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Photoplethysmography is a non-invasive technique used for measuring several
vital signs and for the identification of individuals with an increased disease risk. Its
principle of work is based on detecting changes in blood volume in the
microvasculature of the skin through the absorption of light. The extraction of
relevant features from the photoplethysmography signal for estimating certain
physiological parameters is a challenging task, where various feature extraction
methods have been proposed in the literature. In this work, we present PPGFeat, a
novel MATLAB toolbox supporting the analysis of raw photoplethysmography
waveform data. PPGFeat allows for the application of various preprocessing
techniques, such as filtering, smoothing, and removal of baseline drift; the
calculation of photoplethysmography derivatives; and the implementation of
algorithms for detecting and highlighting photoplethysmography fiducial
points. PPGFeat includes a graphical user interface allowing users to perform
various operations on photoplethysmography signals and to identify, and if
required also adjust, the fiducial points. Evaluating the PPGFeat’s performance
in identifying the fiducial points present in the publicly available PPG-BP dataset,
resulted in an overall accuracy of 99% and 3038/3066 fiducial points were
correctly identified. PPGFeat significantly reduces the risk of errors in
identifying inaccurate fiducial points. Thereby, it is providing a valuable new
resource for researchers for the analysis of photoplethysmography signals.
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1 Introduction

Photoplethysmography (PPG) detects changes in blood volume in the microvasculature
of the skin through the absorption of light. The non-invasive technique is used to measure
vital signs (Allen, 2007) and has been described in studies as a tool for monitoring heart rate,
blood pressure, and respiratory rate (Fukushima et al., 2012; Karlen et al., 2013; He et al.,
2014; Islam et al., 2017), and to identify persons with risk of diseases (Mahri et al., 2017;
Chakraborty et al., 2020; Charlton et al., 2022b; Lee et al., 2022). However, extracting relevant
features from the PPG signal is a challenging task (Elgendi et al., 2018; Chakraborty et al.,
2019; Ab Hamid and Nayan, 2020).

The PPG waveform has been widely studied for a long time. Various feature extraction
methods have been proposed in the literature (Elgendi et al., 2018; Chakraborty et al., 2019;
Ab Hamid and Nayan, 2020). PPG is included in several wearable devices due to its non-
complex setup and usefulness in the collection of a number of different and valuable
physiological parameters (Almarshad et al., 2022). Despite this fact, there exists no agreed
upon or standardized preprocessing framework allowing the use of the PPG signal for
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wearable applications without limitations (Prieto-Avalos et al.,
2022). From choice of site for PPG signal acquisition to the
features that can be extracted from the PPG signal, researchers
have used various combinations of sensor interfacing, data
recording, segmentation, filtration, and smoothing techniques
(Chan et al., 2019).

There are several approaches for extracting PPG features in order
to estimate different physiological parameters and vital signs (Khalid
et al., 2018; Chen et al., 2019; Priyadarshini et al., 2021). One approach
is the use of time- and/or frequency-domain analysis (Takada et al.,
1996; Baek et al., 2010; Gil et al., 2010). Jaafar et al. (Jaafar and Rozali,
2018; Jaafar and Chung Xian, 2021) used only the time-domain of the
PPG signal to estimate heart rate and breathing rate parameters. In
another study, frequency-domain methods such as the Taguchi

method (Suzuki and Ryu, 2014) were used in addition to time-
domain analysis, in order to identify features which are relevant
when estimating systolic blood pressure (Suzuki and Ryu, 2014).

To perform time-domain analysis, the velocity
photoplethysmography (VPG), the acceleration photoplethysmography
(APG), and the jerk photoplethysmography (JPG) are used. VPG, APG,
and JPG correspond to the first, second and third PPG derivative,
respectively.

In addition to the aforementioned feature extraction methods, the
application of machine learning techniques has shown accurate and
promising results and therefore seems to be an effective approach in
extracting relevant features from PPG signals (El-Hajj and Kyriacou,
2020). Advanced signal processing techniques have also been used to
extract relevant features for the estimation of blood pressure and other
vital signs. An example of such a method is the Empirical Mode
Decomposition (EMD) method (Vadrevu and Manikandan, 2017),
which has been used to decompose PPG signals into a set of intrinsic
mode functions (IMFs). The use of Discrete Wavelet Transform
(DWT) has also been proposed and acceptable results have been
achieved when used in the analysis of PPG signals (Paradkar and
Chowdhury, 2015; Ricardo Ferro et al., 2015; Argüello Prada and
Serna Maldonado, 2018).

Elgendi et al. (Elgendi et al., 2018) have attempted to standardize
the nomenclature of the PPG, VPG and APG fiducial points.
However, there is currently a lack of a widely accepted standard
for the automatic detection of PPG fiducial points and its derivatives.
Table 1 provides a general description of the main fiducial points in
the PPG, VPG and APG.

The PPG waveform (Figure 1A) consists of four main points of
reference: the onset (O), the systolic peak (S), the dicrotic notch (N),
and the diastolic peak (D). These points represent specific stages of
the cardiac cycle, such as the beginning of the pulse in the systolic
phase (onset) and the maximum peak during systolic ejection
(systolic peak). The dicrotic notch (N) marks the transition from
systole to diastole, while the diastolic peak (D) represents the
minimum pressure in the arterial system. As individuals age, the
dicrotic notch and diastolic peaks may become less pronounced in
the PPG waveform (Mejía-Mejía et al., 2022), the APG waveform’s e
and f points correspond to N and D.

TABLE 1 Characteristic points of the PPG signal and its derivatives.

Waveform Fiducial points Description

PPG O Onset

S Systolic peak

N Dicrotic notch

D Diastolic peak

VPG w Global maxima in the systolic phase

x Local minima in the systolic phase

y Global minima in the systolic phase

z First local maxima in the diastolic phase

APG a Early systolic positive peak

b Early systolic negative peak

c Late systolic re-increasing wave

d Late systolic re-decreasing wave

e Early diastolic positive wave

f Diastolic negative wave

FIGURE 1
Illustration of fiducial points, where the blue lines in (A) represent the PPG waveform, (B) represent the VPG waveform, and (C) represent the APG
waveform (Abdullah et al., 2023).
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The VPG waveform (Figure 1B) represents the velocity of the
amplitude changes over time. It has two prominent peaks (w and y)
in the systolic phase and one peak (z) in the diastolic phase. These
peaks correspond to the points of maximum and minimum slope in
the systolic and diastolic phases, respectively. Additionally, there is a
local minimum (x) in the systolic phase which corresponds to the
systolic peak of the PPG. The APG waveform (Figure 1C) provides
additional information by including four prominent peaks in the
systolic phase (a, b, c, and d) and two in the diastolic phase (e and f).
These peaks correspond to the points of maximum acceleration in
the waveform during the systolic and diastolic phases, respectively,
and provide additional information about the dynamics of blood
flow during these phases of the cardiac cycle (Charlton et al., 2018).
Suboh et al. (Suboh et al., 2022) reported on the use of the third and
fourth derivatives of the PPG waveform for detecting fiducial points
in individuals with ischemic heart disease. However, Suboh et al. did
not find the c and d points in all the waveforms they analyzed and
thereby their features tables is incomplete.

In contrast, Abdullah et al. (Abdullah et al., 2023) have proposed
an accurate method for classifying and finding the c and d points of
the APG. This is significant progress because the statistical analysis
of APG fiducial points can offer insights into arterial stiffness, aging,
and essential hypertension (Takada et al., 1996; Brillante et al., 2008;
Gil et al., 2010; Mok Ahn, 2017; Elgendi et al., 2019; Sarhaddi et al.,
2022).

To facilitate research, open-source toolboxes for PPG have been
developed and evaluated. Examples of these toolboxes are PPG-
beats, PPGI, PPGTempStitch, and PhysioNet’s Cardiovascular
Signal Toolbox and HRV Toolkit.

PPG-beats (Charlton et al., 2022a) is a MATLAB library which
provides algorithms for detecting heartbeats from PPG-signals. It
also provides a framework for assessing the performance of PPG
heartbeat detectors in eight publicly available datasets containing
both PPG and electrocardiogram (ECG) data. These are further
described in Section 2.1.

PPGI (Pilz et al., 2019) is a MATLAB toolbox for PPG imaging
which takes face videos as input for PPG and incorporates computer
vision algorithms in order to estimate heart rate.

PPGTempStitch (Tang et al., 2021) is a MATLAB toolbox that
takes annotated PPG waveforms as input and generates longer PPG
waveforms simulating regular, irregular, fast rhythm, and noisy PPG
waveforms. Two methods, which are based on the systolic peak and
the onset respectively, are used for stitching the waveforms.

The PhysioNet Cardiovascular Signal Toolbox (Goldberger
et al., 2000; Vest et al., 2018) is a toolbox for calculating heart
rate variability, whereas the PhysioNet HRV Toolkit (Niskanen
et al., 2004) allows for visualizing NN interval time series,
automated removal of outliers and calculation of commonly used
heart rate variability statistics.

However, we have not identified a toolbox aimed to identify
fiducial points. In this article, we present PPGFeat, a robust, accurate
and automated MATLAB based PPG feature extraction toolbox.
PPGFeat has been developed and evaluated using a publicly available
dataset that contains PPG waveforms collected from a diverse
population including both healthy individuals and individuals
with cardiovascular disease or other pathological disorders. The
data was collected using a finger probe. The PPGFeat toolbox filters
and examines the PPG waveform and its derivatives, provides the

possibility to identify fiducial points from the PPG, VPG and APG,
and generate a features table which can be further used for the
statistical and AI based predictive analysis.

2 Materials and methods

2.1 Dataset selection

PPG-beats (Charlton et al., 2022a) includes the following eight
publicly available datasets in their performance framework:
CapnoBase IEEE TBME RR benchmark dataset, BIDMC, MIMIC
PERform Training Dataset, MIMIC PERform Testing Dataset,
MIMIC PERform AF Dataset, MIMIC PERform Ethnicity
Dataset, WESAD, and PPG-DaLiA.

CapnoBase(CapnoBase IEEE TBME Respiratory Rate
Benchmark - UBC Library Open Collections; Karlen et al., 2013)
and BICMC(Goldberger et al., 2000; Pimentel et al., 2017) contain
high-quality data collected during hospital monitoring. The patients
in CapnoBase were 29 children and 13 adults receiving anesthesia
whereas the 53 patients in BICMC were critically ill. The MIMIC
PERform Training, Testing and AF datasets (Charlton et al., 2022a),
which are subsets of Physionet’s MIMIC II dataset, also contain data
from critically ill and hospitalized patients but the data is of lower
quality due to being collected in routine clinical care. The MIMIC
PERform training and testing datasets contain PPG, ECG, and
respiration signals from 100 adults and 100 neonates whereas the
MIMIC PERform AF dataset contains similar signals from
19 patients with atrial fibrillation and 16 patients with normal
sinus rhythm. The MIMIC PERform Ethnicity Dataset (Charlton
et al., 2022a), which is a subset of Physionet’s MIMIC II matched
waveform dataset, contains data from 100 white and 100 black
patients who were critically ill.

Three other datasets containing data from patients are The
University of Queensland Vital Signs dataset (Saeed et al., 2011; Liu
et al., 2012), which is another subset of PhysioNet’s MIMIC II
dataset, and the PPG-BP dataset (Liang et al., 2018a). A wide range
of data collected from 32 patients undergoing surgery with
anaesthesia is included in the University of Queensland dataset
(Liu et al., 2012), whereas the MIMIC II dataset (Saeed et al., 2011)
contains ECG, respiratory rate, arterial blood pressure, and PPG
signals from 90 patients admitted to an intensive care unit. Certain
records in the MIMIC II dataset (Saeed et al., 2011) include systolic
peak annotations. The PPG-BP dataset (Liang et al., 2018a) contains
data from 219 patients of equal gender distribution who were
admitted to the Guilin People’s Hospital in Guilin, China. The
age of the patients was 21–86 years with a median age of 58 and they
had several different diseases. PPG-BP integrates identified and
comprehensive clinical data which allows researchers to explore
and understand the relationship between cardiovascular conditions
and PPG signals that were collected using a finger probe.

The final two datasets included in PPG-beats (Charlton et al.,
2022a) were collected with the wearable Empatica E4. WESAD
(Schmidt et al., 2018) contains data from 15 adults relaxing by a
table while reading neutral material, watching a number of amusing
video clips, conducting a stress test, and performing mediated recovery.
PPG-DaLiA (Reiss et al., 2019) contains data from 15 adults performing
the following daily activities according to a protocol: sitting, ascending
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and descending stairs, playing table soccer, cycling, driving a car, taking
a lunch break, walking, and working by a desk.

To analyze PPG signals, data from both healthy and ill people
is required. None of the above datasets meets this requirement.
In this work, the PPG-BP dataset (Liang et al., 2018a) was
selected since it contains the highest number of adult patients,
and information on each patient’s disease. Furthermore, it
contains data from both young and old adults of both
genders. The PPG-BP dataset contains three 2.1 s long PPG
segments for each patient. The PPG segments, which were
collected with a sampling frequency of 1 kHz, contain
2,100 sampling points. Information on each PPG segment’s
Skewness SQI (Ssqi) is reported in the dataset. Only records
with a positive Ssqi are included to reduce the artifacts caused by
noise and motion (Elgendi, 2016).

2.2 System design

The developed MATLAB toolbox PPGFeat can automatically
identify the fiducial points. The PPGFeat toolbox allows for the
application of various preprocessing techniques, such as the use
of a filter, smoothing, removing baseline drift, the possibility of
calculating PPG derivatives, and implementing algorithms for
detecting and highlighting PPG fiducial points. The results can be
used to generate more statistically accurate features for further
analysis of the PPG signals. The block diagram in Figure 2
outlines the process of analyzing PPG, VPG and APG signals
using the PPGFeat toolbox. The process starts with data
preparation, where the raw PPG signals are segmented based
on their Ssqi. The signals are then subjected to preprocessing,
where they are filtered to remove any noise or artifacts. The next
stage involves the use of a novel algorithm to extract the fiducial
points from the preprocessed signals. The extracted fiducial
points are visually inspected to ensure accuracy, and finally,
they are used to generate a features table that summarizes the
key features of the PPG signals which can be used for further
analysis and interpretation.

2.2.1 Data preparation
Data preparation is an essential step in analyzing the online

available datasets. It explains the mathematical foundations of the
data processing and segmenting the data into raw PPG segments for
further analysis.

2.2.1.1 Mathematical foundations
A moving average filter is applied using the MATLAB function

movmean to reduce random noise and improve the quality of the
signal. The governing mathematical equation of the moving average
(1) can be written as follows:

y i[ ] � 1/N ∑N−1

i�0
xi+j (1)

where x is the raw PPG signal, y denotes the filtered PPG signal,
and N denotes the average number of points. The derivatives of
PPG up to the third level are calculated using the governing
Eqs 2–4,

VPG � d

dt
PPG( ) � d

dt
y t + 1( ) − y t( )[ ] (2)

APG � d

dt
VPG( ) � d

dt
y t + 1( ) + y t − 1( ) − 2y t( )[ ] (3)

JPG � d

dt
APG( ) � d

dt
y t + 2( ) − 2y t + 1( ) + 2y t( ) − y t − 1( )[ ]

(4)

where y(t) is a filtered PPG signal, y(t+1) and y(t-1) represent
the next and the previous sample respectively, and y(t+2)
represents the 2nd next sample. The VPG, APG and JPG of
the denoised PPG signal are calculated using MATLAB’s diff
function.

2.2.1.2 Data segmentation
Figure 3 illustrates the process of selecting raw PPG

segments for each subject in the PPG-BP database (Liang
et al., 2018a) using a Ssqi threshold of 0.41. The recorded
PPG segments contain 2,100 data points collected during
2.1 s. This process allows for the selection of one single high
Ssqi segment for each subject. The raw values of the selected
segments are stored in a matrix as shown in the rightmost box
of Figure 3, while a second matrix store the corresponding
Ssqi values and subject ids. This method is applied to all
subjects. It is recommended to generate an input matrix with
dimensions r x w, where r represents the number of subjects
and w represents the PPG data for each subject. Additionally,
users of PPGFeat have the option to upload an optional
second matrix. This matrix should have dimensions r x 2,
where column 1 contains the subject ids, and column
2 contains the calculated Ssqi values. The generated PPG

FIGURE 2
Block diagram of the complete fiducial point detection system.
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FIGURE 3
Data selection and preparation process (Abdullah et al., 2023).

FIGURE 4
Flowchart of the PPG fiducial point extraction algorithm, the red portion of the flowchart describes the CnD algorithm for APG classification, and the
extraction of c and d as described in Abdullah et al. (2023)).
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segments matrix is then provided as input to the fiducial
point extraction process in the PPGFeat toolbox.

2.3 PPGFeat toolbox

This section provides an overview of the PPGFeat toolbox GUI
and the various steps involved in the PPG data analysis. The
PPGFeat toolbox offers a comprehensive set of features, including
preprocessing, fiducial point extraction, and visual inspection of
fiducial points. In addition, it enables the generation of a PPG
features table which can be used for later analysis.

2.3.1 Preprocessing
Previous studies have discussed the importance of choosing the

right filter and frequency range for PPG signal analysis (Karlen et al.,
2012; Peng et al., 2015; Zhang et al., 2017; Liang et al., 2018c; Huang
et al., 2022; Wan et al., 2022). Liang et al. (Liang et al., 2018c) found
that a Chebyshev type II 4th order, 20 db filter with a frequency
range of 0.4–8 Hz was the most effective in improving the quality of
PPG signals. The PPGFeat toolbox uses the same filter design to
extract PPG, VPG and APG fiducial points and removes high- and
low-frequency noise followed by the moving average filter to further
reduce the random noise and improve the signal quality.
Furthermore, PPGFeat provides flexibility in the preprocessing

FIGURE 5
PPG fiducial point extraction through Case I, II and III, where (A) is the PPG waveform, (B) is the VPG waveform, (C) is the APG waveform, which the
algorithm examines between the b and e points in order to classify it into Case I, II or III, and (D) is the JPG waveform, which is used to extract fiducial
points for the APG and PPG waveforms.
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settings by allowing users to select different cutoff frequencies for the
Chebyshev type II 4th order, 20 dB filter. This is further explained in
Section 2.3.3.1.

2.3.2 Fiducial point extraction algorithm
The flowchart in Figure 4 presents a comprehensive

methodology for identifying fiducial points using filtered PPG,
VPG, and APG waveforms. The user first selects the unfiltered
high Ssqi raw PPG segments as explained in Section 2.2.1.2 which is
then processed through the filtering stage as explained in Section
2.3.1. Second, the selected segment is processed using the MATLAB-
functions islocalmax and islocalmin which identify and highlight the
O and S points of the PPG segment, the O points will be used to
extract the single PPG segment for further processing. Third, the
single PPG segment is differentiated, and a moving average is
applied using the MATLAB functions diff and movmean
respectively, to obtain the VPG and APG waveforms. Once all
the derivatives of a single PPG segment are obtained, the
algorithm starts to locate the fiducial points of the PPG. The O
point is the first minima of the PPG whereas the S point is the first
global maxima of the PPG. The process is shown in Figure 4
flowchart and Figure 5 (Case I A, Case II A and Case III A). The
extraction of the N and D points is explained in Section 2.3.2.1.

The MATLAB functions islocalmax and islocalmin are also
applied on the VPG waveform in order to identify four
additional fiducial points, i.e., w which is the first maxima of
VPG, x which is the corresponding systolic point of the PPG
waveform, y which is the first minima of the VPG, and z which
is the second maxima of the VPG or the zero-crossing point of the
APG after the e point. The process of extracting the fiducial points is
shown in Figure 4 flowchart and Figure 5 (Case I B, Case II B and
Case III B).

2.3.2.1 CnD algorithm
The analysis of the APG waveform using the CnD algorithm

(Abdullah et al., 2023) begins at the top of the red portion of Figure 4
flowchart. The a point is the first global maxima in the systolic
region. This is followed by the first global minima, which is the b
point as shown in Figure 5 (Case I C, Case II C and Case III C).
However, identifying the c and d peaks in the APG waveforms is
challenging due to the variability of their characteristics caused by
stationary and non-stationary effects and variations in heart rate. To
address this challenge, the algorithm examines the region between
the locations of the b and e peaks of the APG waveform and their
corresponding location in the third derivative of the PPG waveform,
using three distinct algorithms: Case I, Case II, and Case III.

FIGURE 6
The graphical user interface of the PPGFeat toolbox.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Abdullah et al. 10.3389/fbioe.2023.1199604

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1199604


The CnD algorithm (Abdullah et al., 2023) is used to analyze the
APG waveform in order to identify the prominent points in the
systolic phase (a, b, c, and d) and the diastolic phase (e and f). The
algorithm employs different methods depending on how prominent
the c and d points are in the APG waveform.

Case I: When there are no prominent c and d points in the APG,
as shown in Figure 5 (Case I C), the CnD algorithm examines the
JPG waveform (Figure 5: Case I D). This involves locating the zero-
crossing points and the first maxima of the JPG waveform that
occurs after the second zero-crossing. As shown in Figure 5 (Case I C
and D), the first maxima in the JPG waveform corresponds to the c
point in the APGwaveform, while the APGwaveform’s second zero-
crossing corresponds to the d point. The e point in the APG
waveform corresponds to the third zero-crossing of the JPG
waveform or the second maxima of the APG waveform, and the
f point corresponds to the fourth zero-crossing of the JPG waveform
or the second minima of the APG waveform. The N and D points of
the PPG waveform correspond to the e and f points of the APG
waveform (Figure 5: Case I A, C and D).

Case II: When the c and d points are undetectable in the APG
waveform, as shown in Figure 5 (Case II C), the JPG waveform
(Figure 5: Case II D) is analyzed. In this case, the second minima of
the JPG waveform is located in the middle of the c and d points. As
shown in (Figure 5: Case II C and D), the CnD algorithm calculates
the corresponding c and d point in the APG waveform by taking the
second minima of the JPG waveform and subtract 2.5% of the total
wavelength (T) of the APGwaveform for the c point, and add 2.5% T
for the d point, respectively. The e point in the APG waveform
corresponds to the third zero-crossing of the JPG waveform or the
second maxima of the APG waveform, and the f point corresponds
to the fourth zero-crossing of the JPG waveform or the second
minima of the APG waveform. The N and D points of the PPG
waveform correspond to the e and f points of the APG waveform
(Figure 5: Case II A, C and D).

Case III: When the c and d points are prominent in the APG
waveform, as shown in Figure 5 (Case III C), the CnD algorithm can
accurately locate them directly from the analysis of the APG
waveform. In this case, the c point is the second maxima of the
APG waveform, and the d point is the second minima of the APG
waveform (Figure 5: Case III C). The e point in the APG waveform
corresponds to the third zero-crossing of the JPG waveform or the
second maxima of the APG waveform, and the f point corresponds
to the fourth zero-crossing of the JPG waveform or the second
minima of the APG waveform. The N and D point of the PPG
waveform correspond to the e and f points of the APG waveform
(Figure 5: Case III A, C and D).

2.3.3 GUI based visual inspection of fiducial points
The PPGFeat toolbox GUI (Figure 6) provides an opportunity to

select the data preprocessing parameters, visualize the fiducial points
and perform manual inspection and adjustments of the extracted
fiducial points.

2.3.3.1 GUI
The PPGFeat toolbox GUI shown in Figure 6 is designed to

support the user in performing various operations on PPG signals,
including filtering, automatically extracting fiducial points,
visualizing the fiducial points of the PPG, VPG and APG and

generating a features table. The key features of the PPGFeat
GUI are.

1. Filter Frequency: The user is allowed to specify the sampling
frequency (Fs) and the bandpass filter frequencies (FL for low-
pass and FH for high-pass) for a Chebyshev Type II 4th order
filter with a 20 dB attenuation (Figure 7A). This filter is applied to
the raw PPG signal in order to obtain the filtered PPG signal.

2. Data Loading: The user can load the raw PPG data of a subject in
a comma-separated values (.csv) file by using the “Load PPG”
button shown in Figure 7B. In this study, the raw PPG segments
were obtained through the data segmentation process explained
in Section 2.2.1.2. Additionally, the GUI allows the user to load
the Ssqi and data index values of the PPG data using the “Load
Ssqi” button, as shown in Figure 7C. If the data index and Ssqi
values are not available, the user can select the “Skip Ssqi” option.
When developing PPGFeat, the raw PPG data consisted of
219 subjects with 2,100 data points for each subject, resulting
in a matrix with the dimensions 219 x 2,100.

3. Fiducial Point Extraction Process: After loading the data, the raw
and filtered PPG waveforms are displayed, see Figures 8A, B.
Using the filtered PPG, the PPGFeat toolbox locates the starting
points of each segment from the PPG (Figure 8B), which are
displayed as “Min1″ and “Min2″ in the GUI. The user can change
the selected PPG segment by altering the values in “Min1″ and
“Min2″, and then plot the single PPG segment and their
corresponding VPG, APG segments by clicking the “Plot”

FIGURE 7
Filter frequency selection (A) and PPG and Ssqi data loading
(B, C).
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button (Figure 8C). The plots, which are shown in Figure 8 D-F,
highlight the fiducial points of each waveform. If a fiducial point
is incorrectly identified, the user can click the “Update” button in
Figure 8C to automatically correct the value and regenerate the
plots. To examine the PPG waveform of the next subject, the user
can press the “Next” button in Figure 8C. The extracted fiducial
points of the current subject will be automatically stored when
clicking the “Next” button.

4. Data Storage: After completing the fiducial point extraction
process, the user can generate output files by clicking the
“Generate output” button in Figure 9A. These files include the
filtered and zero-padded data of the PPG and APG segments,
PPG segment locations (ID_min1_min2), presence of c and d
points, a PPG features table listing the PPG, VPG, and APG
fiducial points, filtered PPG waveforms and a MATLAB. mat file
containing all generated output files. Table 2 summarizes the
details of the output files generated by the PPGFeat toolbox.

2.3.3.2 Visual inspection of fiducial points
The visual inspection of fiducial points is a crucial step in the

analysis of PPG signals. This step allows the user to confirm the

accuracy of the extracted fiducial points and to make any necessary
adjustments. The PPGFeat toolbox GUI allows the user to examine the
PPG, VPG, and APG plots, and to visually inspect the extracted fiducial
points as shown in Figures 10A–C. The PPGFeat toolbox highlights the
fiducial points on the plots and displays their corresponding time-
domain values whichmakes it easy for the user to identify and adjust the
fiducial points if necessary. By conducting a visual inspection, the user
can ensure that the extracted fiducial points accurately represent the
features of the PPG signals. This will lead to more reliable and
statistically accurate results.

2.4 Features table

The features table generated by the PPGFeat toolbox provides
the fiducial points magnitude and time domain values of the PPG,
VPG and APG. A total of 30 features are generated, and include the
magnitude features O, S, N, D, Min2, w, x, y, z, a, b, c, d, e, f, and
time domain features O_t, S_t, N_t, D_t, Min2_t, w_t, x_t, y_t, z_t,
a_t, b_t, c_t, d_t, e_t, and f_t. These features can be used to
calculate additional statistical features including, e.g., pulse area

FIGURE 8
Fiducial point extraction process, where (A, B) show the raw and filtered PPG waveform, (C) is the GUI control panel, (D–F) show the PPG segment
and its derivatives along with the extracted fiducial points, and (G) shows the single PPG segment of each filtered PPG waveform.
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(Wang et al., 2009), pulse interval (Poon et al., 2004),
augmentation index (Takazawa et al., 1998), and ratios of
different fiducial points (Takazawa et al., 1998; Ushiroyama,
2005; Hyun et al., 2007).

The extracted features can be used to determine various
physiological parameters such as heart rate (Fu et al., 2008),
heart rate variability (Gil et al., 2010), systolic blood pressure
(Suzuki and Ryu, 2014), and other cardiovascular parameters
(Charlton et al., 2022b). The features can further be used for
machine learning, and deep learning to develop predictive
models for various cardiovascular diseases (Liang et al.,
2018b; Khalid et al., 2018; Subashini et al., 2020; Allen et al.,
2021).

3 Results

To evaluate the identification and detection of fiducial points,
four performance parameters are calculated using Eqs 5–8, which
include accuracy (Acc), error rate (Err), sensitivity (S), and positive
predictivity (PP). Table 3 summarizes the complete results of the
performace evaluation.

Acc � TP

TP + FP + FN( )( ) × 100 (5)

Err � FP + FN( )
TFP

( ) × 100 (6)

S � TP

TP + FN
( ) × 100 (7)

PP � TP

TP + FP
( ) × 100 (8)

where,
TP = True positive (Correctly detected points)
FP = False positive (Incorrectly detected points)
FN = False negative (Missing points)
N = Number of subjects
TFP = Total fiducial points

A total of 219 PPGwaveformswere processed through the PPGFeat
toolbox, and manual marking of fiducial points was performed
alongside an automated process using the proposed algorithm. A
total of 3066 fiducial points were evaluated out of which
3038 fiducial points were accurately identified by the fiducial point
extraction algorithm included in the PPGFeat toolbox, hence a high
precision and accuracy in extracting the fiducial points, with an overall
accuracy of 99.08% is demonstrated. This is reflected in the accuracy
scores for each of the three cases, Case I, Case II, and Case III, which
were analyzed separately.

Case I, which accounted for 140 waveforms, showed a fiducial
point detection accuracy of 99.29%. Out of 1960 fiducial points in
Case I, the algorithm accurately identified 1946, resulting in a

FIGURE 9
Data storage, where (A) includes the “Generate output” and “Exit” buttons and (B) shows the generated output files.

TABLE 2 Output files from PPGFeat toolbox, where n is the number of samples in the used dataset (n = 219).

File name Dimension File type Content

Results — .mat Combination of all the.xlsx files in the matrix format

c_d_presence n x 1 .xlsx 0 or 1, where 0 means that c and d were not detected and 1 means detected

PPG_features n x 30 .xlsx Time domain and corresponding Magnitude and time domain values of fiducial points for PPG, VPG and APG

PPG_Filtered_HighSQI n x 2100 .xlsx Filtered PPG waveforms generated from input data

ID_min1_min2 n x 3 .xlsx The first column is subject ID, the second and third columns are “Min1″ and “Min2″ values of the selected PPG
segment

APG_Segments n x 1200 .xlsx Filtered APG segments with zero-padded values

PPG_Segments n x 1200 .xlsx Filtered PPG segments with zero-padded values
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FIGURE 10
Visual inspection of fiducial points where (A–C) show the PPG, VPG and APG waveforms (left) and their fiducial points with respect to standard
waveforms (right).

TABLE 3 Performance evaluation of fiducial points.

Algorithm N TFP TP FP FN S% PP% Err% Acc%

Case I 140 1960 1946 12 2 99.90 99.39 0.71 99.29

Case II 54 756 742 6 8 98.93 99.20 1.85 98.15

Case III 25 350 350 0 0 100 100 0 100
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sensitivity of 99.90% and a positive predictivity of 99.39%. The
overall error rate for Case I was 0.71%. Regarding Case II, which
accounted for 54 waveforms, a noticeable presence of c and d points
was shown. The algorithm achieved a fiducial point detection
accuracy of 98.15%. Out of the total 756 fiducial points in Case II,
the algorithm accurately identified 742, resulting in a sensitivity
of 98.93% and a positive predictivity of 99.20%. The overall error
rate for Case II was 1.85%. Finally, Case III, which consisted of
25 waveforms with a prominent presence of c and d points,
showed a perfect accuracy of 100% in detecting the fiducial
points. Out of the total 350 fiducial points in Case III, all
were accurately identified, resulting in a sensitivity of 100%
and a positive predictivity of 100%. The error rate for Case
III was 0%.

4 Discussion

This article provides information regarding the design and
development of the MATLAB based PPGFeat toolbox. The
development of the PPGFeat toolbox is motivated by the
increasing interest in using PPG signals and their features for
various medical applications, including the diagnosis of
cardiovascular disease and estimation of systolic blood pressure.
However, accurate identification of the fiducial points in the PPG,
VPG, and APG waveforms is crucial in order to carry out these tasks
with high precision and accuracy. Despite the importance of fiducial
point identification, we have not identified any toolbox which is
specifically designed for this purpose.

The PPGFeat toolbox was developed using the publicly
available dataset PPG-BP dataset (Liang et al., 2018a) which
contains PPG waveforms collected from a diverse population
including both healthy individuals and individuals with
cardiovascular disease or other pathological disorders (Elgendi
et al., 2019; Welykholowa et al., 2020). PPG-BP contains a good
representation of diverse patients of different ages and with well
documented health status, including patients with relevant
diseases and healthy individuals. In addition, the Ssqi reported
in the PPG-BP dataset makes it possible to reduce the influence of
the artifacts in a controlled way.

The PPGFeat toolbox features an interactive, user-friendly and
comprehensive solution which facilitates the analysis of the fiducial
point extraction using the novel CnD algorithm (Abdullah et al.,
2023) on PPG, VPG, and APGwaveforms. Amajor advantage of this
toolbox is its ability to evaluate the fiducial points in real-time, which
allows the user to validate each waveform individually. Thereby, the
risk of errors in the identification of inaccurate fiducial points is
reduced. The toolbox also promotes uniformity in existing datasets
for evaluating PPG fiducial points, making it a valuable tool for
researchers and healthcare professionals.

The PPGFeat toolbox offers an array of signal processing steps,
including the selection of the bandpass filter frequencies of a
Chebyshev type II 4th order, 20 dB filter, and for different
sampling rates. The bandpass filter removes high- and low-
frequency noise, while the moving average filter further improves
the signal quality by reducing random noise. The toolbox generates a
features table comprising time domain andmagnitude parameters of
the waveforms that can be used for statistical analysis and to

determine various physiological parameters such as heart rate (Fu
et al., 2008), heart rate variability (Gil et al., 2010), systolic blood
pressure (Suzuki and Ryu, 2014), and other cardiovascular
parameters (Charlton et al., 2022b). This valuable resource can
save researchers time and effort in the preprocessing and analysis
of PPG signals.

The performance of the PPGFeat toolbox was evaluated by
processing 219 PPG waveforms. The results showed a high
performance in extracting the fiducial points, with an overall
accuracy of 99.08%. The algorithm’s accuracy was also analyzed
for three different cases between which the prominence of the c
and d points varies. Case I had a fiducial point detection accuracy
of 99.29% and an error rate of 0.71%, Case II had an accuracy of
98.15% and an error rate of 1.85%, and Case III had a perfect
accuracy of 100%. These results demonstrate the PPGFeat
toolbox’s effectiveness and accuracy in extracting fiducial
points from PPG waveforms.

5 Conclusion

The PPGFeat toolbox developed in MATLAB is a powerful tool
offering an interactive user interface with the ability to accurately
evaluate fiducial points in real-time, along with the ability for
exporting a comprehensive features table. This makes PPGFeat
an attractive option for researchers and healthcare professionals
looking to save time and effort in PPG signal analysis. The visual
representation of the data provided by the PPGFeat toolbox, along
with the ability to store the processed data for conducting further
analysis, makes it a unique analysis tool. Furthermore, the
features generated by the PPGFeat toolbox have the potential
to be used for AI-based predictive analysis, and future work could
involve its application on other datasets for further evaluation
and comparison.
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