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Abstract

This paper analyzes the timing performance of a persistent storage designed for distributed container-
based architectures in industrial control applications. The storage ensures data availability and
consistency while accommodating faults. The analysis considers four aspects: 1. placement strategy,
2. design options, 3. data size, and 4. evaluation under faulty conditions. Experimental results consider-
ing the timing constraints in industrial applications indicate that the storage solution can meet critical
deadlines, particularly under specific failure patterns. Moreover, this evaluation method is applicable
for assessing other container-based critical applications with timing constraints that require persistent
storage. Further comparison results reveal that, while the method may underperform current central-
ized solutions under fault-free conditions, it outperforms the centralized solutions in failure scenarios.
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1 Introduction1

Providing reliable and persistent storage2

in container-based architectures is an ongoing3

research challenge [1–3]. Such services are critical4

for stateful applications that need reliable stor-5

age and immediate availability. Despite ongoing6

research efforts, the provision of persistent storage7

in container-based architectures remains an active8

area of investigation.9

Various cloud-native methods and tools are10

available for deploying stateful applications in11

orchestrated container architectures. For example,12

[1] uses a deployment controller, while [4] involves13

third-party solutions such as Ceph storage. For14

container-based fog architectures, there is a need15

for local persistent storage that ensures data16

consistency and availability, particularly for time-17

sensitive stateful applications [5]. While existing18

solutions address these challenges, they fail to19

provide an effective storage system for stateful20

applications that meet timing constraints in a21

computing continuum architecture that spans all22

system layers from cloud servers to edge sensors23

and actuators [6].24

To address this, we expand our prior study25

[5], which leverages a Replicated Data Structure26

(RDS) for local state storage on each device in the27
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cluster together with a Storage Container (SC)28

for data propagation and consistency. This solu-29

tion offers data management, local state storage,30

failure resilience, and data consistency through31

the RAFT [7] consensus protocol. We present an32

experimental study of a robotic application [5] to33

evaluate how different storage placements in the34

computing continuum layers [8] meet the applica-35

tion runtime requirements. We aim to determine36

the most suitable storage deployment tailored to37

the specific application, addressing four research38

questions:39

RQ1: How does the storage at different comput-40

ing continuum layers impact the application41

response time?42

RQ2: How do centralized or distributed storage43

designs affect the application response time?44

RQ3: How does varying data size affect the45

response, access, and exchange times?46

RQ4: How do different failure types impact47

response time?48

Specifically, our contributions are as follows:49

1. We evaluate the runtime performance of our50

solution [5] deployed at each layer of the51

computing continuum architecture [8].52

2. We evaluate application response time with53

varying data access time and location under54

different centralized and distributed designs.55

3. We provide insight into using our solution56

for different application timing and data size57

requirements.58

Outline. This article has eight sections. We give59

a background on the considered robotic applica-60

tion and its tolerable response time in Section61

2. Section 3 reviews related work and identifies62

the most relevant ones with respect to our com-63

parison criteria. We describe the resources and64

application model in Section 4, followed by pre-65

sentation of two storage design options in Section66

5. We explain the four-dimensional design of our67

experiments in Section 6. Section 7, addressee68

the research questions and discusses the results.69

Finally,in Section 9, we conclude our work and70

outline possible future directions.71

2 Robotic Application72

We study a stateful robotic use-case applica-73

tion that avoids obstacles while moving toward74

its goals, implemented using the Robot Operating75

System (ROS) [9]. Like most control applications,76

the robotic application relies on exchanging mes-77

sages, known as topics in ROS. We refer to these78

messages, as states in our studies, representing79

message history stored for future use by the same80

or other applications. We deployed this robotic81

application within a container-based architecture82

using Docker, as outlined in [5].83

This robotic application has timing require-84

ments, and we are interested in understanding85

its tolerable response time. The tolerable response86

time of a robot depends on various factors such87

as its speed, acceleration, sensing range, actuation88

and sensing intervals, and the vicinity of obstacles.89

A formula by Liu et al. [10] bounds the tolera-90

ble response time to the robot’ sense-to-act time91

(t ≤ T ):92

T =
2 · a · d− v2

2 · v · a
, (1)

where v is the robot’s maximum velocity, a is its93

maximum acceleration, and d is the sense range.94

We derive the tolerable response time using a95

specific robotic scenario with a maximum velocity96

of 4.98 m/s, maximum acceleration of 5 m/s2, and97

sensing range of 4.5 m. The resulting sense-to-act98

time of 0.9 s represents the tolerable response time,99

t ≤ 0.9 s, used as a threshold in our experiments100

for comparison to other solutions.101

3 Related Work102

This section reviews existing storage solutions103

for stateful applications in container-based archi-104

tectures, summarized in Table 1.105

3.1 Storage systems for container-based106

architectures107

Volatile storage for stateful applications.108

Sharma et al. [20] proposed a distributed stor-109

age system using an application deployment on110

Kubernetes [23]. In contrast, Kristiani et al. [24]111

proposed a persistent volume for containerized112

applications deployed on the Kubernetes clus-113

ter on an OpenStack platform. However, these114

works do not consider data consistency in a dis-115

tributed network. Additionally, the persistent116

storage system in these studies and other related117

ones [1, 4, 13] resides in the cloud layer with a118

high response time for time-sensitive and safety-119

critical applications control applications. To120
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Table 1: Summary of related works on container-based storage systems [11].

Feature Design
Data Data Fault-tolerant Fault

Self-healing
Timing Continuum

Application Nodes
replication consistency storage tolerance analysis layer

[5] Distributed ✓ ✓ ✓ ✓ ✓ ✓ Fog Robotic ≤ 70
[1, 12] Centralized — — — ✓ — ✓ Cloud Video streaming 2

[2] — ✓ ✓ — — — ✓ Cloud Log producer 4
[4] Distributed ✓ — — — ✓ Cloud Unspecified 3
[13] — ✓ ✓ — — — ✓ Cloud Log producer 4
[14] Distributed ✓ — Flocker ✓ — — Edge Hadoop 3
[15] — ✓ ✓ — ✓ — ✓ Cloud Log producer 4
[16] Centralized — — — ✓ — ✓ Cloud Video streaming 4

[17]
Centralized

✓ ✓ — ✓ — ✓ Fog Log producer 20
Distributed

[18] Centralized — — — ✓ — ✓ Fog VDCN 5
[19] Distributed ✓ ✓ ✓ — — — Cloud E-commerce 10
[20] Distributed ✓ — Ceph — — — Cloud — —
[21] Distributed ✓ ✓ — — — — Cloud —- 4
[22] Distributed — — — — — ✓ Cloud — —

provide data storage for edge applications, Ismail121

et al. [14] evaluate Docker Swarm for edge com-122

puting considering four criteria: deployment and123

termination, resource and service management,124

fault tolerance, and caching. However, they did125

not propose a unified fault tolerance mechanism126

and ignored application reintegration.127

Fault tolerant storage. Designing a distributed,128

fault-tolerant storage system at the fog, edge, and129

cloud layers requires two main considerations [25]:130

Persistent data storage that supports reintegra-131

tion and recovery after failure while opti-132

mizing redundancy allocation in resource-133

constrained networks;134

Distributed data consistency using consensus pro-135

tocols appropriate for the system require-136

ments and the complexity of the protocol.137

For example, Netto et al. address the volatile stor-138

age issue by proposing the use of state-machine139

replication in containers [2], incorporating the140

RAFT consensus protocol in Kubernetes [15].141

Although the level of data protection against con-142

tainer failure is high compared to other studies in143

the literature, the overhead increases the container144

footprints, changing their lightweight character-145

istics heavier than expected. This overhead is146

contrary to their lightweight nature, suitable at147

resource-constrained fog and edge layers, which148

reduces resource consumption and response time.149

Contribution. The need for a persistent storage150

system to manage stateful applications and ensure151

timely data access at the fog layer arises from152

our robotic use-case [25]. We propose container-153

based storage applications that offer a distributed154

Table 2: Failure and timing analysis papers.

Centralized Distributed

C
lo
u
d [12] [14]

[1, 16] [15]

F
og [17] [5]

[18] [17]

storage system and recover from failure by adopt-155

ing RAFT protocol fulfilling correct data deliv-156

ery, safety, liveliness, and fault-tolerance proper-157

ties [11, 26]. Table 1 explores existing container-158

based storage solutions in the computing contin-159

uum, compared to our method.160

3.2 Criteria-based selection161

To compare our proposed solution with related162

works, we categorize the storage solutions into four163

categories, illustrated in Table 2. We filter out less164

relevant solutions that do not meet our compari-165

son criteria, such as timing performance and level166

of fault tolerance, and exclude papers that do not167

consider node failure recovery and timing analysis.168

In addition, a thorough comparison is impossi-169

ble unless enough metrics and data are available.170

Therefore, we select the papers that fulfill these171

two requirements for the analysis. In the following,172

we explain why we choose the papers highlighted173

in green.174

Centralized cloud storage. Several works [1–4,175

12, 16, 19] provided persistent storage for stateful176

applications deployed using container-based archi-177

tectures, as described in Section 3.1. Among them178
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works, Vayeghani et al. [1, 12, 16] consider both179

timing analysis and node recovery after failure. We180

choose the latest work [12] for further evaluation181

since, as an extension of the previous works [1, 16].182

Distributed cloud storage. From two papers183

falling into this category, we choose the work by184

Netto et al. [15], as an extension of [3].185

Centralized fog storage. The work of Ismail et186

al. [14] does not provide timing measurements,187

and thus, we do not consider it. Johansson et al.188

[18] implemented persistent volume placed in the189

master node of the Kubernetes cluster at the fog190

layer and simplified the assumption of a failure191

to the master node. Denzler et al. [17] compared192

different storage solutions at the fog layer, includ-193

ing the timing performance of centralized and194

distributed storage solutions on physical devices.195

Therefore, this work falls into centralized and196

distributed storage at the fog layer.197

Distributed fog storage. We select our previous198

work [5] that includes the timing performance of199

distributed storage at the fog layer, extended in200

this paper to the other layers (cloud and edge).201

While our solution outperforms the centralized202

cloud solutions, the centralized storage at the fog203

layer needs further investigation.204

4 Model205

We need a suitable representation of the206

involved entities to understand the conceptual207

construct of the computing continuum architec-208

ture [8]. We provide a solution model in this209

section, comprising related components, resources,210

and interactions. For the sake of clarity, Table 3211

summarizes the notation used in the paper.212

4.1 Computing continuum213

We model the computing continuum across214

three layers, Cloud, Fog, and Edge [27], differen-215

tiated by location, computing power, latency, and216

bandwidth, explained in the following paragraphs.217

Cloud layer. The cloud is at the top of the218

computing continuum and has high-performance219

resources. However, they have high latency220

and low bandwidth, best suited for computing-221

intensive services that are not time-sensitive.222

Table 3: Model notations.

Notation Definition

A
p
p
li
ca
ti
o
n

A Set of applications
Ai Application
mAi Application data size
AP

i Application processing demand Ai

AM
i Application memory demand Ai

AS
i Application storage demand Ai

In
fr
a
st
ru

ct
u
re

Cj Computational resources
CD/FD/ED Physical and virtual machines in Cloud/Fog/Edge

njq Network connection between Cj and Cq

Ljq/Bjq Latency/bandwidth between Cj and Cq

CP
j Processing capacity of Cj

CM
j Memory capacity of Cj

CS
j Storage capacity of Cj

T
im

e

eAi
Execution time of an application

τ (j, q) Data transmission time between Cj and Cq

E Data exchange time (distributed)
FSCi

SC fetch delay
Rl Raft protocol delay

WSCi
SC write delay

Ef Failure overhead on data exchange time
NCj

Startup delay of Cj

dSCi
Deployment latency of SCi

α/λ/β Maximum number of SC/ device/ application failures
rCAi

/rDAi
Application response time (centralized/distributed)

RAi
/WAi

Application read/write delay

rCfAi
/rCfAi

Failure overhead (centralized/distributed)

rwc−D
Ai

Application worse-case response time (distributed)

Fog layer. The fog consists of storage and com-223

puting resources located between the cloud and224

the edge layers. These resources are in smaller225

facilities with limited capacity but offer higher226

bandwidth and lower latency than the cloud.227

Edge layer. The edge includes small computing228

resources located between the fog and physical IoT229

devices like sensors and actuators. These comput-230

ing resources are directly connected to the sensors231

and actuators, providing faster response times and232

greater data transfer speeds than the fog layer.233

Two sets characterize these computing layers:234

Computational resources. C = {C1, . . . , Cn}235

refer to physical and virtual machines that host236

applications, commonly called devices. They have237

a triplet of resources Cj =
[
CP

j , CM
j , CS

j

]
, where238

CP
j represents the processing speed 1 (in a million239

instructions per second (MIPS)), CM
j represents240

the computer’s Random Access Memory (RAM)241

size (in MB), for managing processed data, and242

CS
j denotes the storage capacity (in MB). Tools243

used for measuring MIPS, bandwidth and latency244

are specified in Section 6.245

1We presume that the measurements have been normalized
over time and under varying workloads, ensuring that process-
ing speeds and other factors are comparable, even when there
are variations in instruction sets and architecture.
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Network connections. N = {njq∥ 1 ≤ j, q ≤ n}246

between the computational resources is a set of247

tuples njq = (Ljq, Bjq), where Ljq represents the248

delay and Bjq the bandwidth between the devices249

Cj and Cq.250

4.2 Application model251

We model a containerized robotic application252

developed in a ROS based on the use-case studies253

described in [5]. An application runs on different254

devices (i.e., fog, cloud) and interacts with other255

applications to provide a well-defined function,256

such as moving toward a conveyor belt.257

Let A = {A1, A2, A3, . . . , An} be a set of258

robotic applications.259

Robotic application. Every application Ai ∈ A260

has a triplet of computational demands261

Ai =
[
AP

i , A
M
i , AS

i

]
, where AP

i represents the262

application’s processing load (in millions of263

instructions (MI)), AM
i represents the required264

memory (in MB), and AS
i represents the required265

storage (in MB). The storage demand depends on266

the application size, the total data it generates,267

and the number of application iterations.268

Runtime model. Applications have two runtime269

metrics, deployment and execution times, that270

vary depending on the hosting device. This sim-271

plified notation helps analyze the characteristics272

of individual applications without excessively rep-273

resenting specific device associations.274

Deployment time. dAi of an application Ai rep-275

resents the duration of the startup of scripts and276

initialization of the application.277

Execution time. eAi
of an application Ai on a278

device Cj is the ratio between its processing load279

and the device’s processing speed.280

eAi
=

AP
i

CP
j

. (2)

Execution model. Each application Ai runs for a281

defined number of iterations. After each iteration282

of execution, applications write their state mi of283

a size given in the application specification to the284

defined storage location, as explained in Section 5.285

Data transmission time. τjq between two devices286

Cj and Cq aggregates the link delay Ljq and287

the ratio of the message size mi to the network288

bandwidth Bjq between the device Cj hosting an289

application and the device Cq storing the state:290

τjq = Ljq +
size (mi)

Bjq
. (3)

5 Storage Design and Modelling291

In this section, we present two storage design292

models evaluated in the context of our robotic293

application:294

Distributed storage based on our previous solu-295

tion [5] and extended by placing the storage296

at different layers of the computing contin-297

uum;298

Centralized storage inspired by existing cloud299

solutions [17, 28], implemented and com-300

pared when located at different computing301

continuum layers.302

5.1 Distributed storage303

We implement a persistent storage space called304

Replicated Data Structure (RDS) and Storage305

Containers (SC) that manages data of RDS and306

is combined with the RAFT consensus protocol.307

The storage is distributed at all devices in the clus-308

ter while the applications are deployed at the edge309

and fog layers.310

Design. Figure 1 illustrates the structure of the311

design. Applications write the state variables in312

a local RDS storage available on the device. The313

RDS stores the state variables of the application314

in the cluster in each device and keeps the replicas315

consistent. A state update must always propagate316

to all the devices in the cluster, with the help317

of SCs, so that other applications can access it.318

SCs automatically restart after a failure (as appli-319

cations) and take responsibility for propagating320

state updates in the cluster. Still, applications do321

not block from reading and executing while data322

propagates through the devices. One SC, elected323

as a leader, is responsible for data consistency324

in a cluster of devices. For any state update on325

devices, the corresponding SC sends the updates326

to the leader, which broadcasts the updates to the327

other SCs. Thus, any changes in a state variable328

propagate to the whole cluster in a bounded time.329
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Fig. 1: Distributed computing continuum storage.

Data exchange time. E is the time required by330

one state value to be propagated to the system as:331

E = FSCi +τjq +Rl + max
Cj,q∈C

τjq + max
SCi∈SC

{WSCi
} ,

(4)
FSCi

is the time required by an SC to fetch data332

from a local RDS;333

τjq is the time required to propagate the data334

transmitted to the SC leader to the cluster;335

Rl is the Raft protocol delay. When all the SCs336

receive the state value from the leader,337

WSCi
is the time SCi requires to write the state338

value in its local RDSs.339

i,j,q are integer numbers, 1 ≤ i, j, q ≤ n.340

Failure overhead. Ef generated by a device or341

an SC failure during a data exchange adds a342

corresponding delay to the data exchange time:343

Ef = max
{
λ · dSCi

+ β ·NCj

}
, (5)

dSCi represents the SC deployment time;344

NCj represents the device startup time;345

λ, β are the maximum number of SC and device346

failures that can occur on a device during the347

data exchange delay.348

Application response time. rDAi
includes applica-349

tion writing, reading, deployment, execution, fail-350

ure, and recovery time for re-execution. In fault-351

free conditions, the application response time is:352

rDAi
= RAi + dAi + eAi + WAi + E , (6)

RAi
, WAi

are the application read and write time353

from, respectively to the local storage;354

dAi
, eAi

are the application deployment and exe-355

cution times.356

Failure overhead. to the response time is:357

rDf
Ai

= (α + β + 1) · rAi + β ·
(
NCj

)
+ Ef , (7)

α, β are the number of application and device358

failures occurring at the worst possible time,359

immediately before completing the task;360

rAi
is application response time;361

NCj
is device startup time;362

Ef is the failure overhead time.363

Worst-case response time (WCRT). rwc−D
Ai

on364

failures is:365

rwc−D
Ai

= rDAi
+ rDf

Ai
, (8)

rDAi
is the application response time in distributed366

fault-free conditions;367

rDf
Ai

is the corresponding failure overhead.368

5.2 Centralized persistent storage369

We implement a centralized solution at all370

three layers, cloud, fog, and edge, to help us:371

1. compare the distributed solution in an extended372

fog and edge layers environment; 2. identify the373

possibilities and limitations of improving our solu-374

tions based on the findings of the experiments.375

Design. Figure 2 illustrates the data flow using376

centralized storage, where applications directly377

write their state to the database located either378

at the same layer (see Figure 2-A) or at the379

cloud layer (Figure 2-B). We consider a replica for380

the database to avoid a single database point of381

failure. However, it is time-consuming and inef-382

ficient to redirect applications to the replica of383

the database to access their states. We use the384

timing parameters from [12] and [17] for stor-385

age re-integration in the case of cloud and fog386

locations, respectively.387

Data access time. Θ is the time required by one388

state value to be accessible by the applications:389

Θ = RAi + WAi + 2 · τjq; (9)

RAi
, WAi

represents the application read and390

write times from, respectively, to local stor-391

age.392
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Fig. 2: Centralized persistent fault-tolerant storage in computing continuum.

τjq is the data transfer time between the applica-393

tion deployment device Cj and the central-394

ized storage node.395

Failure overhead. Θf accounts for the restart396

and data re-transmission time if an application or397

a node hosting it fails during data access:398

Θf = max
{
λ · (dSCi

) + β · (NCj
)
}
, (10)

λ, β are the number of SC and device failures;399

dSCi
is the SC deployment time;400

NCj
is device startup time;401

Application response time. rCAi
in fault-free set-402

tings is:403

rCAi
= dAi

+ eAi
+ Θ, (11)

dAi , eAi are the application deployment and exe-404

cution times.405

Θ is the read and write time to the centralized406

storage in the network, including the data407

transition time from the application running408

device to the storage.409

Failure overhead. rCfAi
to the response time is:410

rCfAi
= (α + β + 1) · rCAi

+ β ·NCj
+ Θf , (12)

α, β are the number of application and device411

failures occurring at the worst possible time,412

immediately before completing the task;413

NCj
is device startup time;414

Θf is the failure overhead on data access time.415

Worst-case response time (WCRT). of an appli-416

cation response accounts for the failure time of the417

entities involved, calculated when using central-418

ized storage as follows:419

rwc−C
Ai

= rCAi
+ rCfAi

. (13)

To meet the application requirements, the worst-420

case response time must be shorter than the421

tolerable response time.422

6 Experimental Design423

This section outlines our experimental design424

using an in-house discrete event simulator devel-425

oped in Python 2. We examine the impact of426

storage placement, storage design, data size, and427

failures on application response time, as intro-428

duced in the research questions in Section 1.429

6.1 Infrastructure design430

We run experiments on the computing contin-431

uum infrastructure distributed across the cloud,432

fog, and edge layers, as summarized in Table 4.433

Cloud layer. The cloud contains virtualized434

instances provisioned on-demand on high-end435

data centers in AWS in Virginia, Google in Frank-436

furt, and Exoscale in Sofia.437

2Simulation files are available on a GitHub repository:
https://github.com/ZeinabBa/Comparison-Persistent-Storage
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Table 4: Computing continuum testbed.

Computing layer Cloud Fog Edge
Provider AWS Google A1 / Exoscale Klagenfurt University of Klagenfurt

Instance type t2.xlarge n2.standard-4 large medium medium large NJN RPi4 RPi3
Location Virginia Frankfurt Sofia Klagenfurt, Vienna, Munich Klagenfurt Klagenfurt

Processing speed [MIPS] 11 200 10 100 14 000 7200 58 000 21 700 4080 5100 3500
Processing cores 4 4 4 2 12 8 4 4 4
Memory [GB] 16 16 8 4 32 16 4 4 1
Storage [GB] 8 8 10 10 32 32 16 16 16

Bandwidth [Mbit/s] 100–710 500–800 450–850 300–920
Latency [ms] 15–100 10–30 7–28 1–2

Table 5: Application specification.
Identifier 1 2 3 4 5 6 7 8 9 10
CPU speed [GHz] 1 2 1.1 3.2 1 1.4 1.2 2 1.3 1.6
Memory [GB] 2 3 3 4 1 4 2 4 3 4
Storage [GB] 2 4 3 3 0.8 2 3 3 1 2
Workload [MI] 1487 1823 1851 2542 2073 2591 1758 2261 1971 2480
Iterations [No] 2 3 4 2 4 4 5 3 4 4

Fog layer. The fog contains virtualized instances438

provisioned on-demand from the Exoscale439

provider, and bare-metal instances at the440

University of Klagenfurt [8].441

Edge layer. The edge consists of NVIDIA Jet-442

son Nano (NJN ) running Linux for Tagra,443

Raspberry Pi-3 (RPi3 ), and thirty Raspberry Pi-4444

(RPi4 ) with Raspberry Pi OS at the Univer-445

sity of Klagenfurt.446

6.2 Application design447

We define the robotic applications based on the448

ROS [28] specifications, comprising their resource449

demands, tolerable response time, and number450

of iterations for each application as summarized451

in Table 5. We deploy 250 applications for each452

experiment based on the scalability analysis per-453

formed in previous work [29]. We set the ratio454

of nodes hosting the applications based on their455

resource demands. We measure MIPS using the456

p7zip tool and the latency and bandwidth using457

the iperf and icmp echo tools at average458

network load 3.459

6.3 Storage placement (RQ1)460

We defined two scenarios to investigate the461

impact of storage placement at different com-462

puting continuum layers on the response time463

regarding RQ1. Moreover, they provide a better464

understanding to the other research questions.465

3When the network is operating without any unusual spikes
or extreme levels of traffic or usage.

Table 6: Percentage of cloud, fog and edge
resources in dispersed deployment scenarios.

Scenario Cloud [%] Edge [%] Fog [%]
CLOUD-2 2 49 49
CLOUD-7 7 46 47
CLOUD-11 11 44 44

Colocated deployment. This scenario examines466

the timing performance when placing the applica-467

tions and storage in the same layer, as follows:468

EDGE application and storage at the edge.469

FOG application and storage in the fog.470

Dispersed deployment. This scenario examines471

the impact of cloud storage on the application per-472

formance, evenly scattered across both the edge473

and fog layers, using the percentage of devices pre-474

sented in Table 6. We limit the use of cloud devices475

to 11 %, which is sufficient for storing the data476

sizes used in our experiments.477

6.4 Storage design (RQ2)478

To address RQ2, we used the same scenarios as479

in Section 6.3 with two storage design variations:480

centralized and distributed (see Section 5).481

6.5 Storage data size (RQ3)482

To address RQ3, we use the scenarios in483

Section 6.3 to analyze the effect of data size on484

the response time, incrementally increased in five485

steps: 64 kB, 512 kB, 2 MB, 5 MB, and 10 MB.486

6.6 Failure Scenarios (RQ4)487

To examine the impact of failures on response488

time (RQ4), we design three types of failures.489

Fault-free serves as a baseline comparison.490

Random failures injected into the system at491

arbitrary times follow a normal distribution with492

an upper limit of 10 % of cluster components.493
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Specific failure corresponds to worst-case sce-494

narios for distributed and centralized storage.495

Distributed storage. We identify specific faults496

through a formal verification explained in [30]. For497

instance, recovery after failure takes longer when498

a leader fails, requiring a leader election.499

Centralized storage. We simulate specific fail-500

ures by introducing faults where a single stor-501

age system is responsible for data management.502

Despite the presence of a replica for the central-503

ized storage, we consider it a potential single point504

of failure, as the time required to take over the505

primary storage result in an increased overhead.506

7 Evaluation507

As the basis for answering the research ques-508

tions introduced in Section 1, we evaluate three509

key metrics, response time, data exchange time,510

and data access time, under the conditions and511

scenarios outlined in Section 6. We format the512

results using a uniform graph representation as513

follows:514

X-axis represents the data sizes.515

Y-axis represents the time in milliseconds.516

Bars represent the response times.517

Red dashed lines indicate the threshold for the518

tolerable response time.519

Line charts display data access and exchange520

times.521

Side bars differentiated by colors present response522

times in centralized and distributed designs.523

Overlaying bars show the response times in base-524

line scenarios and under failure conditions.525

We conclude each experimental analysis with sev-526

eral insights.527

7.1 RQ1: Impact of storage placement528

on response time529

We address RQ1 by examining the collocated530

and dispersed deployment scenarios outlined in531

Section 6.532

Colocated deployment. The results for colocated533

deployment are shown in Figure 3. We observe534

that the application response time for deploying535

applications and accessing storage at the edge536

layer exceeds the tolerable threshold by 35.6 %.537

However, allocating the applications and the stor-538

age in the fog layer significantly reduces the539

Fig. 3: Collocated deployment performance
results.

response time by 80.4 % compared to the edge,540

which is 63.4 % below the threshold. We further541

observe that data exchange and access times are542

relatively low. The high response time experi-543

enced at the edge layer is primarily due to the544

relatively high application deployment and exe-545

cution time caused by limited resources. These546

findings highlight the importance of considering547

storage placement in the fog layer and leveraging548

its resources to achieve tolerable response times.549

Dispersed deployment. The dispersed deploy-550

ment results in Figure 4 highlight that utilizing551

more cloud nodes increases response time due to552

increased communication time, as indicated by553

data exchange and data access times. For example,554

in the CLOUD-2 scenario shown in Figure 4a, the555

response time for a data size of 64 kB is 486.7 ms556

for centralized and 611.1 ms for distributed stor-557

age. Notably, this impact is slightly higher on the558

distributed design than on the centralized design.559

In the subsequent subsections, we will elaborate560

on various factors affecting timing performance in561

a dispersed deployment scenario.562

Concluding insight. Using the edge layer to place563

applications and storage results in an intolerable564

response time for all data sizes, even in fault-free565

conditions and regardless of its centralized or dis-566

tributed design. The high application execution567

time imposes significant overhead on the overall568
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(a) CLOUD-2 (b) CLOUD-7 (c) CLOUD-11

Fig. 4: Dispersed deployment performance results.

response time, primarily due to the limited com-569

putational resources at the edge layer. Therefore,570

we do not recommend deploying applications and571

placing the storage solely at the edge.572

7.2 RQ2: Impact of storage design on573

response time574

To answer RQ2, we simulate colocated and dis-575

persed deployment scenarios using distributed and576

centralized designs.577

Colocated deployment. Figure 3 shows that the578

response time is slightly higher in the distributed579

design compared to the centralized design. In par-580

ticular, we observe an average increase of 7 % in581

response time for applications colocated at the582

edge and a 16.4 % increase in the fog using the dis-583

tributed design compared to the centralized one.584

These results correspond to failure-free conditions585

and may vary in the presence of failures. The lower586

performance of the distributed storage at both587

edge and fog layers is due to the overhead caused588

by data exchange within the consensus algorithm.589

However, distributed and centralized designs have590

relatively low data exchange and access times.591

Dispersed deployment. Figure 4 shows that the592

distributed storage decreases the response time by593

an average of 36.7 % by placing the distributed594

storage leader in the cloud, in contrast to the cen-595

tralized design that places both the storage and its596

replica in the cloud. However, this trend changes597

as the number of cloud storage nodes increases.598

Figures 4b and 4c reveal that increasing the num-599

ber of cloud resources to 7 % and 11 % increases600

the response time by 21 % and 46.2 % compared601

to CLOUD-2 scenario. Meanwhile, the centralized602

design demonstrates relatively stable performance603

without significant changes. In the CLOUD-11604

scenario, the centralized design provides a 4.3 %605

lower response time than the distributed design.606

Concluding insight. Leveraging a centralized607

storage design demonstrates superior timing per-608

formance at both edge and fog layers compared to609

the distributed design.610

Based on the obtained results, we conclude611

that increasing the ratio of cloud resources for612

data storage in the distributed design significantly613

increases the data exchange time. Consequently,614

it worsens the response time due to the consensus615

algorithm, necessitating distributing states over616

the entire cluster for each data.617

7.3 RQ3: Effect of data size on response618

time619

We report colocated and dispersed scenario620

results while varying the application data size for621

centralized and distributed storage designs.622

Colocated deployment. Intuitively, as the data623

size increases, the response time increases in all624

scenarios for centralized and distributed storage625

designs. The response time at the edge becomes626

intolerable even for the smallest data size of 64 kB.627

Scaling the data to 10 MB increases the response628

time at an average rate of 5 % and 3.1 % in629
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response time for the centralized and distributed630

designs. In the fog, the response time increases631

by 22.2 % and 10.5 % from the initial 64 kB data632

size to 10 MB in the centralized and distributed633

designs. However, this increase is not drastic.634

Dispersed deployment. As the data size635

increases, the response time increases across all636

dispersed deployment scenarios. However, the637

response time for different data sizes in the638

distributed CLOUD-2 and CLOUD-7 designs639

remains tolerable. On the other hand, the640

response time exceeds the threshold only at641

10 MB data size in the centralized design. The642

situation changes in the CLOUD-11 scenario643

when the response time becomes intolerable at644

the 10 MB data size for both distributed and645

centralized designs due to the latency between646

different computing continuum layers.647

Concluding insight. As data size grows, the648

response time increases. It is worth noting that649

the increase in response time is not drastic, as650

observed within the range of data sizes from 64 kB651

to 10 MB. Nevertheless, utilizing cloud resources652

for data storage results in higher response times653

as data size grows compared to placing the stor-654

age at fog layer. This can be attributed to the655

latency between different layers of the computing656

continuum architecture.657

7.4 RQ4: Influence of failures on658

response time659

We analyze the performance of the robotic660

application in the presence of failures using the661

worst-case response time under fault-free condi-662

tions as a baseline. We exclude the colocated663

EDGE scenario from our analysis since its worst-664

case response time exceeds the tolerable threshold665

even in fault-free conditions.666

Random failures.667

FOG. Figure 5a illustrates that the WCRT of668

the application colocated in the fog remains con-669

siderably lower than the acceptable threshold670

despite an average increase of 69.8 % and 16 %671

for centralized and distributed designs. The cen-672

tralized storage design showcases superior per-673

formance despite random failure. However, the674

results indicate that the response time remains675

significantly below the threshold, and the impact676

of failure on both the centralized and distributed677

designs is relatively comparable.678

CLOUD-2. Figure 5b shows that the applica-679

tion’s worst-case response time remains acceptable680

for both centralized and distributed designs for a681

data size below 2 MB. However, the response time682

exceeds the threshold for data sizes larger than683

5 MB in the centralized design and for data sizes684

larger than 10 MB in the distributed design.685

CLOUD-7. The response time in the central-686

ized design exceeds the threshold for data sizes687

of 2 MB and larger. Similar to CLOUD-2, the688

response time in the distributed design surpasses689

the threshold for data sizes larger than 10 MB.690

The average increase of 20 % and 11 % in the691

worst-case response time for centralized and dis-692

tributed designs, respectively, compared to the693

fault-free experiments. The distributed storage694

design demonstrates improved performance.695

CLOUD-11. The situation differs for this sce-696

nario. As expected, based on the fault-free con-697

dition results of this scenario, the response time698

for the distributed design is slightly higher upon699

random failures. Consequently, There is an aver-700

age increase of 32 % and 20 % in the worst-701

case response time for centralized and distributed702

designs, which exceeds the acceptable response703

time for data sizes larger than 2 MB.704

Specific failures.705

Colocated FOG. As depicted in Figure 6a, the706

worst-case response time of the distributed design707

remains tolerable for all data sizes. However,708

despite exhibiting better performance in fault-free709

conditions, the centralized design experiences a710

significant decline upon specific failures, exceeding711

the acceptable response time for all data sizes.712

Dispersed CLOUD. Despite adding a replica in713

the centralized design to enhance data availabil-714

ity, specific failures in the centralized database or715

its replica significantly impact the timing perfor-716

mance. Figures 6b, 6c, and 6d illustrate that the717

worst-case response time of the centralized design718

exceeds the tolerable response time in the presence719

of specific failure for all scenarios and data sizes.720

In contrast, the response time increase remains721

within the acceptable range for data sizes below722

2 MB for the distributed design.723
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(a) FOG (b) CLOUD-2 (c) CLOUD-7 (d) CLOUD-11

Fig. 5: Response time in the presence of random failures.

(a) FOG (b) CLOUD-2 (c) CLOUD-7 (d) CLOUD-11

Fig. 6: Response time in the presence of specific failures.

Concluding insight.724

Fault-free execution. In fault-free conditions,725

centralized storage generally outperforms the dis-726

tributed design in most scenarios. The reason is727

the synchronization overhead in the distributed728

design, particularly when locating the leader in729

the cloud layer, and the number of nodes increases,730

leading to an increased data transfer time.731

Faulty execution. The results change when run-732

ning applications with random and specific fail-733

ures. For all scenarios, the distributed design734

performs better than the centralized design. Nev-735

ertheless, the centralized design maintains perfor-736

mance within the tolerable threshold in both a737

colocated fog deployment and a dispersed deploy-738

ment for data sizes up to 2 MB. On the other hand,739

specific failures introduce a drastic increase in740

response time for the centralized design, rendering741

it intolerable for all scenarios. In the distributed742

design, however, even in the presence of specific743

failure, the response time remains well below the744

threshold when placing applications and storage745

at the fog layer for data sizes up to 2 MB.746

8 Justification of the Approach747

We built our simulation upon the real testbed748

infrastructure presented in Table 4 and replicated749

the device resources, communication patterns, and750

workloads using parameters obtained from the751

actual setup. Additionally, we incorporate appli-752

cation specifications and allocation algorithms753

derived from measurements. The choice of using a754

simulator instead of the actual setup derives from755

three primary reasons.756

Iterative and optional design. We assess the fea-757

sibility of our fault-tolerant distributed storage758

system through a comparative analysis, encom-759

passing four dimensions as explained in Section760

1. Each dimension introduces a complexity layer761

within the iterative design process and the range762

of available design choices. Using simulation-based763
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evaluation helps us delve deeper into the design764

and implementation of various comparison dimen-765

sions. For example, simulation facilitates com-766

paring our approach and a centralized design.767

Implementing the latter in an actual environment768

could be expensive and time-consuming.769

Data generation for comprehensive evaluation.770

To thoroughly evaluate our system, we need to771

gather more data involving exploring diverse sce-772

narios and generating substantial data as the773

foundation for analysis. Simulations help us by774

testing different scenarios and generating sufficient775

data for analysis, which is challenging to collect776

from real experiments.777

Long-term studies and collaboration. Conduct-778

ing extended studies and collaborating effectively779

can be complex when dealing with the actual780

infrastructure testbed demanding physical pres-781

ence and continuous maintenance, potentially782

causing interruptions in its original purpose. Sim-783

ulation allows us to conduct experiments conve-784

niently without geographical limitations. Simulat-785

ing the setup also provides a platform for other786

researchers to access and utilize it as a foundation787

for their investigations. This approach promotes a788

collaborative research environment and facilitates789

easy accessibility for interested researchers.790

Validation. Leveraging simulation based on the791

actual setup also enables us to validate the accu-792

racy of our results, achieved by comparing the793

simulation outcomes with sample real testbed794

tests. This comparison process ensures that our795

simulation faithfully represents the real system’s796

behavior, enhancing the trust in its accuracy.797

9 Conclusion798

We have evaluated a close-to-edge persistent799

fault-tolerant storage for a robotic architecture800

in container-based architectures. We assess its801

behavior with increasing data size and compare802

it to alternative centralized design options. We803

also explore the impact of different placement804

strategies within the computing continuum frame-805

work under random and specific failure scenarios.806

Our primary objective is to compare the timing807

performance of our solution against existing alter-808

natives. The evaluation results demonstrate that809

the distributed persistent storage design outper-810

forms the current centralized design alternatives811

when facing random and specific failures.812

In future research, we aim to expand our813

investigations to a wider range of applications.814

Moreover, we will carry out real-world experi-815

ments to further validate the simulation results816

and the approaches proposed in this work.817
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