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Abstract

The Gleason problem has been proven to be a complicated issue to tackle. In this thesis
we will conclude that a domain, Ω ⊂ R𝑛, has Gleason 𝑅-property at any point 𝑝 ∈ Ω, where
𝑅(Ω) ⊂ 𝐶∞(Ω) is the ring of functions that are real analytic in 𝑝. First, we investigate function
spaces and give them fitting norms. Afterwards, we build a bump function that is then used
to construct a smooth partition of unity on R𝑛. Finally, we show that some of the function
spaces, introduced earlier, have the Gleason property. Ultimately, we use our smooth partition
of unity in order to prove that the statement above holds for domains in R2. Subsequently, with
the same reasoning one can prove that the statement also holds for domains Ω ⊂ R𝑛.
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Chapter 1

Introduction

There are many situations where one can find the use for smooth partition of unity. It can
for example be useful when solving PDEs if one might want to prove the trace theorem, see
[3]. However, in this thesis we will show how smooth partition of unity can be useful when
investigating a version of the Gleason problem, see Section 4.

1.1 Background
A.M. Gleason introduced what is today known as the Gleason problem. The problem appeared
in his article [6], where Gleason was studying maximal ideals of a Banach algebra. In this
article he proved that if a point with a maximal ideal is finitely generated, then every function
on this algebra is holomorphic on some neighborhood of this point. However, the question
arose of how to determine whether a maximal ideal is finitely generated or not. Gleason
concluded his article with a query, wondering if the maximal ideal of functions that vanish on
the origin in the space of analytical functions on the open unit ball is finitely generated. The
issue of determining this query in different spaces is today known as the Gleason problem. The
first person to solve Gleasons query was a Russian mathematician called Z.L. Leibenzon [7].
He proved that for every convex domain in C𝑛 with a boundary that is in 𝐶2 has the Gleason
property. Many situations of the Gleason problem are still open discussions. One of those
issues is the dilemma of whether a Hartogs domain possesses the Gleason 𝐻∞-property.

1.2 Goal, Purpose and Problem Formulation
The purpose of this thesis is to construct a smooth partition of unity that can later be used to
solve a version of the Gleason problem. When discussing the Gleason problem, an important
aspect to research is the topic of function spaces. Therefore we will delve into the subject of
function spaces and include some examples of these spaces as well as their appropriate norms.
Afterwards, in order to solve a version of the Gleason problem with the use of partition of unity,
we will construct a bump function that can be used to create our smooth partition of unity.
Finally, we will delve into the topic of the Gleason problem. The function spaces that were
introduced earlier will here be shown to have the Gleason property on certain domains. Then,
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with the use of our smooth partition of unity we will ultimately prove Theorem 12, which states
that a domain, Ω ⊂ R2, has Gleason 𝑅-property at any point 𝑝 ∈ Ω, where 𝑅(Ω) ⊂ 𝐶∞(Ω) is
the ring of functions that are real analytic in 𝑝.

1.3 Literature review

In this section we present some of the literature that was used in this thesis. The article by
Backlund and Fällström [1] introduces a brief history and definition of the Gleason problem.
It focuses on proving the fact that bounded pseudoconvex complete Reinhardt domains in C2

with a boundary in 𝐶2 have the Gleason A-property. This contribution provides insight on the
properties and behavior of these domains, which is useful in various areas of mathematics.

When it comes to finding definitions and theorems with proofs, the following books
have been useful. Principles of Mathematical Analysis [12], published by Rudin, is often
referred to as "Baby Rudin" and it covers subjects such as sequences, series, continuity,
differentiation, integration and metric spaces. The book contains proper mathematical proofs
and incorporates the foundations of mathematical analysis. It is a useful tool for finding well
defined definitions and theorems with solid proofs. Additionally, Functional Analysis [13],
which is also published by Rudin, provides an introduction to functional analysis, which is
important for mathematics that deals with vector spaces of functions. The book covers topics
such as Banach spaces, Hilbert spaces, spectral theory and more. Likewise to his previous
work mentioned above, Rudin presents the theory of functional analysis in a well defined
and concise manner. Furthermore, Partial Differential Equations [3], published by Evans, is
a highly regarded publication that provides the theory, applications and solution techniques
of PDEs. It also covers topics such as Soblev spaces, traces, compactness and maximum
principles. Similarly to the previously named books, Evans presents many useful theorems
with solid proofs.

When delving into smooth partition of unity, the work of Lloyd [10] contains some useful
material on the topic. Although, the article focuses on smooth partitions over manifolds, some
main theorems and definitions can be used for coverings inR𝑛. The paper builds upon previous
research on the smoothness properties of topological linear spaces. They ultimately provide
the criteria such that smooth partitions of unity exists on manifolds that are constructed on
topological linear spaces.

1.4 Notations

In this thesis, we will use the notation 𝑥 to abbreviate (𝑥1, 𝑥2, . . . , 𝑥𝑛) for points in R𝑛 and in a
similar way, we write∫

R𝑛
𝑓 (𝑥)𝑑𝑥 =

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛.
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1.5 Table of sets

General notations of sets and spaces
Ω General sets in R𝑛
𝑀 Sets in R𝑛 equipped with a metric, defined in Section 2
𝐹 General fields
𝑉 Vector spaces over a field 𝐹
𝐾 Compact sets in R𝑛, defined in Section 2
𝐶0(Ω) The space of continuous functions over Ω, defined in Section 2.1
𝐶𝑘 (Ω) The space of functions with 𝑘-times continuous derivatives over Ω, defined in

Section 2.2
𝐶∞(Ω) The space of smooth functions over Ω, defined in Section 2.3
𝐿𝑝 (Ω) The space of 𝐿𝑝 functions over Ω, defined in Section 2.4
H(Ω) The space of holomorphic functions over Ω, defined in Section 2.5
H∞(Ω) The space of bounded holomorphic functions over Ω, defined in Section 2.5
A𝑘 (Ω) The space of analytic functions with 𝑘 continuous derivatives over Ω, defined

in Section 2.5
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Chapter 2

Function Spaces

We will start by delving into the topic of function spaces. First we present some definitions and
theorems that will be used to define certain function spaces along with some suitable norms.
These function spaces will then be used in Section 4 to prove the Gleason property for these
spaces on specific domains. This section contains some insight from [4], [5], [8], [12], [13],
and [14].

Definition 1. The supremum of a set, Ω ⊆ R, is the minimum upper bound of the set, and it is
denoted sup

𝑥∈Ω
𝑥. If an upper bound for the set Ω does not exist, then sup

𝑥∈Ω
𝑥 = ∞.

Definition 2. The infimum of a set, Ω ⊆ R, is the maximum lower bound of the set, denoted
inf
𝑥∈Ω

𝑥. If a lower bound does not exist, we define inf
𝑥∈Ω

𝑥 = −∞.

Definition 3. A metric space, denoted (𝑀, 𝑑), is defined by a set 𝑀 as well as a metric
𝑑 : 𝑀 × 𝑀 → R that is equipped on 𝑀 and it satisfies the following three conditions for all
𝑥, 𝑦, 𝑧 ∈ 𝑀 .

1. 𝑑 (𝑥, 𝑦) ≥ 0 and 𝑑 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,

2. 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥),

3. 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦).

An example of a metric space is the Euclidean space R𝑛 with the Euclidean distance as
metric.

Definition 4. The distance between an element, 𝑦, and a set, Ω, is given by

𝑑 (𝑦,Ω) = inf
𝑥∈Ω

(𝑑 (𝑦, 𝑥)).

Definition 5. The closure of a set Ω is denoted as Ω and it is the smallest closed set that
contains Ω.
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Definition 6. The boundary of a set, Ω, is denoted 𝜕Ω and it is defined as the intersection of
the closure of Ω with the closure of its complement, that is

𝜕Ω = Ω ∩Ω𝑐 .

Definition 7. A subset, 𝐾 ⊂ Ω, is called compact if for every collection, 𝐶, of open subsets of
Ω such that

𝐾 =
⋃
𝑥∈𝐶

𝑥

there exists a finite collection 𝑌 ⊆ 𝐶 such that

𝐾 =
⋃
𝑥∈𝑌

𝑥.

If 𝐾 is a compact set in Ω then we denote it as 𝐾 ⊂⊂ Ω.

Theorem 1. For a subset 𝐾 of Euclidean space R𝑛, the following statements are equivalent:

1. 𝐾 is closed and bounded.

2. 𝐾 is compact.

This theorem is called the Heine-Borel theorem and the proof for it can be found in [12].

Theorem 2. Suppose that 𝑓 is a continuous real function on a compact metric space 𝑀 , and

𝑆 = sup
𝑥∈𝑀

𝑓 (𝑥), 𝑠 = inf
𝑥∈𝑀

𝑓 (𝑥).

Then there exists points 𝑝, 𝑞 ∈ 𝑀 such that 𝑓 (𝑝) = 𝑆 and 𝑓 (𝑞) = 𝑠.

For proof of this Theorem, see [12].

Definition 8. A normed space is a vector space𝑉 over a field 𝐹 ∈ {R,C} with a norm function
∥·∥ : 𝑉 → R that satisfies the following three axioms.

1. ∥𝑣∥ ≥ 0 for all 𝑣 ∈ 𝑉 and ∥𝑣∥ = 0 if and only if 𝑣 = 0.

2. ∥𝑎𝑣∥ = |𝑎 |∥𝑣∥ for all 𝑎 ∈ 𝐹 and 𝑣 ∈ 𝑉 .

3. ∥𝑣 + 𝑢∥ ≤ ∥𝑣∥ + ∥𝑢∥ for all 𝑣, 𝑢 ∈ 𝑉 .

The Euclidean space R𝑛 with the Euclidean distance as metric is also a normed space. In
fact, all normed spaces are metric spaces and the metric is generated by 𝑑 (𝑣, 𝑢) = ∥𝑣 − 𝑢∥.
The proof of this can be found in [8].
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Definition 9. A Cauchy sequence is a sequence of elements that as the sequence progresses
they become arbitrarily close to each other. For a metric space, (𝑀, 𝑑), a sequence, {𝑎𝑛}, is
a Cauchy sequence if for every real 𝜀 > 0, there exists an integer 𝑁 > 0 such that the metric
distance

𝑑 (𝑎 𝑗 , 𝑎𝑖) < 𝜀 for all integers 𝑗 , 𝑖 > 𝑁.

For 𝑎𝑖 and 𝑎 elements in the metric space (𝑀, 𝑑), we say that if

lim
𝑖→∞

𝑑 (𝑎, 𝑎𝑖) = 0

then lim
𝑖→∞

𝑎𝑖 = 𝑎 or equivalently 𝑎𝑖 → 𝑎. An example of a Cauchy sequence is the sequence
{1/𝑛}. One can easily prove that every convergent sequence is a Cauchy sequence using the
triangular inequality, thus as 𝑛→ ∞ the sequence converges to 0, hence it is a Cauchy sequence
in the space of real numbers.

Definition 10. A metric space in which every Cauchy sequence in the space converges to an
element in the space is called complete.

Definition 11. A Banach space is a complete normed space.

Definition 12. A function space is a space of functions that are defined on a domain and
that share a certain property. Some function spaces are equipped with a norm, which makes
them a Banach space if the norm generates a complete space. These spaces are linear which
means that they contain the zero function and they are closed under linear combinations of the
functions. A well defined norm preserves the properties of a function space. In this thesis, we
only consider normed function spaces (𝑉, ∥·∥) in which the elements have a finite norm, that
is ∥ 𝑓 ∥ < ∞ for all 𝑓 ∈ 𝑉 .

2.1 Continuous functions
The space of continuous functions over Ω is denoted𝐶0(Ω) and it consists of functions that are
continuous on the domain Ω. In this thesis we will look at two cases of continuous functions
that have different norms. These function spaces are the continuous functions on a closed and
bounded set as well as the general continuous functions.

2.1.1 Closed and bounded
For the space of continuous functions on a closed and bounded set Ω there exists a maximum
value. Therefore, we can use the maximum value as a norm in this function space. An example
of a continuous function on a closed and bounded interval is 𝑓 (𝑥) = sin(𝑥) on the interval
[0, 𝜋]. The norm of 𝑓 is

∥ 𝑓 ∥𝐶0 = max
𝑥∈[0,𝜋]

| 𝑓 (𝑥) | = max
𝑥∈[0,𝜋]

|sin(𝑥) | = 1 < ∞.
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2.1.2 General
For general continuous functions we cannot assume that we have a closed and bounded domain.
Therefore a maximum value does not always exist, an example of this is the function 𝑓 (𝑥) = 𝑥
on the open interval (0, 1). Thus, the typical norm for this function space is the supremum
norm. The supremum norm of the function 𝑓 (𝑥) = 𝑥 on the interval (0, 1) is

∥ 𝑓 ∥𝐿∞ = sup
𝑥∈(0,1)

|𝑥 | = sup
𝑓 (𝑥)∈(0,1)

|𝑥 | = 1 < ∞.

The notation of 𝐿∞ in the norm will be made clear in Section 2.4, where 𝐿𝑝 spaces will
be defined. Later in this thesis we will denote the supremum norm taken over the set Ω as
∥ 𝑓 ∥𝐿∞ (Ω) .

Theorem 3. The space 𝐶0(Ω) where Ω is a compact set is a Banach space with the supremum
norm.

The proof of this theorem can be found in [12].

2.2 Functions with 𝑘 continuous derivatives
The space of functions with 𝑘 continuous derivatives is denoted as 𝐶𝑘 (Ω) and it consists of
functions defined on the domain Ω that are 𝑘 < ∞ times differentiable where every derivative
is a continuous function. The norm typically used for this space is

∥ 𝑓 ∥𝐶𝑘 =

𝑘∑︁
𝑖=0

sup
𝑥∈Ω

| 𝑓 (𝑖) (𝑥) | = sup
𝑥∈Ω

| 𝑓 (𝑥) | + sup
𝑥∈Ω

| 𝑓 1(𝑥) | + . . . + sup
𝑥∈Ω

| 𝑓 𝑘 (𝑥) |.

To read more about this norm, see [3]. An example of a function in 𝐶2(−1, 1) is

𝑓 (𝑥) =
{
−𝑥3 for − 1 < 𝑥 < 0
𝑥3 for 0 ≤ 𝑥 < 1.

(2.1)

The second derivative of 𝑓 (𝑥) is continuous but not differentiable.

2.3 Smooth functions
The space of smooth functions is denoted as 𝐶∞(Ω) with the metric

𝑑 ( 𝑓 , 𝑔) =
∞∑︁
𝑘=1

1
2𝑘

· ∥ 𝑓 (𝑘) − 𝑔(𝑘) ∥𝐿∞
1 + ∥ 𝑓 (𝑘) − 𝑔(𝑘) ∥𝐿∞

.

This space consists of functions defined on the domain Ω that are infinitely differentiable
where every derivative is a continuous function. There are norms that can be used for this
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space but the space of smooth functions is not a Banach space, see [13]. Equation 2.1 in the
section above is an example of a function that is 2 times differentiable on the interval (−1, 1)
with continuous derivatives but not 3 times differentiable, therefore it is not smooth. Any
polynomial on a bounded domain is a smooth function. The function sin(𝑥) is a function that
is smooth on any domain, with both the supremum norm and the 𝐿𝑝-norm that is introduced
in Section 2.4. The function arctan(𝑥) is a smooth function on any domain with the supremum
norm, since the function has the upper limit 𝑦 = 𝜋/2 for all 𝑥. Moreover, in Section 3 the
smooth functions 𝜑 and 𝜂 are introduced. For 𝜑 we have the unique quality that on the entire
negative real axis the function is equal to 0 and then it accelerates closer to 1 while still being
smooth. The function 𝜂 is similar to 𝜑 but it is equal to 0 on the region where |𝑥 | < 1 for
𝑥 ∈ R𝑛 and then it accelerates up to 𝑒−1 elsewhere.

2.4 𝐿𝑝 functions
The space of 𝐿𝑝 functions defined over Ω is denoted 𝐿𝑝 (Ω). A function, 𝑓 , is an 𝐿𝑝 function
if ∥ 𝑓 ∥𝐿𝑝 is integrable over the entire domain of 𝑓 . The norm used for 𝐿𝑝 functions with
1 ≤ 𝑝 < ∞ is

∥ 𝑓 ∥𝐿𝑝 =
𝑝

√︄∫
Ω

| 𝑓 (𝑥) |𝑝𝑑𝑥.

In this thesis, we will only consider the Riemann integral even though the integral above is
usually Lebegue’s integral, in which case the 𝐿𝑝 spaces are Banach spaces. If one would like
to read about 𝐿𝑝 spaces with regards to Lebegue’s integral, see [11]. One can also define the
norm for the 𝐿∞ space, with 𝑓 ∈ 𝐿∞(Ω), as

∥ 𝑓 ∥𝐿∞ = ess sup
Ω

| 𝑓 (𝑥) |.

We will study 𝐿∞(Ω) where Ω is a bounded domain and the functions are continuous on
Ω. Hence, the supremum norm will suffice as the norm of 𝐿∞ spaces in this thesis. To read
more about the ess sup norm, see [13].

Theorem 4. The space 𝐿∞ is a Banach space.

The proof of this theorem is follows from the fact that all Cauchy sequences are bounded.
An example of an 𝐿𝑝 (0, 1) function, with 1 ≤ 𝑝 < ∞, is 𝑓 (𝑥) = 𝑥−1/2𝑝, on the interval
𝑥 ∈ (0, 1). The norm of 𝑓 is

∥ 𝑓 ∥𝐿𝑝 =
𝑝

√︄∫ 1

0
|𝑥−

1
2𝑝 |𝑝𝑑𝑥 =

𝑝
√︂[

2𝑥 1
2

]1

0
=

𝑝√
2 < ∞.

An example of a similar function that is not an 𝐿𝑝 (0, 1) function is 𝑔(𝑥) = 𝑥−1/𝑝, on the
interval 𝑥 ∈ (0, 1). The norm of 𝑔 is
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∥𝑔∥𝐿𝑝 =
𝑝

√︄∫ 1

0
|𝑥−

1
𝑝 |𝑝𝑑𝑥 =

𝑝
√︃
[ln(𝑥)]1

0 = lim
𝑠→0+

𝑝√︁
ln(1) − ln(𝑠) = ∞.

In fact one can show that 𝐿𝑝 (Ω) ⊂ 𝐿𝑟 (Ω) if 1 ≤ 𝑟 < 𝑝 ≤ ∞ for Ω bounded domain. The
proof of this can be found in [4].

2.5 Holomorphic functions
The space of holomorphic functions defined over a subset of the complex plane Ω is denoted
H(Ω) and it is the space of functions that are complex differentiable on Ω. A function is
holomorphic if it satisfies the Cauchy-Reimann equations. Let’s introduce two subspaces of
the holomorphic functions, H∞(Ω) = H(Ω) ∩ 𝐿∞(Ω) and A𝑘 (Ω) = H(Ω) ∩ 𝐶𝑘 (Ω). The
following two theorems are standard results in complex analysis and they show that H∞(Ω)
and A𝑘 (Ω) are Banach spaces with the supremum norm.

Theorem 5. Suppose that 𝑓𝑛 : Ω → C and that 𝑓𝑛 → 𝑓 uniformly on Ω with the supremum
norm. If all 𝑓𝑛 are continuous on Ω, then 𝑓 is also continuous on Ω.

Theorem 6. Suppose thatΩ ⊂ C is a domain and that 𝑓𝑛 is a sequence of holomorphic functions
on Ω that converge uniformly to 𝑓 with the supremum norm, then 𝑓 is also holomorphic.
Meaning that 𝑓𝑛 is a Cauchy sequence on the space of holomorpic functions. In addition, the
derivatives 𝑓 (1)𝑛 converge locally uniformly to 𝑓 (1) .

The proof of these two theorems can be found in [14].
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Chapter 3

Partition of Unity

In this chapter we will construct a smooth partition of unity that can later be used to solve a
case of the Gleason problem. A partition of unity is a method used to construct a function
by puzzling together local functions defined on overlapping domains. First we will list some
definitions and theorems that will be used to construct our smooth partition of unity. Then, in
Section 3.1, we will construct a bump function with unit mass. Afterward, in Section 3.4, we
will use this bump function to construct a smooth partition of unity. The development of our
smooth partition of unity utilized ideas from [5], [9] and [10].

Definition 13. The support of a function 𝑓 is written as supp 𝑓 and it is the closure of the
subsection of the domain that leads to 𝑓 ≠ 0. That is

supp 𝑓 = {𝑥 ∈ Ω : 𝑓 (𝑥) ≠ 0}

where Ω is the domain.

Definition 14. If a function has a support that is a compact subset of the domain Ω, then we
say that the function has a compact support on the space Ω. A function space with a compact
support is denoted by a lowered 𝑐.

Theorem 7. The composition of two smooth functions is also smooth.

The proof of this theorem can be found in [9].

Definition 15. A subset 𝐷 of a space Ω is said to be a dense subset if any of the following
equivalent conditions are satisfied

1. The smallest closed subset of Ω containing 𝐷 is Ω itself.

2. The closure of 𝐷 in Ω is equal to Ω.

3. Every point in Ω is either in 𝐷 or is a limit point of 𝐷.
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3.1 The Bump Function
A bump function is smooth function with a compact support, particularly the function is non-
zero on the compact support and zero elsewhere. In this chapter we will construct a bump
function such that the mass of it will be equal to one.

3.1.1 Bump function with support on the positive real line
In this section we want to prove that the function 𝜑 is smooth on R where

𝜑(𝑡) =
{
𝑒−

1
𝑡 , 𝑡 > 0

0, 𝑡 ≤ 0.
(3.1)

For 𝑡 ≤ 0 we have that 𝜑 = 0 which is clearly infinitely differentiable. For 𝑡 > 0 the
function 𝜑 is a composition of smooth functions and hence from Theorem 7, it follows that 𝜑
is itself a smooth function. To investigate the smoothness at the origin, we present a form of
the derivatives of 𝜑 when 𝑡 > 0 by using the principle of mathematical induction.

Theorem 8. The 𝑛-th derivative of 𝜑(𝑡) for 𝑡 > 0 can be described by

𝜑(𝑛) (𝑡) = 𝑃
(
1
𝑡

)
𝑒−

1
𝑡 ,

where 𝑃 is a polynomial.

Proof. Induction base: The base case 𝑛 = 0 is trivial since 𝜑(𝑡) = 𝑒− 1
𝑡 . For 𝑛 = 1 one gets

𝜑(1) (𝑡) = 1
𝑡2
𝑒−

1
𝑡 =

(
1
𝑡

)2
𝑒−

1
𝑡 = 𝑃1

(
1
𝑡

)
𝑒−

1
𝑡 ,

where 𝑃1(𝑥) = 𝑥2 is a polynomial, so Theorem 8 holds for 𝑛 = 1.

For 𝑛 = 2 one gets

𝜑(2) (𝑡) = 1
𝑡4
𝑒−

1
𝑡 − 2

𝑡3
𝑒−

1
𝑡 =

((
1
𝑡

)4
− 2

(
1
𝑡

)3
)
𝑒−

1
𝑡 = 𝑃2

(
1
𝑡

)
𝑒−

1
𝑡 ,

where 𝑃2(𝑥) = 𝑥4 − 2𝑥3 is a polynomial, so Theorem 8 also holds for 𝑛 = 2.

Induction assumption: Assume that Theorem 8 holds for some 𝑝 > 0. That is

𝜑(𝑝) (𝑡) = 𝑃
(
1
𝑡

)
𝑒−

1
𝑡

for some polynomial 𝑃.
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Induction step: For 𝑛 = 𝑝 + 1 we get

𝜑(𝑝+1) (𝑡) = 𝑑
𝑑𝑡

(
𝑃

(
1
𝑡

)
𝑒−

1
𝑡

)
=𝑃(1)

(
1
𝑡

)
𝑒−

1
𝑡 + 𝑃

(
1
𝑡

) (
1
𝑡

)2
𝑒−

1
𝑡

=

(
𝑃(1)

(
1
𝑡

)
+ 𝑃

(
1
𝑡

) (
1
𝑡

)2
)

︸                           ︷︷                           ︸
�̃�(1/𝑡)

𝑒−
1
𝑡 .

The expression of polynomials, �̃�, is a polynomial itself, therefore

𝜑(𝑝+1) (𝑡) = �̃�
(
1
𝑡

)
𝑒−

1
𝑡 .

Conclusion: From the steps taken above and the principle of induction it follows that
Theorem 8 holds for 𝑛 ≥ 0.

□

Now we only need to show that 𝜑 is smooth on the origin. We do this by proving that all
derivatives of 𝜑(𝑡), for 𝑡 > 0, converge to 0 as 𝑡 tends to the origin. We have

lim
𝑡→0+

𝜑(𝑛) (𝑡) = lim
𝑡→0+

𝑃

(
1
𝑡

)
𝑒−

1
𝑡 .

To show that the limit tends to 0, one can now do a variable change 𝑠 = 1/𝑡 such that
𝑠 → ∞ when 𝑡 = 1/𝑠 → 0+. Thus

lim
𝑡→0+

𝜑(𝑛) (𝑡) = lim
𝑠→∞

𝑃(𝑠)𝑒−𝑠 .

Since exponential functions grow faster than polynomial functions, the expression above
has the limit 0. Therefore 𝜑 is smooth on R. In Figure 3.1 one can see the graph of 𝜑 over the
origin.
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Figure 3.1: The graph of the smooth function 𝜑, defined by equation 3.1.

3.1.2 Bump function with compact support on 𝐵(0, 1)
Now we build on the function defined in Section 3.1.1 such that our new function is smooth on
R𝑛 and has compact support on 𝐵(0, 1). Let

𝜂(𝑥) = 𝜑(1 − |𝑥 |2).

This generates a smooth function that has compact support on 𝐵(0, 1).

Proof. It follows directly from Theorem 7 that 𝜂 is a smooth function. If we expand 𝜂, we get

𝜂(𝑥) =𝜑(1 − |𝑥 |2) (3.2)

=

{
𝑒
− 1

(1−|𝑥 |2 ) , 1 − |𝑥 |2 > 0
0, 1 − |𝑥 |2 ≤ 0.

=

{
𝑒
− 1

(1−|𝑥 |2 ) , |𝑥 | < 1
0, |𝑥 | ≥ 1.

Since 𝜂 = 0 when |𝑥 | ≥ 1 and 𝜂 is positive for |𝑥 | < 1 one gets

supp 𝜂 = {𝑥 ∈ R𝑛 : |𝑥 | < 1}.

Which is the closure of 𝐵(0, 1), thus 𝜂 ∈ 𝐶∞
𝑐 (R𝑛) with supp 𝜂 = 𝐵(0, 1). □
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In Figure 3.2 one can see the graph of 𝜂 on R.

Figure 3.2: The graph of the smooth function 𝜂, defined by equation 3.2, on R.

3.1.3 Bump function with compact support on 𝐵(0, 𝜀)
In this section we expand upon the function defined in Section 3.1.2 such that our new function
is smooth on R𝑛 and has for a constant 𝜀 > 0 compact support on 𝐵(0, 𝜀). Let

𝜂𝜀 (𝑥) = 𝜀−𝑛𝜂
( 𝑥
𝜀

)
.

We will now prove that this generates a smooth function that has compact support on
𝐵(0, 𝜀).

Proof. It follows directly from Theorem 7 that 𝜂(𝑥/𝜀) is a smooth function. Therefore, since
𝜀−𝑛 is a constant, one gets that 𝜂𝜀 is smooth. If we expand 𝜂𝜀, we get

𝜂𝜀 (𝑥) =𝜀−𝑛𝜑(1 −
���𝑥
𝜀

���2) (3.3)

=𝜀−𝑛
{
𝑒
− 1

(1−| 𝑥𝜀 |2 ) , (1 − | 𝑥
𝜀
|2) > 0

0, (1 − | 𝑥
𝜀
|2) ≤ 0

=𝜀−𝑛
{
𝑒
− 1

(1−| 𝑥𝜀 |2 ) , |𝑥 | < |𝜀 |
0, |𝑥 | ≥ |𝜀 |.

Since 𝜂𝜀 = 0 when |𝑥 | ≥ |𝜀 | and 𝜂𝜀 is positive for |𝑥 | < |𝜀 | the support is

supp 𝜂𝜀 = {𝑥 ∈ R𝑛 : |𝑥 | < |𝜀 |}.
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This is the closure of 𝐵(0, 𝜀), thus 𝜂𝜀 ∈ 𝐶∞
𝑐 (R𝑛) with supp 𝜂𝜀 = 𝐵(0, 𝜀). □

In Figure 3.3 one can see the graph of 𝜂𝜀 on R.

Figure 3.3: The graph of the smooth function 𝜂𝜀, defined by equation 3.3, on R.

3.1.4 Bump function with the mass one
Now we will prove that for some variable 𝑐𝑛, we have

𝑐𝑛

∫
R𝑛
𝜂𝜀𝑑𝑥 = 1.

Proof. Since 𝜂𝜀 (𝑥) = 0 when 𝑥 ∉ 𝐵(0, 𝜀) we have∫
R𝑛
𝜂𝜀𝑑𝑥 =

∫
𝐵(0,𝜀)

𝜂𝜀𝑑𝑥.

From Theorem 2, since 𝜂𝜀 is continuous on the closed and bounded set 𝐵(0, 𝜀), we have
that 𝜂𝜀 has a maximum and minimum value on that set. We also know that 𝜂𝜀 ≥ 0, thus

0 ≤
∫
𝐵(0,𝜀)

𝜂𝜀𝑑𝑥 ≤
∫
𝐵(0,𝜀)

𝑀𝑑𝑥

where
𝑀 = max

𝐵(0,𝜀)
(𝜂𝜀) < ∞

which follows directly from Theorem 2. Furthermore, because 𝜂𝜀 (𝑥) > 0 for all 𝑥 ∈
𝐵(0, 𝜀/2) we have
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0 <
∫
𝐵(0,𝜀/2)

𝜂𝜀 (𝑥)𝑑𝑥 <
∫
𝐵(0,𝜀)

𝜂𝜀 (𝑥)𝑑𝑥 < ∞.

Therefore the integral will take a positive value, let’s say 𝑁 > 0, such that

𝑐𝑛

∫
R𝑛
𝜂𝜀𝑑𝑥 = 𝑐𝑛𝑁.

Thus we pick 𝑐𝑛 = 1/𝑁 with the aim that the integral will take the value of 1. □

From here on, we assume that 𝜂𝜀 has the mass one.

3.2 Convolution
In this section we will define the convolution between two functions and then show how our
bump function 𝜂𝜀, defined by equation 3.3, can be used to construct a smooth function with
compact support from a function that is compactly supported and integrable.

Definition 16. The convolution between two functions 𝑓 and 𝑔 is written as 𝑓 ∗ 𝑔 and it is
defined as

( 𝑓 ∗ 𝑔) (𝑥) =
∫ ∞

−∞
𝑓 (𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦.

Let’s look at the convolution, 𝑓 𝜀 (𝑥), between a function 𝑓 ∈ 𝐿1(R) and the bump function
𝜂𝜀.

𝑓 𝜀 (𝑥) = ( 𝑓 ∗ 𝜂𝜀) (𝑥) =
∫ ∞

−∞
𝑓 (𝑥 − 𝑦)𝜂𝜀 (𝑦)𝑑𝑦.

One can now construct a variable change


𝑠 = 𝑥 − 𝑦
𝑑𝑦 = −𝑑𝑠

𝑦 → −∞ ⇒ 𝑠 → ∞
𝑦 → ∞ ⇒ 𝑠 → −∞

 .
Hence, we get the following

𝑓 𝜀 (𝑥) = −
∫ −∞

∞
𝑓 (𝑠)𝜂𝜀 (𝑥 − 𝑠)𝑑𝑠 =

∫ ∞

−∞
𝑓 (𝑠)𝜂𝜀 (𝑥 − 𝑠)𝑑𝑠 =

∫ 𝑅

−𝑅
𝑓 (𝑠)𝜂𝜀 (𝑥 − 𝑠)𝑑𝑠

for 𝑅 large enough. This function is now differentiable for 𝑥 since 𝑓 is well defined and 𝜂𝜀
is smooth. Thus 𝑓 𝜀 is smooth on R𝑛 with compact support for any 𝑛 > 0.
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Let’s look at the convolution between a simple not continuous function and the bump
function 𝜂𝜀. Suppose we have the function, 𝑔, defined as

𝑔(𝑥) =
{

1, |𝑥 | < 0.5
0, |𝑥 | ≥ 0.5.

(3.4)

This function is compactly supported and integrable. The convolution, 𝑔𝜀, of 𝑔 and 𝜂𝜀 is
then

𝑔𝜀 (𝑥) =
∫ ∞

−∞
𝑔(𝑠)𝜂𝜀 (𝑥 − 𝑠)𝑑𝑠 =

∫ 0.5

−0.5
𝑔(𝑠)𝜂𝜀 (𝑥 − 𝑠)𝑑𝑠. (3.5)

Thus 𝑔𝜀 is smooth on R with compact support, supp 𝑔𝜀 = {𝑦 ∈ R : |𝑦 | ≤ 0.5 + 𝜀}. In
Figure 3.4 one can see the graph of 𝑔 as well as the graph of 𝑔𝜀.

Figure 3.4: The graph of the function 𝑔, defined by equation 3.4, as well as 𝑔𝜀, defined by
equation 3.5.

3.3 Smooth functions are dense in the set of continuous func-
tions

Smooth functions are easy to work with. If one does not have prior knowledge about if a
function is smooth, but one knows that it is continuous, then one may use the fact that smooth
functions are dense in the set of continuous functions. In general, one could prove a statement
that holds for smooth functions and then if it is possible to construct a sequence of smooth
functions that converge to a continuous function, the statement might hold for continuous
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functions as well. This idea is often used when proving properties of solutions on a varied
form of a PDE, see for example [2]. In this section we show that one can prove that smooth
functions are dense in the set of continuous functions using our bump function 𝜂𝜀 that was
introduced in Section 3.1.
Theorem 9. Smooth functions are dense in the set of continuous functions.
Proof. For 𝑓 , 𝑔 ∈ 𝐶0(Ω), where Ω is a subset of R𝑛, the distance between 𝑓 and 𝑔 is given by

𝑑 ( 𝑓 , 𝑔) = sup | 𝑓 (𝑥) − 𝑔(𝑥) |,∀𝑥 ∈ Ω.

We want to show that the space 𝐶∞(Ω) is locally dense in 𝐶0(Ω). Let 𝑓 ∈ 𝐶0(Ω), given
a 𝛿 > 0, we want to find a 𝑔 ∈ 𝐶∞(Ω) such that 𝑑 ( 𝑓 , 𝑔) < 𝛿. So, let 𝑔(𝑥) = ( 𝑓 ∗ 𝜂𝜀) (𝑥) and
take 𝑥0 ∈ 𝐾 , where 𝐾 is any compact subset of Ω. Then

| 𝑓 (𝑥0) − 𝑔(𝑥0) | = | 𝑓 (𝑥0) − ( 𝑓 ∗ 𝜂𝜀) (𝑥0) | = | 𝑓 (𝑥0) −
∫
𝐵(0,𝜀)

𝑓 (𝑥0 − 𝑦)𝜂𝜀 (𝑦)𝑑𝑦 |.

Since the mass of 𝜂𝜀 = 1 we can multiply 𝑓 (𝑥0) with the integral of 𝜂𝜀 over the domain
𝐵(0, 𝜀), which will give us

| 𝑓 (𝑥0)
∫
𝐵(0,𝜀)

𝜂𝜀 (𝑦)𝑑𝑦 −
∫
𝐵(0,𝜀)

𝑓 (𝑥0 − 𝑦)𝜂𝜀 (𝑦)𝑑𝑦 |.

Since 𝑥0 is a fixed point in 𝐾 , then 𝑓 (𝑥0) is a constant that can be moved into the integral.
That is

|
∫
𝐵(0,𝜀)

𝑓 (𝑥0)𝜂𝜀 (𝑦)𝑑𝑦 −
∫
𝐵(0,𝜀)

𝑓 (𝑥0 − 𝑦)𝜂𝜀 (𝑦)𝑑𝑦 | =|
∫
𝐵(0,𝜀)

( 𝑓 (𝑥0)𝜂𝜀 (𝑦) − 𝑓 (𝑥0 − 𝑦)𝜂𝜀 (𝑦))𝑑𝑦 |

=|
∫
𝐵(0,𝜀)

( 𝑓 (𝑥0) − 𝑓 (𝑥0 − 𝑦))𝜂𝜀 (𝑦)𝑑𝑦 |

≤
∫
𝐵(0,𝜀)

| ( 𝑓 (𝑥0) − 𝑓 (𝑥0 − 𝑦))𝜂𝜀 (𝑦) |𝑑𝑦

=

∫
𝐵(0,𝜀)

| 𝑓 (𝑥0) − 𝑓 (𝑥0 − 𝑦) | |𝜂𝜀 (𝑦) |𝑑𝑦.

For an 𝜀 > 0 that is small enough we have

max
𝑦∈𝐵(0,𝜀)

| 𝑓 (𝑥0) − 𝑓 (𝑥0 − 𝑦) | < 𝛿

since 𝑥0 ∈ 𝐾 where 𝐾 is a compact set, there exists an 𝜀 so that the inequality above holds.
Therefore, we can determine that∫

𝐵(0,𝜀)
| 𝑓 (𝑥0) − 𝑓 (𝑥0 − 𝑦) | |𝜂𝜀 (𝑦) |𝑑𝑦 <

∫
𝐵(0,𝜀)

𝛿 · |𝜂𝜀 (𝑦) |𝑑𝑦 = 𝛿
∫
𝐵(0,𝜀)

|𝜂𝜀 (𝑦) | = 𝛿.

Consequently, since the space 𝐶∞(Ω) is locally dense in 𝐶0(Ω) for an 𝑥0 ∈ 𝐾 where 𝐾 is
any compact subset of Ω, it must also hold for all 𝑥 ∈ Ω. □
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3.4 Proof of smooth partition of unity subordinate a finite
open covering of finite domain

Theorem 10. Given an open bounded set Ω in R𝑛 and finite open sets {𝑉𝑛} in R𝑛 such that

Ω ⊂
𝑁⋃
𝑛=1

𝑉𝑛,

then there exists functions 𝜓𝑛 such that

1. 𝜓𝑛 is smooth on R𝑛.

2. supp𝜓𝑛 ⊂ 𝑉𝑛.

3. 0 ≤ 𝜓𝑛 ≤ 1.

4.
𝑁∑
𝑛=1

𝜓𝑛 (𝑥) = 1 ∀𝑥 ∈ Ω.

Proof. For each sub covering 𝑉𝑛 we define the function

𝜑𝑛 (𝑥) =
{

1 for all 𝑥 on 𝑉𝑛
0 for all 𝑥 outside of 𝑉𝑛.

If we take the convolution of 𝜑𝑛 with 𝜂𝜀, then we will get a smooth function with compact
support on the closed 𝜀-neighborhood of 𝑉𝑛. This is not a subset of 𝑉𝑛, so property 2 would
not hold. Therefore we define the function

�̃�𝑛 (𝑥) =
{

1 for all 𝑥 on𝑊𝑛

0 for all 𝑥 outside of𝑊𝑛

where𝑊𝑛 ⊂ 𝑉𝑛 is defined by𝑊𝑛 = {𝑦 ∈ 𝑉𝑛 : 𝑑 (𝑦, 𝜕𝑉𝑛) > 2𝜀}. We pick the biggest 𝜀 such
that the closure of Ω is compact on the covering of all𝑊𝑛, that is

Ω ⊂
𝑁⋃
𝑛=1

𝑊𝑛.

Now we define the convolution 𝜒𝑛𝜀 (𝑥) = (�̃�𝑛 ∗ 𝜂𝜀) (𝑥). This function is smooth and has
compact support with these conditions

𝑊𝑛 ⊂ supp (𝜒𝑛𝜀 ) ⊂ 𝑉𝑛.

So 𝜒𝑛𝜀 (𝑥) upholds properties 1, 2 and 3. However, this function does not hold for property
4 since if we take a point, 𝑥1, in an area where two sets, 𝑉1 and 𝑉2, overlap, then the sum in
property 4 would be 𝜒1

𝜀 (𝑥1) + 𝜒2
𝜀 (𝑥1) = 2. To solve this we simply define a new function, 𝜓𝑛,

that takes 𝜒𝑛𝜀 (𝑥) and divides it by the sum of each overlapping functions on the point 𝑥. That is
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𝜓𝑛 (𝑥) =
𝜒𝑛𝜀 (𝑥)
𝑛∑
𝑘=1

𝜒𝑘𝜀 (𝑥)
.

Since {𝑊𝑛} is an open finite covering of Ω, then
∑
𝜒𝑘𝜀 (𝑥) > 0 ∀𝑥 ∈ Ω, and so all four

properties hold for 𝜓𝑛 (𝑥). □
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Chapter 4

The Gleason Problem

Partition of unity can be used when dealing with the Gleason problem by constructing local
solutions to the problem on smaller areas. This section utilizes ideas from [1] as well as [6].
LetΩ be a bounded domain inC𝑛 orR𝑛 and let 𝑅(Ω) be a ring (with addition and multiplication
defined pointwise in Ω) of complex or real valued functions on Ω. We say that a domain Ω has
Gleason 𝑅-property at 𝜀 ∈ Ω if for all functions 𝑓 ∈ 𝑅(Ω), such that 𝑓 (𝜀) = 0, there exists a
set of functions { 𝑓𝑖}𝑛𝑖=1 ⊂ 𝑅(Ω) such that

𝑓 (𝑧) =
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑧) (𝑧𝑖 − 𝜀𝑖), for all 𝑧 ∈ Ω.

The Gleason problem is the issue of determining if a domain has a certain Gleason property
and it can also be formulated with the use of maximal ideals.

Definition 17. A subset, 𝐼, of a ring 𝑅 is called an ideal of 𝑅 if the following three properties
hold

1. 𝐼 is non empty.

2. If 𝑎, 𝑏 ∈ 𝐼, then 𝑎 + 𝑏 ∈ 𝐼.

3. If 𝑎 ∈ 𝐼 and 𝑟 ∈ 𝑅 then 𝑟𝑎 ∈ 𝐼 and 𝑎𝑟 ∈ 𝐼.

Definition 18. An ideal 𝐼 ⊂ 𝑅 is called a proper ideal if 𝐼 is not the set 𝑅 itself. That is, 𝐼 is a
proper subset of 𝑅.

Definition 19. A proper ideal 𝐼 is called a maximal ideal if there does not exist any other
proper ideals 𝐽 such that 𝐼 is a proper subset of 𝐽.

If the maximal ideal of 𝑅(Ω) consisting of functions that are vanishing at a point 𝜀 ∈ Ω is
algebraically finitely generated by the coordinate functions (𝑧1 − 𝜀1), (𝑧2 − 𝜀2), . . . , (𝑧𝑛 − 𝜀𝑛),
then Ω has Gleason 𝑅-property at 𝜀.
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4.1 Implementation
In the following sections we will investigate the Gleason problem for some of the spaces that
were defined in Section 2. Afterwards, an implementation of how smooth partition of unity
can be used to solve the Gleason problem will be shown in Section 4.1.5.

The following theorem is called the maximum modulus principle.

Theorem 11. Let Ω ⊂ C be a bounded set and let 𝑓 ∈ A(Ω), then the maximum value of | 𝑓 |
on Ω exists and

max
Ω

| 𝑓 | = max
𝜕Ω

| 𝑓 |.

The proof of this can be found in [12].

4.1.1 Complex analytic functions on the unit disk
In this section we will show that the unit disk has Gleason H -property at a point 𝑧 = 0. If
𝑓 ∈ H (Ω), where Ω is the open unit disk, and 𝑓 (0) = 0 then the Taylor expansion of 𝑓 (𝑧)
around 𝑧 = 0 is

𝑓 (𝑧) =
∞∑︁
𝑘=0

𝑓 (𝑘) (0)𝑧𝑘
𝑘!

=

∞∑︁
𝑘=1

𝑓 (𝑘) (0)𝑧𝑘
𝑘!

.

This sum converges to 𝑓 (𝑧) for all 𝑧 ∈ Ω. Now we can factor out 𝑧 from the sum, since
𝑓 (0) = 0, thus

𝑓 (𝑧) = 𝑧 ·
∞∑︁
𝑘=0

𝑓 (𝑘+1) (0)𝑧𝑘
(𝑘 + 1)! = 𝑧 ·

∞∑︁
𝑘=0

1
(𝑘 + 1) ·

𝑓 (𝑘+1) (0)𝑧𝑘
𝑘!

. (4.1)

Let

𝑔(𝑧) =
∞∑︁
𝑘=0

1
(𝑘 + 1) ·

𝑓 (𝑘+1) (0)𝑧𝑘
𝑘!

. (4.2)

To see if 𝑔(𝑧) ∈ H (Ω) we take the Taylor expansion of 𝑓 (1) (𝑧) around 𝑧 = 0

𝑓 (1) (𝑧) =
∞∑︁
𝑘=0

𝑓 (𝑘+1) (0)𝑧𝑘
𝑘!

which converges to 𝑓 (1) (𝑧) for all 𝑧 ∈ Ω so 𝑔(𝑧) clearly converges to some holomorphic
function for all 𝑧 ∈ Ω. Therefore, the unit disk has Gleason H -property at 𝑧 = 0.
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4.1.2 Bounded holomorphic functions on the unit disk
In this section we will show that the unit disk has Gleason H∞-property at a point 𝑧 = 0. For
𝑓 ∈ H∞(Ω), where Ω is again the unit disk and 𝑓 (0) = 0 we do the same Taylor expansion
as in Equation 4.1 and define 𝑔(𝑧) as in Equation 4.2. In Section 4.1.1, we showed that 𝑔(𝑧)
is holomorphic on |𝑧 | < 1 which means that it is continuous on any closed subset of the unit
disk, let’s say |𝑧 | ≤ 1/2, so from Theorem 2 we have that a continuous function on a compact
set is bounded. Thus Theorem 4 provides that 𝑔(𝑧) is bounded on |𝑧 | ≤ 1/2. For |𝑧 | > 1/2 we
have

∥𝑔(𝑧)∥𝐿∞ =





 𝑓 (𝑧)𝑧 




𝐿∞
< 2∥ 𝑓 (𝑧)∥𝐿∞ < ∞.

Therefore 𝑔(𝑧) converges to an element in H∞(Ω), so the unit disk also has Gleason
H∞-property at 𝑧 = 0.

4.1.3 Analytic functions on the unit disk
In this section we will show that the unit disk has Gleason A0-property at a point 𝑧 = 0. Let
𝑓 ∈ A0(Ω) where Ω is the unit disk and 𝑓 (0) = 0. We take the same Taylor expansion as in
Equation 4.1 and define 𝑔(𝑧) as in Equation 4.2. Let

𝑔𝑛 (𝑧) =
𝑛∑︁
𝑘=0

1
(𝑘 + 1) ·

𝑓 (𝑘+1) (0)𝑧𝑘
𝑘!

. (4.3)

Now we have the limit

𝑓 (𝑧) = 𝑧 · 𝑔(𝑧) = 𝑧 · lim
𝑛→∞

𝑔𝑛 (𝑧).

Clearly 𝑔𝑛 ∈ H (C), we need to show that 𝑔𝑛 converges to a continuous function on the
boundary of Ω. From Theorem 11 we get

∥𝑔𝑛∥𝐿∞ (Ω) = ∥𝑔𝑛∥𝐿∞ (𝜕Ω) .

Since 𝜕Ω is given by |𝑧 | = 1 we have

∥𝑔𝑙 − 𝑔𝑘 ∥𝐿∞ (𝜕Ω) = ∥𝑧∥𝐿∞ (𝜕Ω) · ∥𝑔𝑙 − 𝑔𝑘 ∥𝐿∞ (𝜕Ω) = ∥𝑧𝑔𝑙 − 𝑧𝑔𝑘 ∥𝐿∞ (𝜕Ω) = ∥ 𝑓𝑙 − 𝑓𝑘 ∥𝐿∞ (𝜕Ω) .

Considering that 𝑓𝑛 is a Cauchy sequence that converges to an element 𝑓 ∈ 𝐶0(Ω) with the
supremum norm, there exists an 𝑁 ∈ N such that for all 𝑙, 𝑘 > 𝑁 there is an 𝜀 > 0 such that

∥𝑔𝑙 − 𝑔𝑘 ∥𝐿∞ (Ω) = ∥𝑔𝑙 − 𝑔𝑘 ∥𝐿∞ (𝜕Ω) = ∥ 𝑓𝑙 − 𝑓𝑘 ∥𝐿∞ (𝜕Ω) < 𝜀.

Therefore 𝑔𝑛 is a Cauchy sequence under the supremum norm taken over the closed unit
disk so from Theorem 3 we have that 𝑔𝑛 converges to an element in 𝐶0(Ω). Thus the unit disk
has Gleason A0-property at 𝑧 = 0.
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4.1.4 Analytic functions with continuous derivatives on the unit disk

In this section we will show that the unit disk has Gleason A1-property at point 𝑧 = 0. Let
𝑓 ∈ A1(Ω) where Ω is the unit disk and 𝑓 (0) = 0. We define 𝑔𝑛 (𝑧) like in Equation 4.3 and
do the same calculations as in Section 4.1.3 to prove that 𝑔𝑛 converges to an element in 𝐶0(Ω).
We also need to prove that 𝑔(1)𝑛 converges to an element in 𝐶1(Ω). Clearly 𝑔(1)𝑛 ∈ H (C) so
from Theorem 11 we get

∥𝑔(1)𝑛 ∥
𝐿∞ (Ω) = ∥𝑔(1)𝑛 ∥𝐿∞ (𝜕Ω) .

Thus for two functions in the sequence 𝑔(1)𝑛 we have

∥𝑔(1)
𝑙

− 𝑔(1)
𝑘

∥
𝐿∞ (Ω) = ∥𝑔(1)

𝑙
− 𝑔(1)

𝑘
∥𝐿∞ (𝜕Ω) .

The boundary is given by |𝑧 | = 1, therefore

∥𝑔(1)
𝑙

− 𝑔(1)
𝑘

∥𝐿∞ (𝜕Ω) =∥𝑧∥𝐿∞ (𝜕Ω) · ∥𝑔(1)𝑙 − 𝑔(1)
𝑘

∥𝐿∞ (𝜕Ω)

=∥𝑧 · 𝑔(1)
𝑙

− 𝑧 · 𝑔(1)
𝑘

∥𝐿∞ (𝜕Ω)

=∥ 𝑓 (1)
𝑙

− 𝑓
(1)
𝑘

∥𝐿∞ (𝜕Ω) < 𝜀.

Using the same reasoning as in Section 4.1.3 we can see that 𝑔(1)𝑛 converges to an element
in 𝐶0(Ω) now it is clear that 𝑔𝑛 converges to an element in 𝐶1(Ω). Thus the unit disk has
Gleason A1-property at 𝑧 = 0. With the same reasoning, one can prove that the unit disk has
Gleason A𝑘 -property at 𝑧 = 0 for all 𝑘 ∈ N.

4.1.5 A subset of smooth functions

In this section we will use partition of unity to show that a bounded subset Ω ⊂ R2 has Gleason
𝑅-property at a point 𝑝 ∈ Ω, where 𝑅(Ω) ⊂ 𝐶∞(Ω) is the ring of functions that are real
analytic in 𝑝 ∈ Ω. One can analyze an open covering, Ω1, over a point where 𝑓 ∈ 𝐶∞(Ω) is
real analytic, and then an open covering, Ω2, over the rest of the domain. Let Ω1 be an open
disk centered at the origin, then we can do a Taylor expansion of 𝑓 (𝑥, 𝑦) around (𝑥, 𝑦) = (0, 0).
We let 𝑓 (0, 0) = 0 which means that we can factor out the first terms of the sum as well as the
variables 𝑥 and 𝑦 like in the following calculations.
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𝑓 (𝑥, 𝑦) =
∞∑︁
𝑚=0

∞∑︁
𝑛=0

1
𝑚!𝑛!

𝜕𝑚+𝑛 𝑓

𝜕𝑥𝑚𝜕𝑦𝑛
(0, 0)𝑥𝑚𝑦𝑛

=𝑦 · 𝜕 𝑓
𝜕𝑦

(0, 0) + 𝑥 · 𝜕 𝑓
𝜕𝑥

(0, 0) +
∞∑︁
𝑚=1

∞∑︁
𝑛=1

1
𝑚!𝑛!

𝜕𝑚+𝑛 𝑓

𝜕𝑥𝑚𝜕𝑦𝑛
(0, 0)𝑥𝑚𝑦𝑛

=𝑦 · 𝜕 𝑓
𝜕𝑦

(0, 0) + 𝑥 · 𝜕 𝑓
𝜕𝑥

(0, 0) + 𝑥 ·
∞∑︁
𝑚=1

∞∑︁
𝑛=1

1
𝑚!𝑛!

𝜕𝑚+𝑛 𝑓

𝜕𝑥𝑚𝜕𝑦𝑛
(0, 0)𝑥 (𝑚−1)𝑦𝑛

=𝑦 · 𝜕 𝑓
𝜕𝑦

(0, 0) + 𝑥 ·
(
𝜕 𝑓

𝜕𝑥
(0, 0) +

∞∑︁
𝑚=1

∞∑︁
𝑛=1

1
𝑚!𝑛!

𝜕𝑚+𝑛 𝑓

𝜕𝑥𝑚𝜕𝑦𝑛
(0, 0)𝑥 (𝑚−1)𝑦𝑛

)
.

For simplicity we construct the following notations

𝑓 𝑥1 (𝑥, 𝑦) =
𝜕 𝑓

𝜕𝑥
(0, 0) +

∞∑︁
𝑚=1

∞∑︁
𝑛=1

1
𝑚!𝑛!

𝜕𝑚+𝑛 𝑓

𝜕𝑥𝑚𝜕𝑦𝑛
(0, 0)𝑥 (𝑚−1)𝑦𝑛,

𝑓
𝑦

1 (𝑥, 𝑦) =
𝜕 𝑓

𝜕𝑦
(0, 0).

The region of convergence for this Taylor expansion is given by the disks |𝑥 | < 𝑟𝑥
and |𝑦 | < 𝑟𝑦 where 𝑟𝑥 and 𝑟𝑦 are dependent on the function 𝑓 (𝑥, 𝑦). Let our covering
Ω1 = 𝐷𝑟 =

√︁
𝑥2 + 𝑦2 < 𝑟, where 𝑟 = min(𝑟𝑥 , 𝑟𝑦). Now 𝑓 (𝑥, 𝑦) can be expressed as a Taylor

series centered at the origin, which converges to a smooth function onΩ1. We letΩ2 = (𝐷𝑟/2)𝑐,
so that the two coverings are open and overlapping. Since (0, 0) ∉ Ω2 we have for 𝑓 (𝑥, 𝑦) ∈ Ω2:

𝑓 (𝑥, 𝑦) = 1 · 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2

𝑥2 + 𝑦2 · 𝑓 (𝑥, 𝑦) = 𝑥 · 𝑥

𝑥2 + 𝑦2 · 𝑓 (𝑥, 𝑦) + 𝑦 · 𝑦

𝑥2 + 𝑦2 · 𝑓 (𝑥, 𝑦).

For simplicity we construct the following functions

𝑓 𝑥2 (𝑥, 𝑦) =
𝑥

𝑥2 + 𝑦2 · 𝑓 (𝑥, 𝑦),

𝑓
𝑦

2 (𝑥, 𝑦) =
𝑦

𝑥2 + 𝑦2 · 𝑓 (𝑥, 𝑦).

In Figure 4.1 one can see how the two domains, Ω1 and Ω2, overlap to cover the full domain
of Ω.
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Figure 4.1: An illustration of the overlapping domains Ω1 and Ω2, defined in Section 4.1.5.

Now we can use our smooth partition of unity, where 𝜓1 and 𝜓2 are the partitions over Ω1
and Ω2 respectively. We pick our 𝜓1 so that it has compact support in 𝐷𝑟 and we can pick our
𝜓2 so that it has compact support in (𝐷𝑟/2)𝑐.

𝑓 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)𝜓1(𝑥, 𝑦) + 𝑓 (𝑥, 𝑦)𝜓2(𝑥, 𝑦)
=(𝑥 · 𝑓 𝑥1 (𝑥, 𝑦) + 𝑦 · 𝑓

𝑦

1 (𝑥, 𝑦))𝜓1(𝑥, 𝑦) + (𝑥 · 𝑓 𝑥2 (𝑥, 𝑦) + 𝑦 · 𝑓
𝑦

2 (𝑥, 𝑦))𝜓2(𝑥, 𝑦)
=𝑥 · ( 𝑓 𝑥1 (𝑥, 𝑦)𝜓1(𝑥, 𝑦) + 𝑓 𝑥2 (𝑥, 𝑦)𝜓2(𝑥, 𝑦)) + 𝑦 · ( 𝑓 𝑦1 (𝑥, 𝑦)𝜓1(𝑥, 𝑦) + 𝑓

𝑦

2 (𝑥, 𝑦)𝜓2(𝑥, 𝑦)).

Since supp𝜓1 ⊂ 𝐷𝑟 , we have that 𝜓1(𝑥, 𝑦) = 1 for (𝑥, 𝑦) ∈ 𝐷𝑟/2 and we also have that
𝜓2(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ 𝐷𝑟/2 so the function 𝑓 (𝑥, 𝑦) on 𝐷𝑟/2 is given by

𝑓 (𝑥, 𝑦) = 𝑥 · 𝑓 𝑥1 (𝑥, 𝑦) + 𝑦 · 𝑓
𝑦

1 (𝑥, 𝑦),
where the functions 𝑓 𝑥1 (𝑥, 𝑦) and 𝑓

𝑦

1 (𝑥, 𝑦) are smooth functions that are analytic on the
origin. Similarly supp𝜓2 ⊂ (𝐷𝑟/2)𝑐 so 𝜓2(𝑥, 𝑦) = 1 and 𝜓1(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ (𝐷3𝑟/2)𝑐 so
𝑓 (𝑥, 𝑦) on (𝐷3𝑟/2)𝑐 is

𝑓 (𝑥, 𝑦) = 𝑥 · 𝑓 𝑥2 (𝑥, 𝑦) + 𝑦 · 𝑓
𝑦

2 (𝑥, 𝑦),
where the functions 𝑓 𝑥2 (𝑥, 𝑦) and 𝑓

𝑦

2 (𝑥, 𝑦) are smooth functions on Ω2. For points in
between the two sets 𝐷𝑟/2 and (𝐷3𝑟/2)𝑐 we still have that 𝜓1(𝑥, 𝑦) +𝜓2(𝑥, 𝑦) = 1. Thus we can
now prove the following theorem:

Theorem 12. LetΩ ⊂ R2 and let 𝑅(Ω) ⊂ 𝐶∞(Ω) be the ring of functions that are real analytic
in 𝑝 ∈ Ω, then Ω has the Gleason 𝑅-property at 𝑝.

Proof. We want to show that 𝑓 ∈ Ω has Gleason 𝑅-property at 𝑝. We construct a variable
change such that the point 𝑝 = (𝑝𝑤, 𝑝𝑧) is represented by the origin, that is (𝑤, 𝑧) = (𝑥 + 𝑝𝑤, 𝑦 + 𝑝𝑧).
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Now for (𝑥, 𝑦) = (0, 0) we have (𝑤, 𝑧) = (𝑝𝑤, 𝑝𝑧) = 𝑝. Then we compose the partition of
unity above such that

𝑓 (𝑥, 𝑦) = 𝑥 · 𝑓1(𝑥, 𝑦) + 𝑦 · 𝑓2(𝑥, 𝑦).
Now we execute the variable change (𝑥, 𝑦) = (𝑤 − 𝑝𝑤, 𝑦 − 𝑝𝑧) so that we are back in our

original domain. That is

𝑓 (𝑤 − 𝑝𝑤, 𝑧 − 𝑝𝑧) = (𝑤 − 𝑝𝑤) 𝑓1(𝑤 − 𝑝𝑤, 𝑧 − 𝑝𝑧) + (𝑧 − 𝑝𝑧) 𝑓2(𝑤 − 𝑝𝑤, 𝑧 − 𝑝𝑧). (4.4)

Since 𝑝𝑤 and 𝑝𝑧 are constants we can introduce functions 𝑓 , 𝑓1 and 𝑓2 such that Equation
4.4 becomes

𝑓 (𝑤, 𝑧) = (𝑤 − 𝑝𝑤) 𝑓1(𝑤, 𝑧) + (𝑧 − 𝑝𝑧) 𝑓2(𝑤, 𝑧).
□

With similar calculations and reasoning one can also prove that Theorem 12 holds for
domains Ω ⊂ R𝑛.
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Chapter 5

Conclusion

The Gleason problem can be tricky to solve, in order to tackle this complicated problem we
initially delved into the topic of function spaces. By properly defining the function spaces and
assigning appropriate norms to them we could later in Section 4 prove that the unit disk has the
Gleason property on the origin for these spaces. In addition to function spaces, we delved into
the construction of partition of unity, which has proven to be a useful tool when solving the
Gleason problem. Specifically, in this thesis we used smooth partition of unity to prove that
a domain in R2 has Gleason 𝑅-property at any point 𝑝 in the domain, where 𝑅 is the ring of
smooth functions that are real analytic in 𝑝. The proof centered around the fact that if a domain
has Gleason 𝑅-property at the origin, one can study the Gleason problem on a region around
the origin and an overlapping region on the rest of the domain. Afterwards, we combine these
areas together using our smooth partition of unity such that the Gleason property holds for the
entire domain. Lastly, we prove with a change of variable that the domain in fact has Gleason
𝑅-property at any point 𝑝 in the domain.

The results in this thesis are well known however, the final outcome in Section 4.1.5 is
according to my knowledge an entirely new result. Moreover, the proofs of Theorem 8, 9,
10 and 12 as well as the proofs in Section 3.1 are constructed by myself. In addition, I have
produced the implementations and calculations in Section 4.1 and in Section 3.2. Furthermore
all figures in this thesis are personally illustrated.

The findings derived from this thesis touch on current work. For future research, one
interesting topic to investigate is the dilemma of whether a Hartogs domain possesses the
Gleason H∞-property. Another subject one could investigate is the Gleason problem on other
rings of real valued functions. One could also study whether the ring of smooth functions that
are real analytic in 𝑝 is Noetherian.
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