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                             ABSTRACT 

The new generation of embedded systems will increase interaction between the environment, 

people, and autonomous devices. This will increase their need for communication, particularly in 

meeting real-time requirements. To address the real-time requirements of embedded systems, a 

communication network capable of providing high bandwidth, low latency, and deterministic 

behaviour is necessary. Time-Sensitive Networking (TSN) was developed by the IEEE 802.1 TSN Task 

Group and is a set of standards providing deterministic service over standard Ethernet and is an 

attractive option for achieving this. TSN leverages the advantages of IEEE Ethernet standards, 

including low hardware cost, high bandwidth, and deterministic behaviour.  TSN uses time 

synchronization, traffic shaping, strict priority, and resource reservation mechanisms to provide a 

reliable and deterministic network environment suitable for real-time applications. However, for 

these mechanisms to work and TSN to achieve high performance, the network must be fully 

synchronized. In this thesis, we aim to integrate existing legacy devices into a TSN network without 

incorporating TSN functionality into them, as implementing all TSN standards requires significant 

investments in time, financial resources, and infrastructure upgrades. However, as the legacy devices 

don’t have TSN capabilities and cannot implement TSN synchronization protocols, they cannot 

synchronize with the TSN switches, which causes negative adverse such as clock drift between the 

TSN switches and the legacy end-stations. In this thesis, we aim to minimize the clock drift in the 

partially synchronized heterogeneous network, allowing researchers and organizations to take 

advantage of the benefits of adopting TSN into a legacy network without facing those issues. To solve 

the clock drift that occurs between the legacy end-stations and the TSN switches, we implemented 

one solution by combining those proposed solutions in the previous work [9] by using the Drift 

Detector (DD) and the Centralised Network Configuration element (CNC). This will be resolved by DD 

measuring and calculating the difference between the expected and actual reception of the 

messages from the receiver end-station. The CNC later uses the variation values detected by the DD 

to modify the TSN schedule and updates the network with the new period. In this way, we could 

minimize the negative consequences caused by partial synchronization in the network. 
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1.Introduction 
An embedded system is a system that was created to perform a specific task or function and is often 

a component of a larger system. [1]. These systems are used in a wide range of applications and can 

be found all around us in the modern world, e.g., in the car we drive, in industries or in the 

smartphone we carry in our pocket. Many embedded system application’s functionalities and 

advanced features transmit data in real-time and need to respond quickly to changes in their 

environment. Therefore, they require high bandwidth and rely increasingly on real-time capabilities. 

Real-time systems (RTS) are described as computer systems that respond to external events and 

perform computer tasks based on these events. RTSs return the response within a specified 

timeframe measured in milliseconds or microseconds [2]. RTSs are necessary for embedded systems 

and other applications where errors or delays might lead to consequences, particularly in critical 

sectors such as healthcare, infrastructure, and transportation [3]. The end-to-end latency must be 

predictable and bounded for RTSs to guarantee the output and ensure the system meets its real-time 

requirements. End-to-end latency refers to a system’s time to handle input and generate output [4]. 

Several predictable approaches have been considered to improve reliable time-sensitive network 

communication, such as Controller Area Network (CAN), a network communication protocol well 

suited for real-time systems [5]. However, CAN has a relatively low bandwidth and does not provide 

deterministic communication, meaning there is no guaranteed time frame for message delivery. This 

can have consequences in real-time systems that require predictable response time. Therefore, 

Ethernet is considered an alternative to CAN with lower adoption costs and higher bandwidth [6]. 

However, Ethernet has limited Quality of Service (QoS) capabilities and misses predictability in data 

delivery, i.e., it cannot provide deterministic behaviour or guarantee the performance needed for 

real-time systems that depends on accurate and deterministic communication.  

To meet the RTSs requirements, a standard providing reliable data transfer and high throughput is 

required. IEEE 802.1 TSN Task Group constructed TSN, which offers low-latency capabilities and 

deterministic communication to support real-time applications [7]. TSN uses switches to calculate the 

network's needs, ensuring minimal packet loss, jitter, and low latency to support real-time 

communication. The switches can perform this using different traffic classes such as Audio-Video 

Bridging (AVB), Time-Triggered (TT) and Best-Effort (BE). The high-priority traffic is the TT traffic, 

which is time-triggered control traffic, followed by AVB, which allows low-latency streaming services 

to be delivered over the Ethernet network and BE, which has the lowest priority. TSN is an extension 

of the conventional Ethernet enabling time synchronization, traffic shaping, strict priority, and 

resource reservation. TSN uses Time-Aware Shaper (TAS) and Credit-Based Shaper (CBS) as traffic 

shapers to prioritize traffic, ensuring that time-sensitive traffic is given priority over other types of 

traffic and is delivered deterministically [2]. Time synchronization is used for TSN to perform the 

characteristics required in real-time systems. However, without proper implementation of time 

synchronization, other mechanisms, such as scheduling, and traffic shaping, would not work correctly 

as they rely on the accurate timing of network events. TSN uses time synchronization to synchronize 

the different clocks within a network to a standard time domain. However, implementing time 

synchronization takes significant resources and time; in many cases, it is not even practical. In this 

thesis, we will integrate existing legacy devices in a TSN network without incorporating TSN 

functionality into them. In this thesis, we will implement previously proposed solutions for a partially 

synchronized network to help companies or researchers benefit from integrating TSN-capable end-

stations with TSN devices in a network and benefit from the reduced time and resources needed to 

adopt TSN devices. 
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This thesis is an extension of Nguyen and Nasiri’s thesis [8] and Johansson’s work in [9], analyzing the 

performance of a partial and out-of-synchronization heterogeneous TSN network. Authors in [8] and 

[9] have detected adverse consequences when integrating TSN with legacy devices, as the network 

lacks full synchronization. Therefore, authors in [9] proposed solutions to detect adverse effects. In 

this thesis, we aim to implement the previously proposed solutions in [9] and then will test and 

evaluate them. This is because the authors in previous work [9] did a proof of concept but not a 

functional implementation of the proposed solution. The implementation presented in this work will 

allow researchers and organizations to take advantage of the benefits of adopting TSN into a legacy 

network without facing those issues. 

1.2 Thesis outline 
The rest of this work is organized as follows: Section 2 contains foundational information, including 
key terms and concepts, that is necessary to know for this thesis. Section 3 presents related work 
covering a variety of related topics. In Section 4, the problem formulation is described, while Section 
5 briefly provides the chosen research method for this thesis. Section 6 describes ethical 
considerations, and Section 7 defines the description and implementation of the experiments 
performed in this thesis. Section 8 presents the results from the experimental scenarios performed, 
and Section 9 summarizes and discusses all observations and evaluations gained through this thesis. 
Finally, section 10 summarizes this work, followed by ideas for future investigations in Section 11. 
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2.Background 
Ethernet is the most widely used networking medium. Due to its high cost, limited scalability, and 

limited QoS, switched Ethernet is an alternative to standard Ethernet since it provides an efficient 

and convenient way to increase network bandwidth. However, switched Ethernet exhibits limitations 

when utilized with real-time traffic, which can be solved with AVB or TSN. AVB is a set of standards 

that allow the transmission of real-time audio and video streams over Ethernet networks. 

Meanwhile, TSN is based on Ethernet and leverages Ethernet advantages such as scalability and 

bandwidth while providing the deterministic behaviour required for real-time systems. This section 

explains the concepts and techniques for achieving goals, such as real-time systems, Ethernet, 

switched Ethernet, AVB and TSN. 

2.1 Real-Time Systems 
A real-time system is a type of computer system designed to handle external events, perform 
computer tasks based on these events, and returns the response within a specified time [2]. A 
response can consist of doing calculations or responding to the occurrence. A deadline is the earliest 
possible time the system or any of its processes must respond. The real-time system's accuracy 
depends on returning the correct answer and providing it within a time. For example, if we take an 
MP3 player, the music will not sound as it should if the signal is not delivered to the headphones in 
time. In real-time systems, determinism refers to the capacity to predict and ensure the exact timing 
of an event or task in a system. To guarantee that deadlines are met, determinism is required, and 
Jitter indicates how deterministic a system is. Jitter is the variation in the time between packet 
transmission or arrival in a network [8]. Removing jitter in real-time systems is to avoid dangerous 
events caused by missed deadlines, such as a delay in an airbag inside a vehicle during an emergency. 
The primary classification of real-time systems is either soft, firm, or hard, based on the impact of the 
missed deadline.  
 

- Soft real-time systems are those for which missing one of their deadlines does not mean the 
system fails [11]. Missed deadlines in soft real-time systems affect only the output quality, 
i.e., if a digital camera's shutter is slower than it should be, it affects the image, but no 
disastrous consequences occur. 
 

- Hard real-time systems can tolerate less jitter than soft real-time systems. However, hard 
real-time systems are those where a single missed deadline can cause the entire system to 
fail or have catastrophic consequences. A hard real-time system is stricter regarding time and 
scheduling to ensure that all tasks must be completed on time. [11] Some hard real-time 
systems are an airbag in a car, aircraft equipment, and anti-lock braking systems in modern 
vehicles. 

 

- In firm real-time systems, it is acceptable to miss a deadline [2]. If the process is not 
completed by the deadline, the outcome is useless, and the assignment should be 
abandoned. A financial trading system is an example of a firm's real-time system. While 
failing to meet a deadline may not cause the system to fail, it might cause significant financial 
losses. 

When components must communicate through a network, the network's end-to-end delay must be 
limited to ensure that the critical messages can be transferred within the real-time constraint [2]. 
However, most traditional networks cannot follow the timing constraints required, so they cannot be 
applied to real-time systems. Therefore, to meet the requirement significant for real-time systems, 
Ethernet, which is covered in more detail in the next section, may be an option to meet those 
requirements. 
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2.2 Real-time communication 

2.2.1 Ethernet 
Ethernet is adopted as the most common local area networking technology in homes and offices. 
Ethernet was developed in 1976 by the Xerox Palo Alto Research Center (PARC), commercialized in 
1980, and first standardized as IEEE 802.3 in 1983 [2]. Ethernet is a set of network technology 
standards used for communication in Local Area Networks (LAN), and it has become a widely 
adopted standard for wired LANs. Ethernet contains both the physical and data link layers of the OSI 
model. The data link layer consists of the logical link control (LLC) layer and the media access control 
address (MAC) layer. MAC handles the hardware with access to the transmission medium, while LLC 
provides error control of the data link layer, clock synchronization, and flow control. Each node in the 
network has a unique 48-bit MAC address. High-speed local area networks can be built using 
Ethernet, a reliable, scalable, and affordable technology. Like radio systems and CAN functions, 
Ethernet networks have been designed to use a shared medium for all linked nodes and support 
various network topologies. Ethernet is built on Carrier Sense Multiple Access/Collision Detection 
(CSMA/CD) and is the arbitration mechanism used in the Ethernet network to control access to the 
shared transmission medium, commonly a coaxial cable or twisted pair cable. Each network device 
listens to the network through an Ethernet hub to check if the transmission medium is available for 
use or not in CSMA/CD. The devices can transfer data if no transmission has been discovered. 
However, when multiple devices attempt to transmit data at the same time., collisions occur. If a 
collision occurs, all devices involved in the collision discontinue transmitting and pause for a random 
period before they try to retransmit data again. However, the collision occurring in CSMA/CD can 
introduce variable and unpredictable delays, making it unsuitable for real-time performance. 
Ethernet using a best-effort delivery mechanism makes Ethernet also unsuitable for real-time 
systems. Resulting in difficulty in guaranteeing the delivery and timing of data packets because the 
data is sent as soon as possible. Still, there is no guarantee of when they will be delivered. Therefore, 
a more suitable solution that works better for real-time systems is switched Ethernet. Switched 
Ethernet can help eliminate collisions occurring in Ethernet using switching technology, which will be 
described in further detail in the next section. 

2.2.2 Switched Ethernet  
Switched Ethernet is a type of network technology that connects devices on a network using 

Ethernet switches. Switched Ethernet is often combined with other network technologies, such as 

Wi-Fi, to deliver a complete network solution that fits the needs of modern applications and devices. 

Each device in a switched Ethernet network is linked to a dedicated port on the Ethernet switch, 

establishing a specific point-to-point connection between the devices [10]. Switched Ethernet takes 

advantage of the scalability, high bandwidth, and cost-effectiveness of an Ethernet network while 

providing limited latency and time reliability. Switched Ethernet makes it possible to achieve full-

duplex communication, allowing network nodes to send and receive messages at the same time. The 

significant difference between switched Ethernet and conventional Ethernet is how they handle data 

transmission, as switched Ethernet uses a switch instead of a hub. A switch establishes dedicated 

point-to-point connections between devices, where each device is linked to a dedicated port on the 

switch, and data is sent directly between the transmitter and receiver. Meanwhile, a hub is a simple 

device that broadcasts incoming data to all connected devices. In traditional Ethernet, a collision may 

occur when two or more devices transmit traffic simultaneously, resulting in data loss and 

retransmission. This problem is solved by switching Ethernet, which only sends data from sources to 

destinations using the MAC addresses of all linked interfaces. However, switched Ethernet 

performance is still influenced by network congestion, packet size, and QoS algorithms. Therefore, 

switched Ethernet may not be suitable for all real-time applications, even though it can increase 
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Ethernet's applicability for real-time systems. The following section will provide further information 

on AVB, which can be a better solution to provide real-time support than switched Ethernet does. 

2.2.3 Audio Video Bridging 
Switched Ethernet supports the creation of several independent broadcast domains, known as virtual 

LANs (VLANs). However, since switched Ethernet performs best-effort delivery; it is not considered 

suitable for real-time systems. The IEEE AVB Task Group established AVB, where prioritizing traffic 

according to its importance and time sensitivity is one of AVB's primary characteristics. AVB is a set of 

protocols that improve switched Ethernet's capabilities for supporting real-time, high-bandwidth 

audio and video streaming applications [8] [9]. For AVB to guarantee low latency and high-reliability 

delivery of real-time traffic, it integrates several different technologies, including QoS, 

synchronization, traffic management, and stream reservation algorithms. The main standards that 

the task group introduced are the following: 

❖ IEEE 802.1AS: Used by AVB for time synchronization, which provides all devices on the network 

with an exact and stable clock. This enables the synchronization of audio and video streams across all 

network devices, which is essential for real-time applications. 

❖ IEEE 802.1Qat: This standard is used by AVB and is a standard for stream reservation protocol 

(SRP). This guarantees that the bandwidth for sending audio and video streams is ensured and not 

affected by other network traffic. 

❖ IEEE 802.1BA: This standard for traffic management by AVB enables more efficient use of network 

resources while ensuring that real-time traffic is provided with high reliability and low latency. 

❖ IEEE 802.1Qav: Defines forwarding and queueing rules to ensure messages are received 

immediately. 

However, AVB still fails to fulfil the demands of hard real-time systems since it cannot handle channel 

congestion, and messages can be delayed because Credit-Based Shaper (CBS) can’t guarantee zero 

jitters, which makes it not completely deterministic [8] [9]. CBS is used in TSN to handle the traffic 

flow and ensure that the necessary traffic is transmitted by allocating credits to each stream so they 

can be prioritized. The IEEE 802.1 AVB Task Group was renamed the TSN Task Group to solve this 

issue with AVB. Additional approaches have been introduced to transmit time-sensitive traffic via 

Ethernet. TSN is the most current Ethernet extension and the successor of IEEE AVB, which will be 

explained in detail in the next section. 



5 
 

2.3 Time-Sensitive Networking (TSN) 
TSN was developed to solve the increasing demand for deterministic, high-bandwidth, low-latency 

communications in automotive, industrial automation, and other sectors where real-time 

communications are essential. TSN is a set of Institute of Electrical and Electronics Engineers (IEEE) 

standards. The 802.1 standards were developed by the TSN Task Group to simplify the transport of 

time-sensitive communications over Ethernet networks [11]. The TSN operates at the OSI data link 

layer, ensuring that information transmitted between two devices arrives in a specified and 

predictable time frame. For TSN to ensure that the network is deterministic and meets the real-time 

requirements of the system, time-synchronization and scheduling mechanisms are used. TSN uses 

two scheduling mechanisms, TAS and CBS, to fulfil the varying real-time requirements of different 

applications. Both scheduling mechanisms are needed to guarantee that high-priority traffic is 

carried out with minimal delay and jitter while allowing the transmission of traffic with lower priority. 

TSN uses time synchronization to synchronize the different clocks within a network to a standard 

time domain. To ensure the network's schedule is maintained correctly, TSN requires that all 

switches be clock-synchronized using 802.1AS. IEEE 802.1AS consists of several mechanisms used to 

synchronize clocks. The three main mechanisms are the Best Master Clock Algorithm (BMCA), 

Propagation Delay Measurement (PDM), and Transport of Time Synchronization Information (TTI) 

[12]. The forthcoming sections will describe the mechanisms used to synchronize the clocks and the 

scheduling mechanisms in TSN. 

2.3.1 Best Master Clock Algorithm (BMCA) 
BMCA is a mechanism that enables deterministic and low-latency communication over Ethernet 

networks and is a crucial component of the TSN standard. In TSN networks, BMCA decides which 

clock source is the most accurate and should be the network's reference clock [12]. The BMCA 

determines the hierarchy between the different TSN devices and selects the grandmaster clock. The 

BMCA defines a time-synchronization-spanning tree, where the grandmaster assumes the root’s role, 

as shown in Figure 1. As shown in the figure, each system can operate as a grandmaster time-aware 

system or a slave time-aware system [8]. BMCA selects the grandmaster clock in a TSN network by 

combining clock quality evaluation and priority ranking. To determine the hierarchy between the 

devices in the network, each BMCA system periodically sends a broadcast message called an 

announce message. After identifying the grandmaster, all other systems or nodes become slaves and 

synchronize their clocks with the grandmaster. The figure illustrates the four different types of port 

roles, namely Master ports (M), Slave ports (S), Passive ports (P), and Disabled ports (D). BMCA 

determines the hierarchy of TSN devices based on the information provided by each port role and 

chooses the most accurate clock source to serve as the grandmaster clock. 
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                                           Figure 1: Best Master Clock Algorithm diagram 

 

2.3.2 Propagation Delay Measurement (PDM)                       
After the hierarchy has been established in BMCA, the PDM mechanism calculates the propagation 

delay between systems. PDM is a crucial component of TSN, enabling precise synchronization among 

the devices in a network by compensating for signal propagation delays [12]. PDM begins with one 

system transmitting a latency request (Delay_request) to another system through its slave port, 

whether it is another slave time-aware or the grandmaster, and it keeps track of when the message 

was transmitted (T1), as shown in Figure 2. The time when the message was received is sampled by 

the receiver (T2) after receiving it through its master port, which returns T2 to the initiator, where 

the time the message was sent will be noted. After the initiator receives T2, the time the message 

was received (T4) will be recorded too. Lastly, to calculate the delay, the responder transmits T3 to 

the initiator. The following formula is used to calculate the delay:  

Delay measurement = (T4 – T1) – (T3 – T2)  
                                                   2 
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Figure 2: Propagation Delay Measurement diagram 

2.3.3 Time Synchronization Information (TTI) 
The TTI algorithm can synchronize other time-aware systems by forwarding the grandmaster time 

[12]. The execution of TTI occurs after establishing the spanning tree with the root as the 

grandmaster and the latency measurement by the slave time-aware systems. During the TTI 

procedure, nodes broadcast their current time via their allocated master ports. Systems that receive 

messages through their slave ports add the calculated delay and modify their local time accordingly. 

2.3.4 Scheduling Mechanisms  
To avoid congestion and ensure that all traffic can be sent without dropping packets, shaping 

algorithms regulate the traffic rate on a network in TSN. TSN uses two traffic shaping algorithms, TAS 

and CBS, to distribute network resources across various classes. The sections that follow provide 

detailed descriptions of the TAS and CBS mechanisms. 

2.3.4.1 Time-Aware Shaper  
TAS is an essential mechanism of TSN and is specified in the 802.1Qbv standard, it determines when 

different traffic classes can transmit on a network [2]. In TAS, TT traffic is prioritized over other traffic 

using a scheduling algorithm to keep the network from overloading. In Figure 3, we can see an 

overview of the several possible priority classes in TSN. The first class, ST, is used for network control 

traffic and has the highest priority. Later, we have the AVB A class [13], which is frequently used for 

video traffic and has a high priority, while AVB B is used for audio traffic and has a medium focus. 

Lastly, there is the BE traffic, which is used for "best effort" traffic and has the lowest priority. The 

Gate Control List (GCL) is a parameter in TAS and is the gate driver that changes the gate state in TAS. 

Figure 3 shows the GCL table, with a value of 1 denoting an open gate and a value of 0 indicating a 

closed gate. When a gate is in the open state, frames can be transmitted, and when the gate is 

closed, there is no transmission. If several gates are open simultaneously, the traffic with higher 
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priority takes precedence and is transmitted, causing lower-priority traffic to be delayed. When TAS 

finishes scheduling the last queue in the GCL, it starts over again from the beginning. 

 

Figure 3: Time-Aware Shaper (TAS) diagram  

2.3.4.2 Credit-Based Shaper  
CBC is used to limit the traffic rate on a network using a credit-based approach. CBS is another 

scheduling mechanism that can be applied with TAS, defined in 802.1Qav. The shaping mechanisms 

complement each other [2]. TAS attempts to reduce the time that high-priority traffic cannot 

transmit due to the presence of low-priority traffic. In contrast, CBS ensures that low-priority traffic, 

such as BE traffic, can send traffic without being starved by high-priority traffic [8]. Class A and Class 

B are the two TSN traffic classifications that CBS typically operates, with Class A having a higher 

priority than Class B. CBS makes sure that the necessary traffic is transmitted using a variable called 

"credit," so it can be scheduled in a prioritized way. Figure 4 displays an illustration of a CBS diagram. 

AVB A credit is represented by the purple line, whereas the orange line represents AVB B credit. If 

the credit becomes negative after transmission or another queue is transmitting, and frames are 

waiting in the queue, the credit value increases. When all transmissions in that queue have ended 

and the queue is empty, the CBS algorithm will reset positive credit to zero. The rectangles with 

letters shown in the figure indicate the transmission of the frames, and the arrows indicate when the 

frame has arrived. Finally, the lines show the credit changes over time.  
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                                                        Figure 4: Credit-Based Shaper Diagram  
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3.Related work 
There has been an increasing focus on facilitating the implementation of TSN networks since TSN 

gained more popularity. Researchers have focused on several TSN-related topics, such as time 

synchronization, traffic scheduling, and shaping, to improve the effectiveness and reliability of real-

time communication in industrial and automation applications. Time synchronization is the main 

subject in this work, as this thesis aims to evaluate and implement solutions for the outcomes that a 

network or system experiences if specific network components lack full synchronization.  

One of the most critical aspects of TSN is clock synchronization. TSN uses the generalized Precision 

Time Protocol (gPTP) to synchronize the system's device’s clocks to a reference time. gPTP and PTP 

are similar. However, gPTP has more features compared to PTP. The Network Time Protocol (NTP) is 

used in this thesis as a time synchronization protocol to synchronize the legacy end-stations with 

each other. In this paper [14], the authors compare PTP to the NTP and describe the principles and 

operation of PTP. Paper [15] presents a work similar to this thesis. According to the authors, 

unscheduled high-priority emergency event traffic can cause significant jitter and delay in time-

sensitive traffic. The authors suggested improving the TAS scheduling algorithm by adding a 

protection band that would allow rapid transmission of emergency event traffic with little impact on 

the scheduled traffic, and they evaluated the effectiveness of their proposed scheme using the 

OMNeT++ simulator. A thorough understanding of how TSN works is required to assess the impact of 

a lack of synchronization. To overcome the inaccuracy caused by packet collisions, the authors in [16] 

introduce an algorithm combining time-slot-based synchronization and priority scheduling. Their 

proposed solution is built on the OMNet++ simulation platform and uses a standard in-vehicle 

network topology. The authors stated in [17] that it is frequently unrealistic for systems such as 

legacy devices to synchronize with the TSN network and have TSN capabilities. Therefore, they 

reduced the synchronization standards for end-stations. Later, they developed a solution to offer 

time-sensitive traffic real-time guarantees. Zimmermann et al. [18] proposed various ways to reduce 

synchronization start-up time for future Ethernet-based automotive networks. They claimed that the 

simulation-based performance analysis reveals that the proposal can lower start-up times by a factor 

of 40 compared to the conventional IEEE 802.1 AS without significantly influencing synchronization 

inaccuracy. 

Despite the different studies related to TSN and several TSN models presented by researchers, there 

has been limited research into the performance of partially synchronized heterogeneous TSN 

networks. Therefore, this thesis aims to evaluate and implement the proposed solutions in [9] to 

solve the problems occurring when adding legacy devices into the partially synchronized network, as 

there is no research suggesting a general working solution applicable to most legacy end-stations. 

Based on previous work in [8], [9], we found adverse consequences when adding TSN switches to a 

legacy network. However, these effects are solvable by implementing the solutions proposed in the 

previous thesis [9]. This will allow the industry to adopt TSN without facing those side effects. 

Implementing and evaluating the solution in [9] is necessary, as there is no functional 

implementation of the solutions proposed in previous related works. The implementation presented 

in this thesis is also considered more practical than the one previously proposed, as the authors in [9] 

were modifying the TAS windows manually. Meanwhile, the implementation performed in this thesis 

provides the opportunity to adjust the size of the TAS window automatically and enables the update 

of those TAS windows dynamically. The implementation proposed in the thesis can also be adopted 

by industries seeking to leverage the benefits of integrating legacy devices into TSN networks, as this 

implementation enables such integration. 
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3.1 Description of previous work 
The previous work in [8], [9] was an evaluation, as in the first thesis [8], the authors discovered that 

the lack of synchronization in the network causes negative impacts between the computer systems 

and the TSN device. Meanwhile, the second thesis [9] has also discovered that partially 

synchronization had adverse effects on the network, and they proposed solutions to minimize those 

consequences in the network. Lastly, in this thesis, we aim to implement the proposed solutions in 

[9] in a more functional manner and then will test and evaluate them. This is because the authors in 

previous work [9] did a proof of the solution but not a functional implementation of the proposed 

solution. A further description of how the solution will be implemented more practically is provided 

in the thesis. 

The authors of the first thesis [8] investigated the effects of a lack of synchronization in a 

heterogeneous TSN network regarding reception time drift and jitter. They implemented a network 

where TT traffic was sent between two laptops running Linux. In their work, they carried out an 

experiment where the data was sent between the laptops without the TSN switch in the first 

scenario. In another scenario, the TSN switch was added to the network when the traffic was sent. 

Their study discovered that devices cannot synchronize their clocks with each other if the network is 

out of synchronization. Consequently, this will cause different clock speeds (drift) between the 

devices. The TSN switch in this work has the fastest clock, the receiver node is in the middle, and the 

sender computer has the slowest clock. The resulting drift can be either positive or negative. The 

positive reception time drift results in messages being received later and later, which means losing 

deadlines. Meanwhile, the negative reception time drift results in the messages being received 

earlier and earlier, which causes some tasks to be performed earlier than expected, such as the 

airbag opening earlier than expected, resulting in a catastrophic condition. The authors also detected 

a jitter in the network caused by the Raspberry Pi's lack of a hardware clock and less precise data. 

In the second thesis [9], the authors investigated the impact of synchronizing legacy end-stations via 

their traditional synchronization mechanisms in heterogeneous TSN networks. They also 

implemented a network using two Raspberry Pis and a TSN switch to observe the network's 

behaviour. They performed three experimental scenarios to observe the network behaviour when 

sending TT traffic between two nodes. As a conclusion of their work, they revealed adverse effects 

when the network is partially synchronized, such as the network experiencing clock drift between the 

TSN switch and the Raspberry Pis, where the clock drift can either be positive or negative. If the 

receiver node experiences negative reception time drift, the packets miss their TSN window; 

meanwhile, if the receiver node experiences positive reception time drift, packets are queued until 

packet drops occur from the buffer in the switch. Lastly, the authors proposed several solutions to 

minimize the clock drift experienced in the partially synchronized TSN network. Their first proposed 

solution is to measure the packet reception drift at the receiver node and apply the measured value 

to the TSN switch. Meanwhile, their second solution involves periodically calculating the drift in 

intervals by timestamping packets in the receiver node. Then the receiver node dynamically updates 

the sending period in the sender node. In this way, they decreased the clock drift by dynamically 

modifying the transmission interval at the sender node in their second solution. To implement the 

solution, the authors have modified the legacy end-stations and applied the solutions to them. Aside 

from investigating the impact of having partial synchronization in the network, the authors also 

analyzed the jitter occurring in the network. 
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4.Problem formulation  
Embedded systems are all around us in the modern world and continue to develop over time [3]. The 

advanced features and functionality of many embedded system applications rely heavily on real-time 

capabilities; as a result, it is imperative to supply mechanisms and capabilities to support these real-

time needs. TSN offers several capabilities that enable applications with strict real-time conditions to 

communicate in a deterministic, low-latency manner. Time-sensitive data is delivered on time and 

with minimal delay because of the TSN's standards, which include features like traffic shaping, time 

synchronization, and priority-based forwarding. However, implementing these standards can be 

costly and time-consuming for companies. Therefore, integrating TSN into existing legacy networks 

and providing them with real-time capabilities can be cost-effective for companies, but it also 

increases the time and resources required to implement the TSN environment. However, for TSN to 

function effectively and for time-sensitive traffic to be delivered with low latency and high reliability, 

the network requires full synchronization.  

Therefore, in this thesis, we will integrate existing legacy devices in a TSN network without 

incorporating TSN functionality into them. However, because legacy devices do not have capabilities 

and cannot implement TSN synchronization protocols, they cannot synchronize with the TSN 

switches. Therefore, the network is partially synchronized as the end-stations are synchronized with 

each other and the TSN switches have their synchronization protocol. The partial synchronizations in 

the network cause reception time drift between the legacy devices and the TSN switches. The 

resulting drift can be positive or negative, each with different consequences in the network. When a 

significant amount of the drift is collected in the case of the negative drift, the frames miss the 

transmission timeslot in which they are scheduled, leaving a period with no messages. Figure 5 

illustrates the indicated behaviour where the receiver end-station has a faster clock than the other 

devices. In Figure 6, the opposite case is considered i.e., when the receiver end-station has a slower 

clock. As shown in Figure 6, the positive drift causes the frames to be lost at a linear rate. Since the 

frames arrive at the switch faster than it forwards them, leading the frames to get stuck in the buffer. 

However, the buffer has a limited amount of space as, when the buffer reaches its limit, the frames 

will be lost. As outlined in subsection 3.1, the authors in [8] and [9] detected the consequences 

resulting from the reception time drift and are carried out in this work to give the readers a better 

understanding of what we aim to solve in this thesis. 

 

 

Figure 5: Negative reception time drift in the receiver end-station 



13 
 

 

Figure 6: Positive reception time drift in the receiver end-station 

Therefore, partial synchronization in the network is a problem because of the previously mentioned 

consequences and must be solved. Solving the reception time drift is critical to allow the industries 

and companies to adopt TSN into the legacy network without facing those side effects. This thesis 

aims to evaluate and implement the previously proposed solutions in [9] for a partially synchronized 

heterogeneous TSN network regarding reception time drift. 

In this thesis, we aim to investigate and address the research questions outlined below: 

• RQ1 - What are the effects of the proposed solutions to mitigate the effects of clock drifts? 

• RQ2 - What would be the suitable implementation of the proposed solutions in a real network and 

how does it differ from the experimental model? 

To address the research questions (RQ1 and RQ2), existing literature about TSN will be reviewed. 

Based on the knowledge gained through this process, the proposed solutions will be implemented in 

a lab environment featuring various scenarios for experimentation and analysis. The RQ will then be 

answered with the conclusion of the experiments. 
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5.Research method 
To gain knowledge and a foundation in the topic and insight into the equipment involved in this 

thesis, we study the mechanisms of TSN involved in or related to clock synchronization. An 

experimental research method is appropriate for this thesis because the purpose of the thesis is to 

implement the previously proposed solutions in [9], which will be tested and evaluated. According to 

Amaral [19], an experiment consists of the evaluation and exploratory phases. The evaluation phase 

refers to the questions that will be attempted to be answered, while the exploratory phase refers to 

a body of knowledge that helps determine what questions to ask about the system being evaluated. 

The experiments that will be carried out are based on the implementation of the solutions proposed 

by the authors in the previous thesis [9], while the results will be analyzed and evaluated. 

The system development research process proposed by Chen and Nunamaker [20] is suitable for this 

purpose; it is a multi-method approach to conducting information systems research. The research 

method consists of five steps, as shown in Figure 5. 

                                            

                  Figure 5: The Process of System Development Research  

The following steps will be taken to answer the research questions carried out in this thesis:  

➢ Investigation of the TSN-related literature and research on the TSN mechanisms 

 ➢ Review the previous related thesis and gain knowledge to prepare for the experiment.  

➢ Implementation of the solutions previously proposed 

➢ Perform the experiment and analyze the output 

 ➢ A conclusion will be made based on the comparison and evaluation of the result 
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6.Ethical considerations 
Our thesis does not gather any personally identifiable information and does not address any ethical 

issues or concerns. The tools resulting from this work are said to be used responsibly. This is a purely 

scientific experiment conducted in a simulated environment with consideration for societal aspects, 

as the purpose of this thesis is to explore the possibility of adopting TSN in a network with legacy 

end-stations. Through this work, we consider providing others with the benefits achieved when 

integrating legacy devices into TSN networks without implementing the TSN functionalities into 

them. This integration also works effectively without requiring complete network synchronization for 

the components to function correctly. Another advantage of legacy devices is that the devices used 

in the previous system version (before adding the TSN devices to the network) can be reused even if 

the network subsystem has been changed. In this way, previous configurations and work saved on 

these devices can be reused, saving time and resources. 
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7.Description of experiments 
We conducted three experiments to answer the research questions in the problem formulation. In 

the following section, the experiments conducted and the implementation of the solution are 

described. This thesis aims to implement the proposed solutions in [9] for a partially synchronized 

heterogeneous TSN network. The network is partially synchronized as the end-stations are 

synchronized and the TSN switches have their synchronization protocol, see Figure 6. This means that 

the end-stations have no knowledge of the TSN switches and do not synchronize with them. The 

evaluation in this thesis will consist of three experimental scenarios. In the first scenario, we are 

studying how the network behaves when sending traffic between two end-stations without the 

influence of TSN switches. In the second scenario, the data is also transmitted between the end-

stations, but the TSN switches are introduced in the network. The second scenario performed in this 

thesis is also one of the experiments the authors in the previous work [9] have performed, as 

mentioned in section 3. Lastly, in the last scenario, we aim to implement one solution by combining 

those proposed solutions in the previous work [9] to solve the adverse effects caused by partial 

synchronization. This thesis applies the proposed solutions to the TSN switches without modifying 

the legacy end-stations. 

 

Figure 6: Synchronized end-stations and synchronized TSN switch with no synchronization in 

between. 

7.1 Hardware description 
In this thesis, a lab environment consisting of two legacy end-stations (Raspberry Pi 3 Model B) [21] 

with the Raspberry Pi operating system (OS), two multiport TSN switches System-on-Chip 

Engineering (SoC-e) [23], see Figure 7. Lastly, a laptop running the Linux OS is used. Several 

synchronizations protocols can be used to synchronize end-stations if incompatible with the gPTP 

protocol used by the TSN switches. However, in this thesis, NTP was used to synchronize the end-

stations with each other, so their software clocks share the same time domain. NTP is a widely used 

time synchronization software protocol designed to synchronize the clocks of computers on a 

network to a highly accurate time reference, for example, a GPS receiver or an atomic clock [22]. On 

the other hand, the TSN switches use a hardware clock, which can be referred to as a "real-time 

clock" thanks to its high accuracy.  
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                                                     Figure 7: Experimental topology 

7.2 Sending traffic and data analyzing 
To perform the three experimental scenarios, one Raspberry Pi was the Talker node sending the TT 

traffic and the other Raspberry Pi, i.e., the Listener node receiving the data. In specific experiments, 

the TSN switches were also introduced between the end-stations when the data was sent. The 

experiments were conducted by executing the Python scripts mentioned in Appendix A: The codes for 

experiments 1 & 2 (Listener.py and Talker.py) for the first and second experiments, and the scripts 

provided in Appendix B The codes for experiment 3 (Listener.py and Talker.py) and Appendix C The 

code to the cnc.py for the third experiment. The authors in [9] have implemented the Python scripts, 

which have been adjusted to suit the experiments conducted in this thesis. One method used by TSN 

to handle priority traffic is VLAN tagging. In the scripts that transmit TT traffic between the end-

stations, we added an 802.1Q header to the Ethernet frame used for periodic sending. TT traffic was 

selected in this experiment because the partially synchronized network significantly impacts TT traffic 

more than other traffic. In all the experiments, Q7 was removed from the ports without a schedule 

applied to ensure that traffic was only sent to the appropriate port. Q7 is the highest priority queue 

that can be given to TT in the TAS configuration. By doing this, there is no indication that the TT 

mechanism used in the experiments would be influenced by other network traffic as TT traffic is 

isolated in its respective queue. We modified the transmission rate of the sender end-station by 

adjusting the period after every 100 messages to generate more significant negative and positive 

reception time drift in the receiver end-station. This was performed by the Talker sending every new 

period to the receiver end-station. However, the TSN switches cycle was kept at one second. The 

messages were transmitted from the Talker node towards the Listener node in an interval of 1 

second for negative drift and an interval of 0.3769 seconds for positive drift. Those seconds were 

selected as the clock drift caused an impact on the period, leading to the period differing between 

those values. 

After the experiments were executed for 25 minutes, the "samples.txt" files were generated and 

saved by the Listener script. The data stored in the "samples.txt" files were later used to illustrate the 

results gathered from the experimental scenarios. The Listener saves data in “samples.txt” files about 

when the messages were scheduled to be received and the actual reception of the messages. Later, 

with this information, we could compare and evaluate the different results gathered from the 

experiments. To illustrate the results, no mathematical calculation was required. This is because the 

way we presented the results provides all the information needed to conclude and evaluate how the 
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effects caused by the clock drift affect the various experiments performed, as we can see in section 

8. To determine when the data was sent and received between the end-stations, we analyzed the 

results from the experiments in Microsoft Excel. In this work, we sampled 2000 messages per 

experiment to get an exact result of the reception time drift. To graph the reception time drift, the 

scheduled time of the messages was represented as the y-axis, and the reception time of the 

messages was defined as the x-axis. Later, with the values of the y-axis and the x-axis, we could graph 

a graph illustrating the three experimental scenarios performed in this thesis. 

7.3 Experimental setup 

7.3.2 Scenario with and without the TSN schedule 
In the first scenario, the traffic is sent between the end-stations, and the switches do not have any 

influence in this scenario. In the second scenario, the traffic is transmitted between the end-stations 

and the TSN switches are added to the network. However, the TSN switches forward packets only 

when their corresponding gates are opened. The Scapy Python Module [24] was applied in the 

Python scripts to enable the transmission of the periodic traffic through TSN. We had to determine 

the window size so the prioritized packets could pass through and not allow several packets to 

traverse together in one TAS window. To do this and find the exact window size, the time window for 

ST was measured using the trial-by-error method. We needed to modify twice the size of the TAS-

cycle time in the switches in this experiment and choose either 1000000000 ns or 376900000 ns. This 

is because the clock drifts influence the period, which causes it to vary all the time between those 

values. The reason for trying this scenario is to understand how partial synchronization affects the 

network’s performance.  As previously mentioned, the previous authors already performed the 

second scenario in [9]. This is carried out in this work to give the readers a better understanding of 

what we aim to solve in this thesis. For a better understanding of how the proper schedule was 

performed on both switches, see Appendix E: Configuration of the TSN Switches. In all experiments, 

the traffic was sent when the end-stations and the TSN switches had different perceptions of time as 

we synchronized the end-stations with NTP, and the TSN switches also had their notion of time using 

gPTP. 

Figure 8 illustrates the behaviour of the experimental network before implementing the solution. The 

figure shows two legacy devices, one Talker and one Listener communicating through TSN switches 

with one second period. The TSN switches share synchronization, and the legacy end-stations are 

synchronized using NTP.  However, as shown in the figure, there is no synchronization between TSN 

switches and legacy end-station. In this manner, as the messages transmitted by the Talker traverse 

through the schedule of the TSN switches, the transmission rate changes from the one-second 

schedule of the legacy end-station to the one-second schedule of the TSN switches. This results in 

the detection of drift by the Listener between the transmission of the TSN switches and the legacy 

end-stations schedule. This is due to the period being adjusted by either increasing or decreasing it 

by 5% compared to the scheduled period. 
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Figure 8: The network behaviour before the solution implementation 

7.3.3 Scenario with the solution 
The third experiment is based on implementing the proposed solutions in [9] to prevent the clock 

drift that occurs when sending traffic between the end-stations. The proposed solution consists of 

measuring the detected clock drift between the end-stations and the TSN switches and modifying the 

TAS schedule to avoid the adverse effects of partial synchronization. The solution proposed by the 

authors can be implemented in several ways. In this thesis, we decided to implement the solution 

using the CNC together with the DD for the solution to function effectively. CNC is a device that 

controls a whole network by, for example, reconfiguring the TSN networks. In this thesis, a simplified 

version of the CNC was used with the function of automatically reconfiguring the period of the 

switches to match the end-station transmission based on the saved configuration of the schedule. 

The DD is a component with the function of detecting any deviations or drifts in the network, and it 

can be implemented in several positions in the network. In a real network and as best practice, the 

optimal place for the DD is in the TSN switches and compare the Talker transmission with the TSN 

schedule. This is because of not interfering with legacy systems and maintaining them unchanged, 

just like in the previous system. However, as we could not access the TSN switches and were not 

allowed to modify them in this thesis, we implemented the DD in the Listener script. Instead, we 

compared the transmission of the TSN switches with the Listener's schedule. However, whether you 

have the DD in the Listener script or the TSN devices, it will provide the exact solution to the clock 

drift, as the position of the DD does not matter. Docker desktop has also been used in this scenario, 

an application that is easy to install on PCs [26], among other things, to build and share containerized 

applications and microservices. Docker Desktop is the environment where the CNC was 

implemented; see Figure 9. The CNC in the Docker environment was implemented by a former PhD 

student [25] but has been adjusted to fit this scenario. To understand how to install and set up the 

Docker Desktop environment to run the solution, see Appendix F Setting up Docker Desktop 

environment. 
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                                     Figure 9: The CNS container created in the Docker Desktop  

Figure 10 illustrates the implementation of the solution in the partially synchronized network. To 

implement the proposed solutions in [9], we decided to apply their solutions to the TSN switches 

without modifying the legacy end-stations, as shown in Figure 9. This figure exhibits similarity to the 

previous Figure 8, as we also have in this figure one Talker and one Listener communicating through 

TSN switches with one second period. However, in this network, we added the DD to the Listener 

end-station, with the function of detecting the variation between the reception of the end-station 

(i.e., the transmission of the TSN switches) and the schedule of the end-station. The DD performs this 

by sampling the traffic by packet sniffing with Scapy and checking if the slope value is within the 

predefined range to consider whether the drift is stable or not; see the Listener code in Appendix B 

The codes for experiment 3 (Listener.py and Talker.py). After the DD detects the variation between 

the expected and actual reception of the messages, it sends the value of the variation to the CNC. 

The CNC is responsible for updating the network and implements an automatic reconfiguration 

method to update the configuration of the TSN schedule according to the drift value measured by 

the DD, see Appendix G: Config.json. The solution is deployed within the system once the required 

processes have been completed. As a result, the schedule of the end-station and the TSN switches 

will share the same period, and the network will experience less drift. To inform the CNC about the 

drift value detected, one connection was established between the DD and the CNC, see Appendix C 

The code to the cnc.py. An example will be provided in the next section illustrating how the clock drift 

affects the partially synchronized network and how the solution with the CNC and DD solves this 

issue. 
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                        Figure 10: The network behaviour after adding the solution implementation 

In Figure 11, we can see that initially, the Listener receives messages without drift. However, when 

the new period is applied, the messages differ from the one-second schedule. The DD detects the 

variation between the schedule and reception of the messages and sends this information to the 

CNC. After the CNC updates the period, the drift begins to reduce as the TSN switches adjust their 

transmission period to match the periodicity of the legacy end-stations. 

 

Figure 11: illustrates a simple example explaining before and after the solution implementation 
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The authors proposed solutions in [9], including adjusting the network's period to ensure all devices 

share the same period; we implemented one solution by combining their solution using the CNC and 

the DD. However, the implementation of the solution performed by the authors had several issues. 

The author’s implementation was not correctly implemented because they lacked in their study the 

tools and resources necessary to carry out a functional implementation that could benefit others, like 

companies. In the previous author’s proof of the solution, they were modifying the end-stations in a 

way that they were not designed by changing the application behaviour, to solve the varying clock 

drift in the network. Changing the application behaviour can, in some cases, cause a system to fail if 

the application is critical to the operation, as it is for the end-station in our case. Apart from not 

meeting their time requirements due to their modifications in the end-stations, these modifications 

may not be applicable due to hardware limitations. Due to these characteristics, the industry cannot 

benefit and adopt the author’s implementation. 

We believe applying the DD together with the CNC is the best method to implement those 

modifications to reduce the clock drift in the network. In other words, the CNC and the DD perform 

this process automatically without interfering with the legacy end-stations. Another benefit of 

implementing the solution with CNC is that instead of manually configuring the TAS window, the CNC 

performs this automatically and applies the new configuration to the entire network. Companies or 

researchers can also benefit from the implementation proposed in this work, as it provides 

environmental benefits, as the legacy devices used in the previous system can be reused even if the 

network subsystem has been changed. In this way, previous configurations and work saved on these 

devices can be reused, saving time and resources. However, the problem with clock drift can be 

solved in several ways, such as by adding an extra synchronization protocol to synchronize the TSN 

switches with the legacy systems. But this would require adding a new protocol to all new and old 

devices in the network, which isn’t feasible because of the idea of not modifying or interfering with 

the legacy devices. It is also considered to be time- and resource-consuming. This scenario was built 

the same way as the second experiment, with the same switch schedule and the addition of the CNC 

on a computer running a Linux operating system.  
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8.Results  
In this paragraph, we present two graphs as the conclusions of the three experimental scenarios 

carried out in this thesis. The graphs presented in this section are the receiver nodes, showing how 

the different experiments performed affect the partially synchronized network. The results of all 

three scenarios are presented in one graph, using three different colours to represent each 

experiment. The grey colour presents the results from the scenario without the TSN schedule. 

Meanwhile, the orange colour represents the results from the scenario with the TSN schedule. Lastly, 

the blue colour represents the results from the solution scenario. However, in this section, we 

present two graphs, as one is focused on showing the positive reception time drift while the other is 

focused on the negative reception time drift. We present both negative and positive reception time 

drift as they impact the partially synchronized network differently, as previously mentioned in this 

work.  

                

 

                                         Figure 10: The graph of the Listener node (negative drift) 

Figure 3: We can see the graph of the Listener node showing the results of the scenarios previously 

mentioned in three trendlines. The y-axis of the graph shows the scheduled time (ST), and the x-axis 

shows the reception time (RT) of each frame in seconds. The graph shows that the expected time 

matches the reception time when the resulting graph is linear and has a slope of one. The schedule 

time matching the reception time indicates no drift in the network, as the messages arrived when 

they were scheduled. Otherwise, if the graph is not linear and has no slope of one, it indicates that 

the messages sent between the end-stations differ, and the graph can exhibit other slopes and curve 

functions. We can see that the blue and grey lines match the scheduled time with the reception of 

the messages, as the slope value is one in both lines. However, the orange line differs from the 

previous lines and does not fit the schedule. The grey line is linear because the scenario without the 

TSN schedule is the baseline experiment, and the traffic is sent between two synchronized legacy 

end-stations using NTP. However, the opposite scenario is applicable for the orange line because the 

network experiences clock drifts in this scenario due to legacy end-stations and TSN devices not 

sharing the same time domain. Adding TSN devices to the legacy network generates many benefits, 

such as reducing jitter; however, it also introduces clock drift in the partially synchronized network. 
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Therefore, the orange line shows the variation between the schedule and the actual reception of the 

messages and differs from the other lines. The graph also illustrates the non-linear curves below the 

other lines because the lack of synchronization results in negative drift. The blue line represents the 

solution implemented to reduce the clock drift occurring in the partially synchronized network. Due 

to the implementation of the solution using the CNC and DD to reschedule the switches, the network 

experiences less drift. The solution solves the problem of the transmission not fitting with the 

schedule, which generates the blue linear line. 

 

 

                                         Figure 11: The graph of the Listener node (positive drift) 

Figure 11: This graph is similar to Figure 10 since it shows three trendlines. The previous graph 

showed the Listener node experiencing negative drift. Meanwhile, this graph shows the Listener 

node experiencing positive drift. This graph illustrates a non-linear curve above the other lines 

instead because the reception time drift results in positive drift. 
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9.Discussion  
This section summarizes the observations and conclusions related to the performance of a partially 

synchronized heterogeneous TSN network regarding reception drift. We evaluated and tested the 

previously proposed solutions in [9] to prevent clock drift in the partially synchronized network since 

TSN requires full synchronization to function correctly. To investigate this, several experimental 

scenarios were performed to respond to the questions we intend to answer in this thesis. The 

network is partially synchronized as we transmit TT traffic through a network that consists of two 

synchronized Raspberry Pis and two TSN switches, each with its perception of time.  

The experiments carried out in this thesis contained three scenarios. In the first scenario, the traffic 

was sent between the end-stations without the TSN switches having any effect on the network, and 

the end-stations were synchronized using NTP. This scenario was utilized as a baseline experiment 

compared with the remaining experiments when traffic was sent between the end-stations. Since 

TSN switches were not introduced in this scenario, the messages were received without variations in 

reception. However, as the Raspberry Pi has low quality and can’t provide good periodic 

transmission, this causes high jitter in the network. The Raspberry Pis not having hardware clocks 

was a limitation in the first experiment due to increased jitter and less precise data. However, in this 

work, we decided not to focus on the jitter occurring in the first scenario as it is outside the scope of 

this thesis and has been proven in [8], [9] the previous thesis. Instead, we focus on implementing the 

proposed solutions to solve clock drift. 

The second scenario was performed similarly to the initial scenario, and the TSN switches were 

introduced into the network. Introducing TSN devices to the legacy network generates many 

benefits, such as reducing jitter since TSN switches have more accurate clocks since they use 

hardware clocks in contrast to Raspberry Pis. However, after including the TSN switches in the 

network, the results showed a clock drift between the expected and the real reception of the 

messages. The messages were scheduled in the switches to have a period of one second. However, 

the period will either decrease or increase because of the real reception of the messages in the 

Listener node and the schedule of the switches differing. The reason for performing those 

experiments is to understand the partial synchronization impact on the network and the 

consequences that occur due to clock drift, which was previously mentioned in Section 3.1. If the 

mentioned consequences occurred, for example, in an airbag inside a vehicle during an emergency, 

those consequences can be severe and pose a significant threat to human life. 

The focus of this thesis was to implement proposed solutions in [9] to solve the problems caused by 

the clock drift occurring in the second scenario, and to perform this, a scenario with the solution took 

place. According to the graphical representation presented in Section 8, the solution successfully 

detected and eliminated the clock drift while maintaining the same schedule used in the second 

experiment. This was performed using the DD in the Listener script to detect the variation between 

the expected and real reception of the messages. After detecting the deviation in the network using 

the DD, the variation values are later used to modify the TSN schedule. We change the TSN schedule 

dynamically to remove the clock drift using the CNC according to the variation detected by the DD. 

The results of this step can be confirmed and observed from the graph in Section 8, as the third 

experiment has the same appearance as the first experiment since lines with a slope of one 

represent both. The third experiment, which results in a linear line with a slope of one and does not 

exhibit the same appearance as the second experiment, indicates that the solution implemented for 

the clock drift works in the network consisting of two end-stations not sharing the same 

synchronization as the TSN switches. 
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However, the solution proposed in [9] can be implemented differently; for instance, how the authors 

implemented the solution is described in Section 3.1. The author's proof implementation modified 

the end-station period to match the communication subsystem, i.e., the TSN switches. The issue in 

their implementation was that they were modifying the end-stations in a manner that changed the 

application behaviour or performance, which might result in a system failure or significant financial 

losses. Their implementation has other drawbacks, such as hardware limitations due to their solution 

demands on modifying the end-stations and their static implementation to modify the TSN devices. 

As rescheduling the switches becomes an increasingly complex problem in a company, it is not 

feasible to reschedule the switches manually. The way the authors implemented the solution was to 

demonstrate that the solution works but is not practical and cannot be adopted by industries or 

companies. Other ways to implement the solution include adding an extra synchronization protocol 

to synchronize the TSN switches with the legacy systems. But this would require adding a new 

protocol to all new and old devices in the network, which isn’t feasible because of the idea of not 

modifying or interfering with the legacy devices. Which is also considered time-consuming and 

resource intensive. Therefore, we believe that the most efficient approach for implementing the 

proposed solution is to utilize the DD and the CNC to implement those modifications to reduce the 

clock drift in the network. Implementing the solution with CNC provides the user with the benefit of 

automatic reconfiguration of the TSN switches.  

With this solution, we expect the heterogeneous TSN system to work endlessly even when exposed 

to environmental changes, such as pressure or temperature, which can affect the different clocks. 

The limitation of the CNC is that it introduces a time delay in applying the solution since it operates 

outside of real-time. However, the time required for the CNC to implement the solution is always 

shorter than the time it takes for the drift to cause a significant impact on the network. This is 

because the drift variation affects the behaviour of the legacy devices very slowly since we apply a 

5% drift after every 100 packets, which takes a more extended period before the drift problems 

become noticeable. Therefore, in a real-case scenario, the CNC will address the issue before the 

variation increases or decreases by 5%, as the CNC applying the solution is always faster than the 

rate at which the drift increases or decreases to reach 5%. Having the DD implemented in the 

Listener script is also considered a limitation, as the optimal place for the DD is in the TSN switches 

and instead compares the Talker transmission with the TSN schedule. This is because of not 

interfering with legacy systems and maintaining them unchanged, just like in the previous system. 

Therefore, while including the DD in the TSN switches may require additional effort from the 

industry, it is considered best practice in a real network to avoid having the DD in the Listener end-

station. However, as we could not access the TSN switches and were not allowed to modify them, we 

implemented the DD in the Listener script in this thesis. 

Through this summarization of all the observations and conclusions, we have explained what 

happens when TT traffic is sent in a partially synchronized network using two different 

synchronization protocols. We have also addressed and explained the reason for the change in the 

behaviour of the specified performance metrics and the impacts that can occur when we send traffic 

between devices running different synchronization clocks. The implementation presented in this 

work allows the industry to integrate existing legacy devices within a TSN network without 

implementing the TSN functionalities into them. In this way, previous configurations and work saved 

on these legacy devices can be reused, saving time and resources.  
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10.Conclusions 
The purpose of this study is to implement previously proposed solutions in [9] for partially 

synchronized heterogeneous TSN networks. Since this thesis aims to integrate TSN switches into 

legacy networks without integrating TSN functionality into legacy devices, However, such integration 

presents other challenges, especially from the synchronization point of view, as the legacy systems 

are not able to fully integrate with the TSN networks because they lack compatible synchronization 

mechanisms with the TSN switches. This partial synchronization causes clock drift in the network. 

This clock drift, in turn, has consequences on the network, as previously mentioned in Section 3.1. To 

solve this issue, we performed three experimental scenarios to evaluate and implement solutions for 

the clock drift that occurs in the network when the end-stations are integrated with TSN switches.  

We set up a small network with two nodes sending TT traffic from the Talker node to the Listener 

node. Traffic is sent between end-stations in the first experiment without affecting the network from 

the TSN switches. As the first scenario has the base behaviour, the results confirmed that the 

messages arrived when they were scheduled to be received. A second experiment took place to 

evaluate the effects of adding two TSN switches between these end-stations. The cost of the end-

stations not being synchronized with the TSN switches is that the clock drift increases in the network. 

Furthermore, clock drift can have different effects on the network depending on whether it is a 

positive or negative drift, as mentioned in Section 3.1. A third experiment took place to solve the 

clock drift problem occurring in the network, which also responded to our first research question: 

"What are the effects of the implemented proposed solutions on the clock drift?" According to the 

graphical result presented in Section 8, we can see how the implemented solutions impacted the 

clock drift. We can observe in Section 8 that in the solution scenario (the blue graph), the reception 

shows the same behaviour as in the first scenario, although the solution scenario maintains the same 

schedule used in the second scenario. This indicates that the solution implemented for the clock drift 

works effectively on the partially synchronized network. This was possible due to our implementation 

of the proposed solution in [9] using DD together with the CNC to match the period of the end-

station with the TSN switch schedule, which is explained in detail in Section 7.3.3.  

The second question in this thesis was: "What would be the suitable implementation of the proposed 

solutions in a real network, and how does it differ from the experimental model?" A suitable 

implementation of the solution proposed in [9] in a real network will be to have the DD directly 

implemented in the TSN network and instead compare the Talker transmission with the TSN 

schedule. This is because of the idea of not modifying the legacy systems and instead maintaining 

them unchanged, just like they were in the previous system. However, as we did not have access to 

TSN switches and were not allowed to modify them in this thesis, we implemented the DD in the 

Listener script and instead compared the transmission of the TSN switches with the Listener's 

schedule. Whether the DD is in the listener code or the TSN devices, it will provide the same solution 

for the clock drift. In conclusion, since we had the DD in the listener code and not in the TSN devices, 

this chosen method is not considered a best practice, but despite this, we get the same solution. 
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11.Future work 
In future work, we plan to get access to TSN switches and implement the solution as designed, i.e., 

having the drift detector in the TSN devices. Another interesting consideration would be investigating 

what happens in a heterogeneous network when introducing different end-stations that use other 

synchronization protocols or methods.  
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Appendix A The codes for experiments 1 & 2 (Listener.py and Talker.py)  
The codes Lisenter.py and Talker.py were used to send data between the Raspberry Pis in this 

thesis's first and second experiments. The Talker code sends data to the Listener to update with the 

new period. Despite using the same codes for both experiments, it has still been adjusted to suit the 

different scenarios performed. The codes were created by authors in [9] but have been modified to 

adapt to the devices used in this thesis. To execute the codes on the end-stations, it is necessary to 

install the Scapy package by entering the following command in the terminal: sudo apt-get install 

scapy. Because the sudo command is often run as root and is required when running the previous 

command, enter sudo python3 Listener.py or Talker.py in the terminal to execute the code and the 

experiment.  

# The Listener code 

# Modified by: Daniel Bujosa Mateu 

# Author: Andreas Johansson 

 

 

from scapy.all import * 

from scapy.utils import * 

import time, sys, os, socket, threading 

import numpy as np 

 

pkt_count=20 

slope=0 

p = 1.0 

 

#Set up a simple TCP server 

server_address = ('192.168.4.10', 1338) 

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

sock.bind(server_address) 

sock.listen(1) 

 

#Function to run TCP server in a separate thread 

def data_receiver(): 

        global p 

        connected = False 

        while True: 

                if connected == False: 

                        connection, client_address = sock.accept() 

                        print("Client has connected") 

                        connected = True 

                else: 

                        data = connection.recv(1024) 

                        p=float(data.decode()) 

                        print("New period:" + str(p)) 

##### Set the priority of the script to real-time and to the highest priority 

##### 

#sudoPrio = os.popen("ps -aux | grep Listener.py | awk '{print $2}' | head - 

1").read() 
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#prosPrio = os.popen("ps -aux | grep Listener.py | awk '{print $2}' | awk 

'NR==2'").read() 

 

#os.system("sudo chrt -p 99 " + str(sudoPrio)) 

#os.system("sudo chrt -p 99 " + str(prosPrio)) 

#os.system("sudo renice -20 -p " + str(sudoPrio)) 

#os.system("sudo renice -20 -p " + str(prosPrio)) 

 

#Start data receiver thread 

thread_0 = threading.Thread(target = data_receiver) 

thread_0.start() 

 

## Setup sniff, filtering for IP traffic 

n = pkt_count-1 

pkt = sniff(iface="eth0",filter='vlan 1',count=pkt_count) 

wrpcap('file.pcap',pkt,append=True,nano=True) 

nanopacket_init = rdpcap('file.pcap') 

x = [0.0] * pkt_count 

y = [0.0] * pkt_count 

base=nanopacket_init[0].time 

for i in range(1, pkt_count, 1): 

        x[i] = i*p 

        y[i] = float(nanopacket_init[i].time-base) 

 

try: 

        while True: 

                pkt = sniff(iface="eth0",filter='vlan 1',count=1) 

                wrpcap('file.pcap',pkt,append=True,nano=True) 

                wrpcap('file_temp.pcap',pkt,nano=True) 

                nanopacket = rdpcap('file_temp.pcap') 

                x.pop(0) 

                y.pop(0) 

                y.append(float(nanopacket[0].time-base)) 

                rest=y[n]-y[n-1] 

                mult=np.around(rest/1.0) 

                x.append(x[n-1]+max(p,(p*mult))) 

                sum_x=sum(x) 

                sum_y=sum(y) 

                sum_xy=sum(np.multiply(x,y)) 

                sum_squared_x=sum(np.multiply(x,x)) 

 

                slope = (n*sum_xy - sum_x*sum_y) / (n*sum_squared_x - 

sum_x*sum_x) #This is the trendline formula for the slope only 

                print("Slope of last 20 packets: ", str(slope)) 

 

                if 0.95 <= slope <= 1.05: 

                        print("Drift is stable") 

                else: 

                        print("Sending drift to CNC") 
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                file = open('samples.txt', 'a') 

                file.write(str(x[n])+";"+str(y[n])+";\n") 

                file.close() 

 

except for KeyboardInterrupt: 

        print('\033[2DBye.') 

        thread_0.join() 

 
 

# The Talker code 

# Modified by: Daniel Bujosa Mateu 

# Author: Andreas Johansson 

 

 

import time, sys, os, socket, threading 

from scapy.all import * 

from scapy.utils import * 

 

server_address=('192.168.4.10',1338) 

 

#Traffic period in nsec = x 

p=1000000000 

 

##### Set the priority of the script to real-time and to the highest priority 

##### 

sudoPrio = os.popen("ps -aux | grep Talker.py | awk '{print $2}' | head -

1").read() 

prosPrio = os.popen("ps -aux | grep Talker.py | awk '{print $2}' | awk 

'NR==2'").read() 

 

os.system("sudo chrt -p 99 " + str(sudoPrio)) 

os.system("sudo chrt -p 99 " + str(prosPrio)) 

os.system("sudo renice -20 -p " + str(sudoPrio)) 

os.system("sudo renice -20 -p " + str(prosPrio)) 

 

try: 

        client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

except socket.error: 

        print("Socket failed. Exiting..") 

        sys.exit() 

 

print("Socket Created, connecting to " + str(server_address[0]) + " port " + 

str(server_address[1])) 

try: 

        client.connect(server_address) 

except ConnectionRefusedError: 

        print("Could not connect to server. Exiting..") 
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        sys.exit() 

print("Connection established.") 

 

#Forge ethernet frame used for periodic sending 

frame = (Ether(dst='b8:27:eb:01:a2:b4',src='b8:27:eb:88:ab:96') 

        / Dot1Q(prio=7) 

        / Dot1Q(vlan=1, prio=7) 

        / IP(dst='192.168.4.10',src='192.168.4.30') 

        / ICMP()) 

 

#Main thread, periodic sending of traffic in x seconds adjusted with slope 

value from receiver 

q = time.time_ns() 

s = time.time_ns()+p 

i = 0 

try: 

        while i<=2022: 

                # print("p " + str(p) + " q-k " + str(q+k)) #Used to validate 

that period is updating when receiving new slope (k) value from receiver node 

                while q < s: 

                         q = time.time_ns() 

                sendp(frame, iface='eth0') 

 

                time.sleep(p/(2*(1000000000.0**2))) 

                i+=1 

                if i % 100 == 0: 

                        p = p*0.95 

                        client.sendall(str(p/1000000000.0).encode()) 

                s+=p 

 

except KeyboardInterrupt: 

        print('\033[2DBye.') 
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Appendix B The codes for experiment 3 (Listener.py and Talker.py)  
The codes Lisenter.py and Talker.py defined below were used to send traffic between the Raspberry 

pies in the third experiment. The Talker sends the perceived clock drift periodically to the listener. 

The listener samples the TSN messages according to the updated period and sends the drift value to 

the CNC after been measuring it. To run the third experiment, see the necessary information in 

Appendix A and  cnc.py in Appendix C, which also establishes a connection with the Listener code as 

a second client. 

# The Listener code 

# Modified by: Daniel Bujosa Mateu 

# Author: Andreas Johansson 

 

 

from scapy.all import * 

from scapy.utils import * 

import time, sys, os, socket, threading 

import numpy as np 

 

pkt_count=20 

slope=0 

#p = 1.0 

p=0.3769 

 

#Set up a simple TCP server 

server_address = ('192.168.4.10', 1338) 

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

sock.bind(server_address) 

sock.listen(1) 

 

#Function to run TCP server in separate thread 

def data_receiver(connection): 

        global p 

        while True: 

                data = connection.recv(1024) 

                p=float(data.decode()) 

                print("New period:" + str(p)) 

 

c = 0 

while c < 2: 

        connection, client_address = sock.accept() 

        print("Client has connected") 

        if client_address[0] == '192.168.4.60': 

                cnc = connection 

                c+=1 

        elif client_address[0] == '192.168.4.30': 

                thread_0 = threading.Thread(target = data_receiver, 

args=(connection,)) 

                thread_0.start() 

                c+=1 
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## Setup sniff, filtering for IP traffic 

n = pkt_count-1 

print("test") 

pkt = sniff(iface="eth0",filter='vlan 1',count=pkt_count) 

wrpcap('file.pcap',pkt,append=True,nano=True) 

nanopacket_init = rdpcap('file.pcap') 

x = [0.0] * pkt_count 

y = [0.0] * pkt_count 

base=nanopacket_init[0].time 

for i in range(1, pkt_count, 1): 

        x[i] = i*p 

        y[i] = float(nanopacket_init[i].time-base) 

 

try: 

        i = 0 

        e = 0 

        while True: 

                pkt = sniff(iface="eth0",filter='vlan 1',count=1) 

                wrpcap('file.pcap',pkt,append=True,nano=True) 

                wrpcap('file_temp.pcap',pkt,nano=True) 

                nanopacket = rdpcap('file_temp.pcap') 

                x.pop(0) 

                y.pop(0) 

                y.append(float(nanopacket[0].time-base)) 

                rest=y[n]-y[n-1] 

                mult=np.around(rest/p) 

                x.append(x[n-1]+max(p,(p*mult))) 

 

                #sum_x=sum(x) 

                #sum_y=sum(y) 

                #sum_xy=sum(np.multiply(x,y)) 

                #sum_squared_x=sum(np.multiply(x,x)) 

                #slope = (n*sum_xy - sum_x*sum_y) / (n*sum_squared_x - 

sum_x*sum_x) #This is the trendline formula for the slope only 

                slope = np.mean(np.divide(np.diff(x),np.diff(y))) 

                print("Slope of last 20 packets: ", str(slope)) 

 

                i += 1 

                if 0.97 <= slope <= 1.03 or 0.97 <= (x[1]-x[0])/(y[1]-y[0]) <= 

1.03: 

                #if 0.95 <= slope <= 1.05: 

                        print("Drift is stable") 

                elif e + 40 < i: 

                        print("Sending drift to CNC") 

                        cnc.send(str(slope).encode()) 

                        e = i 

 

                file = open('samples.txt', 'a') 
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                file.write(str(x[n])+";"+str(y[n])+";\n") 

                file.close() 

 

except KeyboardInterrupt: 

        print('\033[2DBye.') 

        thread_0.join() 

 
 

# The Talker code 

# Modified by: Daniel Bujosa Mateu 

# Author: Andreas Johansson 

 

import time, sys, os, socket, threading 

from scapy.all import * 

from scapy.utils import * 

 

server_address=('192.168.4.10',1338) 

 

#Traffic period in nsec = x 

#p=1000000000 

p=376900000 

 

##### Set the priority of the script to real-time and to the highest priority 

##### 

sudoPrio = os.popen("ps -aux | grep Talker.py | awk '{print $2}' | head -

1").read() 

prosPrio = os.popen("ps -aux | grep Talker.py | awk '{print $2}' | awk 

'NR==2'").read() 

 

os.system("sudo chrt -p 99 " + str(sudoPrio)) 

os.system("sudo chrt -p 99 " + str(prosPrio)) 

os.system("sudo renice -20 -p " + str(sudoPrio)) 

os.system("sudo renice -20 -p " + str(prosPrio)) 

 

try: 

        client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

except socket.error: 

        print("Socket failed. Exiting..") 

        sys.exit() 

 

print("Socket Created, connecting to " + str(server_address[0]) + " port " + 

str(server_address[1])) 

try: 

        client.connect(server_address) 

except ConnectionRefusedError: 

        print("Could not connect to server. Exiting..") 

        sys.exit() 

print("Connection established.") 
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#Forge ethernet frame used for periodic sending 

frame = (Ether(dst='b8:27:eb:01:a2:b4',src='b8:27:eb:88:ab:96') 

        / Dot1Q(prio=7) 

        / Dot1Q(vlan=1) 

        / IP(dst='192.168.4.10',src='192.168.4.30') 

        / ICMP()) 

 

#Main thread, periodic sending of traffic in x seconds adjusted with slope 

value from receiver 

q = time.time_ns() 

s = time.time_ns() 

i = 0 

try: 

        while i<=2022: 

                # print("p " + str(p) + " q-k " + str(q+k)) #Used to validate 

that period is updating when receiving new slope (k) value from receiver node 

                 while q < s: 

                        q = time.time_ns() 

                 sendp(frame, iface='eth0') 

 

                 #time.sleep(p/(2*(1000000000.0**2))) 

                 i+=1 

                 if i % 100 == 0: 

                       #p = p*0.95 

                        p = p*1.05 

                        client.sendall(str(p/1000000000.0).encode()) 

                        #client.sendall(str(0.3769).encode()) 

                 s+=p 

 

except KeyboardInterrupt: 

        print('\033[2DBye.') 
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Appendix C The code to the cnc.py  
The cnc.py acts as second client to establish a connection with the listener code (in the third 

experiment) by also using socket communication. The cnc.py receives the perceived clock drift from 

the listener code. After the cnc.py receives the drift, it will update the period by reconfiguring the 

config.json in Appendix G  to update the switches with the new schedule and then apply it on the 

TSN network. Lastly, "cnc.py" is used to run this client. 

 

import time, sys, os, socket, threading, io, subprocess 

import numpy as np 

 

server_address_a=('192.168.4.10',1338) 

#server_address_b=('192.168.4.20',1338) 

 

sem =threading.Semaphore() 

 

def reconfigure(file_name, line, period): 

    lines = open(file_name, 'r').readlines() 

    lines[15] = "                    [" + str(int(np.around((period - 

30000.0)/10000))) + "0000, 01111111]\n" 

    lines[47] = "                    [" + str(int(np.around((period - 30000.0 

- 40000.0)/10000))) + "0000, 01111111]\n" 

 

    out = open(file_name, 'w') 

    out.writelines(lines) 

    out.close() 

    #sp = subprocess.call("bash cnc.sh", shell=True) 

    #time.sleep(5) 

    #sp.terminate() 

    #os.system("expect -c \"spawn ./cnc; expect \"Password:\"; send -- \"soc-

e\r\"; interact\"") 

    os.system("bash cnc.sh") 

    #child = pexpect.spawn('./cnc') 

    #child.expect('Password:') 

    #child.sendline('soc-e:\r') 

 

def listener_management(server_address,line): 

    try: 

        client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    except socket.error: 

        print("Socket failed. Exiting..") 

        sys.exit() 

 

    print("Socket Created, connecting to " + str(server_address[0]) + " port " 

+ str(server_address[1])) 

    try: 

        client.connect(server_address) 

    except ConnectionRefusedError: 

        print("Could not connect to server. Exiting..") 
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        sys.exit() 

 

    print("Connection established.") 

    period = 376900000.0 

 

    #period = 1000000000.0 

    data = client.recv(1024) 

    while len(data) > 0: 

        drift=float(data.decode()) 

        print("Drift " + str(server_address[0]) + ":" + data.decode()) 

        period = period * drift 

        sem.acquire() 

        reconfigure("../../../shared/config.json", line, period) 

        sem.release() 

        data = client.recv(1024) 

 

thread_0 = threading.Thread(target = listener_management, 

args=(server_address_a,28,)) 

thread_0.start() 

#thread_1 = threading.Thread(target = listener_management, 

args=(server_address_b,9,)) 

#thread_1.start() 

 

try: 

    while True: 

        time.sleep(10) 

 

except KeyboardInterrupt: 

    thread_0.join() 

    #thread_1.join() 

 

       
 

Appendix D Cnc.sh 
This line of code is used to automatically enable passwords in the Docker Desktop terminal when 

running experiment 3. For example, cnc.sh should be moved to the folder “cd /libs/cnc/build/” to 

participate in this function. 

expect -c "spawn ./cnc; expect \"Password:\"; send -- \"soc-e\r\"; interact; 

expect \"Password:\"; send -- \"soc-e\r\"; interact" 
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Appendix E Configuration of the TSN Switches  
The following steps were taken to configure the first TSN device: 

• The connection from the switch to the PC is done through Ethernet, but to do that, the PC 
needs to be in the same subnet as the switch, in this case, we use IP address 192.168.4.60 
with subnet mask 255.255.255.0, see Figure B-1. 

• The PC was connected to port 2 on the switch and the switch was by default, accessible on IP 
address 192.168.4.68, which can be reached via a web browser by entering the username 
and password that requires, see Figure B-2. 

• Port 1 was enabled in the switch by modifying the tab Advanced Network, see Figure B-3 in 
the TSN menu; the other ports were left by default unmodified. 

• As shown in Figure B-4, the cycle time was set to one second since the experiment used 
periodic traffic in one-second intervals. The list length is set to two, as seen in the figure, in 
slot 0, ST traffic which is Q7, is sent with a time interval of 30 000 ns. 30 000 ns was closed by 
using the trial error method as the exact window size for the ST time window. Other traffic 
traversing the network is allowed to be sent in Q6-Q0 outside the 30 000 ns interval. 

 

                        
                               Figure B-1: configuration of the PC 
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              Figure B-2: The web browser of the TSN switch 

 

 

                                                

                                                                Figure B-3: The TSN menu 

 

Figure B-4: TAS configuration in the first switch. 
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The following steps were taken to configure the second TSN device: 

• The steps mentioned above are used to configure the second switch except for the IP 
address 192.168.4.69 with subnet mask 255.255.255.0.  

• As shown in the Figure B-5 the cycle time was set to one second since the experiment used 
periodic traffic in one-second intervals. The list length is set to three, as seen in the figure, in 
slot 0, the window size 40 000 ns was chosen so the window wouldn’t be scheduled in the 
same position as in slot 1.  The traffic is sent between Q6-Q0. 
In slot 1, ST traffic which is Q7 is sent with a time interval of 30 000 ns. 30 000 ns was closed 
using the trial error method as the exact window size for the ST time window. Lastly, other 
traffic in slot 2 traversing the network is allowed to be sent in Q6-Q0 outside the 30 000 ns 
interval. 

 

 

Figure B-5: TAS configuration in the second switch. 
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Appendix F Setting up Docker Desktop environment 
• First step is downloading the Docker Desktop container by clicking on this link 

https://docs.docker.com/desktop/install/windows-install/ and choosing the version 

suitable for your operating system as in Figure 4.1. In our case, Docker Desktop for 

Windows was chosen. 

 

 

Figure 4.1: Installing Docker Desktop 

 

• After the installation is completed, open the command prompt on your device and 

follow all the steps that appear in this link. https://learn.microsoft.com/sv-

se/windows/wsl/install-manual#step-4---download-the-linux-kernel-update-package. 

  

• Download the "cnc-main" file on your device and save it on your computer 

 

• Once this is done, type the commands in your command prompt terminal. 

 

o cd "C:\folder\path\to\cnc-main" 

o docker build --rm -t aservera/cnc:latest 

o cd "C:\folder\path\to\cnc-main\Docker\cnc-docker" 

o docker-compose up -d 

o docker exec -it cnc ./bin/bash 

 

• Now that you have access to the Docker Desktop terminal, type these commands 

 

o Install expect by sudo apt install expect 

o Install pip3 by sudo apt install python3-pip 

o Install all cnc.py required libraries 

 

• Once all required libraries to run cnc.py are downloaded, navigate to this folder 

through cd /libs/cnc/build/. 

o In this folder, you should move or copy the cnc.py and cnc.sh. 

https://docs.docker.com/desktop/install/windows-install/
https://learn.microsoft.com/sv-se/windows/wsl/install-manual#step-4---download-the-linux-kernel-update-package
https://learn.microsoft.com/sv-se/windows/wsl/install-manual#step-4---download-the-linux-kernel-update-package
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o When all those steps are completed, you can now use the Docker Desktop as a 

client to connect with the listener server. Use the command "python3 cnc.py" 

to run the client, see Figure 4.2. 
 

 

                                     Figure 4.2: The CNS container created in the Docker Desktop  
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Appendix G Config.json 
Config.json file is the switch configuration file containing the TSN switches configuration, ports, and 

configuration values, as shown below. Config.json files update the switches with the new schedule 

and then apply it to the TSN network. To use the file, specify the exact port configuration used in the 

TAS configuration on the TSN switch interface. After running experiments, the config.json file must 

reconfigure to the default state. Supervisor Daniel Bjuosa Mateu created the codes, but they have 

been modified by the authors in this thesis to adapt to the devices used in this thesis. 

Author Daniel Bujosa Mateu 

Modified by Balqis Yusuf 

 

[ 

    { 

        "switch": "TEST_68", 

        "ip": "192.168.4.68", 

        "port_list": [ 

            { 

                "port_number": "PORT_0", 

                "values":[ 

                    [376900000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_1", 

                "values":[ 

                    [30000, 10000000], 

                    [1000010000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_2", 

                "values":[ 

                    [376900000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_3", 

                "values":[ 

                    [376900000, 01111111] 

                ] 

            } 

        ] 

    }, 

    { 

        "switch": "TEST_69", 

        "ip": "192.168.4.69", 

        "port_list": [ 

            { 

                "port_number": "PORT_0", 
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                "values":[ 

                    [376900000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_1", 

                "values":[ 

                    [40000, 01111111], 

                    [30000, 10000000], 

                    [999970000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_2", 

                "values":[ 

                    [376900000, 01111111] 

                ] 

            }, 

            { 

                "port_number": "PORT_3", 

                "values":[ 

                    [376900000, 01111111] 

                ] 

            } 

        ] 

    } 

] 
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