect in certain
noisy industrial environments.

Projected augmented reality can be used to incorporate a visual feedback
system into our working environment. The benefits would be that we do
not work against a screen, but against a real environment. The negative
part is that although we free ourselves from screens, we still need to keep
the visuals bound to a surface in the proximity of a projector. This will
decrease the mobility of our system. For specialized tasks where we need to
be more mobile but do not need many different layers of feedback, we can
use a cell phone as visual feedback. This will introduce one more product
for the user to handle at the added benefits of a portable feedback system
with visual, audible and haptic possibilities.

7.6.3 Match Between System and the Real World

A benefit of using a projected augmented reality based system is the small
step from the real world. We are able to project digital information directly
onto physical objects and interact with them in a similar way as we normally
would. Many handheld physical tools can be simulated with the Wii Remote
in its original form or by adding different shells to enable different look and
feel to it.

7.6.4 User Control and Freedom

The user will be able to manipulate fully in three dimensions, giving us the
opportunity to manipulate objects by varying our distance, which is harder
to do precisely when the 3D view is presented on a 2D screen. Giving
the user one more dimensions to interact in will increase the complexity
when only extending the behaviour to another dimension, for example, by
extending a mouse cursor to point in 3D. A better way might be to still
point in 2D and using the third axis to create a click with variable strength.
The freedom is limited mostly by real world limitations as lifting something

44 CHAPTER 7. REDESIGN RATIONALE

heavy or moving to view something from a different angle, but is also limited
by the projector’s displayed area.

7.6.5 Consistency and Standards

Our solution depends heavily on gesturing and direct manipulation. We
would need to create a naming convention for gestures and avoid ambiguous
use of the hauptic and audible feedback. Direct manipulation of objects
is of importance when interacting with real objects. A delay here would
break the bind between the real world and the system making the system
less intuitive.

7.6.6 Recognition Rather than Recall

By giving the user contextual feedback of what gestures are possible to do at
a certain state, the user can learn new gestures by looking at the alternatives
and thus recalling the gesture. If we have lots of different states, we might
have a hard time finding the right state/context to go to. If a context has
too many gestures, it will be hard to display them all in an efficient manner.
A restriction to show the most default actions is suggested.

Haptic feedback that uses morse-like codes will need the user to both rec-
ognize and change focus from the task to its hand holding the Wii Remote,
creating a disturbance in the workflow. A simple way of avoiding this is
to limit the haptic feedback to only be activated for a certain exception as
when the Wii Remote goes out of some input range.

7.6.7 Help Users Recognize, Diagnose and Recover from Er-
rors

A most basic feedback should show what gesture the system registered.
This will however not lead to a user friendly system on its own but simply
help the user to recognize an error. By finding certain traits like very high
acceleration, we can tell the user to try and go more slowly or in some other
way tell the user why the system is not responding correctly. It will always
be hard for the system to validate the input on its own. How can the system
tell if a result was faulty or valid? This can be left to the error prevention

7.6. REDESIGN DESCISIONS 45

to take care of. Those gestures that produce erroneous input can be post-
edited into the right gesture. This kind of post editing puts restraints on a
flexible rollback function that can replace a gesture token in the middle of
a gesture string just as a word editor would let you edit any letter and not
just the last.

7.6.8 Flexibility and Efficiency of Use

The Wii Remote can be used by different actors. This trait combined with
the removal of the one-man workstation makes it a flexible tool in computer
supported cooperative work by letting all actors use the same interface.
Gesturing as input will not increase the speed of the input, but can make
the workflow from concept idea to product more fluent and efficient by
keeping tasks on a high abstraction level that is similar to our natural way
of expressing ourselves. The efficiency lies not in the speed of the input but
the natural flow from thought to input command.

7.6.9 Help and Documentation

By giving all gestures clear names, we can reference to the gestures in a
structured help document. This can be viewed as a tree structure to provide
the contextual overview as well as a detailed demonstration of how the
gesture is performed well enough to be recognized by the system.

7.6.10 Error Prevention

To be able to differentiate valid input from invalid, we need the user to
tell the system if the gesture is faulty. This can be done with a button
press, but will be annoying if done on too many gestures. Limiting the
validation is necessary and can be done by, for example, only asking for
critical gestures. Giving unsafe gestures a higher threshold for recognition
is also a solution, but will just lessen the errors and not remove them. Too
high threshold will make the system non-responsive and annoying. Limiting
the error prevention to non-static semaphores and unsafe actions like a wrist-
flick downwards to exit an application should be a good starting point. The
less critical gestures like creating an object should be taken care of by the
erTor recovery.

Chapter 8

Conclusions

In our work we have seen that the Wii Remote could be used to inter-
act with industrial applications without the need of mouse and keyboard. It
could be a possible solution to the problem of communication, flexibility and
expertise. We have shown this with our addin that enabled Wii Remote in-
teraction inside RobotStudio. By letting ABB Robotic’s customers evaluate
this prototype we have received a good amount of positive feedback as well
as suggestions on future work. The three main issues are accuracy, precision
work and freehand jogging. This could be solved with a deeper research on
jogging algorithms and redesigning the prototype. Other improvements in-
clude creating an intuitive feedback system, using better gesture recognition
algorithms and a change of the GUI of RobotStudio.

With our prototype we observed that a Wii Remote was not optimal in a
mouse and keyboard environment. Our Redesign Rationale chapter gives
an example of a system that would be more suited. Our scenarios show a
description of how the system should work and is then broken down to more
concrete traits based on our overall research, user feedback and experience.
These traits focus on ubiquitous design that will minimize the restraints of
the workflow from idea to input. Mobility and flexibility is of importance
to encourage a free thinking environment that we envision. Computer sup-
ported cooperative work and augmented reality has most methods to enable
this kind of system. This founding survey, on a possible blend between
Wii Remote interaction and augmented reality, could provide the industrial
industry with a new way of Human Computer Interaction.

46

Chapter 9

Aknowledgement

A big inspiration for our work has been Johhny Chung Lee[9], who has
put the Wii Remote to use in different ways including head tracking and
finger gesturing. We would like to thank Bertil Thorvaldsson for seeing
the possibilities in using a Wii Remote inside RobotStudio and also for
inviting us to Robotic Partner seminar 2008. We would also like to thank
for all the support and ideas we got from the developers of RobotStudio.
Last but not least, we would like to thank Isak Savo, Rikard Lindel, Baran
Curiikli, Fredrik Alfredsson and Martin Olausson, for all their help and
support.

47

References

1]

D. Benyon, P. Turner, and S. Turner. Designing Interactive Systems:
People, Activities, Contexts, Technologies. Addison Wesley, March
2005.

O. Bimber and R. Raskar. Modern approaches to augmented reality. In
SIGGRAPH 05: ACM SIGGRAPH 2005 Courses, page 1, New York,
NY, USA, 2005. ACM.

J. Carrol. Five reasons for scenario-based design. volume Track3, pages
11 pp.—, 1999.

G. Fitzmaurice, J. Matejka, I. Mordatch, A. Khan, and G. Kurtenbach.
Safe 3d navigation. In 18D ’08: Proceedings of the 2008 symposium on
Interactive 8D graphics and games, pages 7-15, New York, NY, USA,
2008. ACM.

C. Guo and E. Sharlin. Exploring the use of tangible user interfaces for
human-robot interaction: a comparative study. In CHI ’08: Proceeding
of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, pages 121-130, New York, NY, USA, 2008. ACM.

C. C. G. M. P. S. Hewett, Baecker and Verplank. Acm sigchi curric-
ula for human-computer interaction. http://sigchi.org/cdg/cdg2.html
2009-08-28.

M. Karam and m. c. schraefel. A taxonomy of gestures in human com-
puter interactions. http://eprints.ecs.soton.ac.uk/11149/ 2008-05-28.

H.-J. Lee, H. Kim, G. Gupta, and A. Mazalek. Wiiarts: creating col-
laborative art experience with wiiremote interaction. In TFEI ’08: Pro-

ceedings of the 2nd international conference on Tangible and embedded
interaction, pages 33-36, New York, NY, USA, 2008. ACM.

48

REFERENCES 49

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

J. Lee. Webpage: Johnny lee’s wiimote project. http://johnnylee.net/
2008-05-28.

J. Lowgren. Interaction design, research practices and design research
on the digital materials, 2007.

J. Méntyjarvi, J. Kela, P. Korpipad, and S. Kallio. Enabling fast and
effortless customisation in accelerometer based gesture interaction. In
MUM °04: Proceedings of the 3rd international conference on Mobile
and ubiquitous multimedia, pages 25-31, New York, NY, USA, 2004.
ACM.

S. Mitra and T. Acharya. Gesture recognition: A survey. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 37(3):311-324, May 2007.

S. Okazaki, T. Tanaka, S. Kaneko, and A. Matsushita. Vision based
environment recognition for mobile robot in irregular ground. pages
107-111, Oct. 2007.

L. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257-286,
Feb 1989.

0. j. Rickard Lindhé. Case study, abb ger livslang noggrannhet, 2005.

T. Schlémer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition
with a wii controller. In TEI ’08: Proceedings of the 2nd international
conference on Tangible and embedded interaction, pages 11-14, New
York, NY, USA, 2008. ACM.

T. Shiratori and J. K. Hodgins. Accelerometer-based user interfaces for
the control of a physically simulated character. In SIGGRAPH Asia
'08: ACM SIGGRAPH Asia 2008 papers, pages 1-9, New York, NY,
USA, 2008. ACM.

J. Spolsky. User Interface Design for Programmers. Apress, June 2001.

S. Sreedharan, E. S. Zurita, and B. Plimmer. 3d input for 3d worlds.
In OZCHI °07: Proceedings of the 2007 conference of the computer-
human interaction special interest group (CHISIG) of Australia on
Computer-human interaction: design: activities, artifacts and environ-

ments, pages 227-230, New York, NY, USA, 2007. ACM.

50 REFERENCES

[20] Webpage. 3d cad and 3d studio max. http://usa.autodesk.com 2009-
05-01.

[21] Webpage. Adx1330. http://www.sparkfun.com/datasheets/Components/ADXL330-0.pdf
2009-05-01.

[22] Webpage. Wikipedia; augmented reality.
http://en.wikipedia.org/w/index.php?title=Augmented_reality&oldid=215345201
2008-05-30.

[23] Webpage. Wikipedia; nielsen’s heuristics.
http://en.wikipedia.org/w/index.php?title=Heuristic_evaluation&oldid=202150774
2008-05-30.

[24] Webpage. Wikipedia; ubiquitous computing.
http://en.wikipedia.org/w/index.php?title=Ubiquitous_computing&oldid=210797925
2008-05-28.

Appendix A

Descision Map

A.1 Description

We used Jakob Nielsen’s heuristics’ as a base for our redesign rationale.
The map starts with Nielsen’s heuristics as problems noted on the map as
questionmarks, which has some suggested solutions marked as lamps. A
decided solution is marked as a handshake. Pro’s and con’s are coupled to
solutions in form of a plus or minus, or a plus/minus if the effect can be
either. Comments are marked by a purple notepads to clarify something.
Some solutions implies effects outside the bounds of that specific sub-tree
which was marked by a pro/con or a questionmark. These were sometimes
linked to another sub-tree since the solution affected another heuristics, or
simply ended with a questionmark when it got outside the scope of our
design. Note that the map is not a complete one, but only describes the
more noticable suggestions, pro’s and con’s.

"http://en.wikipedia.org/w/index.php?title=Heuristic_evaluation&oldid=202150774

o1

52

Q

Use offingers / hands.

.

‘e focus ona
minimalistic design in
terms of a uhiguous
system.

/

Aesthetic and minimalist
design.

N,

Use oftools which are:
Intuitive, Mohile,
Cooperative, Cheap,
Available.

APPENDIX A.

Hands free to quickly
engage other toals.

==

Intuitive and available.
Most peaple have fingers.

Eound to a maotion
recognition tool such as

a screen or a camera. Mot

mohile.

DESCISION MAP

o

Broad market of products

N
Projector. ._\ g +

L] " application tools

Personal computer,

Cooperative environment

g4

Can be intuitive

-

Mahile

/N

N
Wi remote.k“‘-«-______‘_“ g
. f{ﬂ;—f"—'{USértools

Cell phone. +

Cheap

Figure A.1: Redesign Rationale map

A.1. DESCRIPTION

T
?
Yisibility of system
status.

&

(V.S

‘\\'\\

Wie do notwwork anainst a

warkstation and thus

screen might not be

present.

@

Match between system
the real warld.

a

and

=

Cell phone as complete
feedback system.

T

",

Wil Remote's haptic
feedhack

Wil Remote's sound
feedback

e

-

53

<t

Az mahbile as the Wi
Remate

4=

fany ways to alert the
Lser. Sound, vibration
and graphics.

An extra device needed at
all times.

£
| —
Cell phone might be used
for other important
activities.

Fa
|

Haptic feedhack is not
good on its own. Gives
too little information.

- =2),
E—

Ervironment sensetive.
Sound may not he heard
and cannot visualize many
status changes at once.

Frojected Augmentead)
Reality.

Figure A.2: Redesign Rationale map

54

i

APPENDIX A. DESCISION MAP

PN

/Increased complexity.

. —

lser contral and freedam.

T."

Consistency and standards.

T"_

Recognition rather than
recall.

A0 manipulation. I

Qe mare dimension of
freedorm.

%

Example: Freehand joggin
Hfr- p logging

fe

[ntuitive

-

Direct manipulation.

; -
Cannot dizplay too many
alternatives.

e

Contextual gesture
feedback shows possible
gestures.

[fin wrong context, the

Luser needs to find the

right context, not just
the right gesture.

el

The userwill learn
gestures not previously
concidered when they are
sugnested by feedback.

Figure A.3: Redesign Rationale map

A.1. DESCRIPTION

T ? e

95

2

How can we tell the user

Help users recagnize, 4 Give feedback ofwhal 4—_ what she did wrong when

diagnose, and recover gesture the system
frorm errars. recognized during input.

T " ﬁ

Flexibility and
efficiency of use.

Aa— Wiiremote is usahle by
hoth designers and robot
programers. Enables
multiple users.

e

'@
- Contextual overview of
o pnestures in form of a
Help and documentation. tree-view. All gestures
sho uld have clear names

s0 referencing them is

easy aswell as

remembering therm.

Figure A.4: Redesign Rationale map

no gesture is recoghized,
ar the gesture is
concidered faulty by the
uzery

g4

Gesturing could get
faster or slower than
todays systems.

I

CECW support

f=

MHaon-specific tool offers
same interface syntax for
differant users.

56 APPENDIX A. DESCISION MAP

V.

hostly for vital
functions that are
activated by non-static
semaphoric nestures such
as "exit application”
nestured by pointing
dowrmwards.

'@

[]
Errar preventinn.*——"‘“—a]

Letting the user accept a
nesture input.

0

'y

lser must go through more
interaction steps.

Insafe gestures must have *—_System Batoreagasy

higher recognitian
threshold than safe
gesiures.

Figure A.5: Redesign Rationale map

reSponsive.

	Abstract
	Introduction
	Problem Description
	Scenario
	Summary
	Wii Remote for Industrial Use

	Overview
	The Wii Remote
	The Accelerometer
	The IR-Camera

	RobotStudio

	Background
	Gestures
	Human Computer Interaction
	Prototyping and evaluation
	Scenarios

	Gesture Based Systems
	Gesture Recognition
	Wiimote-Based Gesture Recognition
	3D Navigation
	Augmented Reality
	Robot Jogging

	Design
	Creating a Concept
	Implementation
	Parsing wiimote Data
	Our Architectural Design
	Mouse Simulation
	Camera Navigation
	Jogging a Robot
	Gesture Recognition

	Results
	Implemented Functionality
	Demonstrating our Design
	Observations
	Mouse Navigation
	Camera Navigation
	Jog Robot
	Gesture Recognition

	Overall Feedback

	Discussion
	Redesign Rationale
	Background
	Concurrent Technology
	Suggested Wii Remote Changes
	RoboBrush
	Application Specification

	Scenario Based Design
	Personas
	Scenario: Learning the Tool
	Scenario: Collaborative Design
	Scenario: Adjusting Robot Instructions

	Redesign Descisions
	Aesthetic and Minimalistic Design
	Visibility of System Status
	Match Between System and the Real World
	User Control and Freedom
	Consistency and Standards
	Recognition Rather than Recall
	Help Users Recognize, Diagnose and Recover from Errors
	Flexibility and Efficiency of Use
	Help and Documentation
	Error Prevention

	Conclusions
	Aknowledgement
	References
	Descision Map
	Description

