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Eduardo Alberto Alcántara Martínez ATS

Abstract
This thesis focuses on the parameter stability of additive normal tempered
stable processes when calibrating a volatility surface. The studied processes
arise as a generalization of Lévy normal tempered stable processes, and their
main characteristic are their time-dependent parameters. The theoretical
background of the subject is presented, where its construction is discussed
taking as a starting point the definition of Lévy processes. The implementation
of an option valuation model using Fourier techniques and the calibration
process of the model are described. The thesis analyzes the parameter stability
of the model when it calibrates the volatility surface of a market index (EURO
STOXX 50) during three time spans. The time spans consist of the periods
from Dec 2016 to Dec 2017 (after the Brexit and the US presidential elections),
from Nov 2019 to Nov 2020 (during the pandemic caused by COVID-19) and
a more recent time period, April 2023. The findings contribute to the under-
standing of the model itself and the behavior of the parameters under particular
economic conditions.

Keywords: Parameter Stability, Lévy Processes, Calibration, Volatility Sur-
face, Subordination, Additive Normal Tempered Stable Processes, Stable Dis-
tribution, Variance Gamma Process, Normal Inverse Gaussian Process.
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Chapter 1

Introduction

The study of financial markets and asset pricing has long been an intriguing field of research due
to its complex and dynamic nature. Over the years, various mathematical models and techniques
have been developed to capture the underlying dynamics of asset prices. The Black-Scholes model
is probably the most widely recognized and utilized option pricing model in finance.

However, it has been shown that the Black-Scholes model has some drawbacks of significant import-
ance while modeling equity derivatives. One of those problems is that the presence of a volatility
smile suggests that in the risk neutral world, the kurtosis should be higher than the one provided
while using normal densities. Another problem is that the distribution of the returns does not
tend to be symmetric, instead one could expect a distribution with a left tail fatter than the right
one, this can be measured with the skewness. To overcome these problems, particular classes of
stochastic processes have been studied in the recent years.

Lévy processes are one of those examples. They are defined as right-continuous stochastic pro-
cesses with left limits that satisfy three properties: independent increments, stationary increments
and stochastic continuity. One particular extension of Lévy processes are the Normal Tempered
Stable Processes (LTS), which were first introduced in [1] where a particular case of LTS processes
was studied: The Variance Gamma (VG) process. LTS processes possess properties that provide
a flexible framework for modeling financial data due to their ability to capture both heavy-tailed
and asymmetric behavior. The study of LTS processes continued in [2] where the VG process was
generalized and in [3], where the Normal Inverse Gaussian (NIG) process was studied.

Even if LTS processes incorporate realistic properties while modeling financial instruments, the
assumption of stationary increments for model calibration has been studied and discussed in [4],
where it was shown that even if LTS processes calibrate the implied volatility in a satisfactory
way for a single maturity, they fail to reproduce the volatility surface when many maturities are
considered.

Additionally, the stationary increments in LTS processes impose some restrictions that lead to rigid
scaling properties, something that is not observed when returns series are analyzed empirically.
Another argument that questions the stationary assumption is given in [5], where it is mentioned
that a market maker does not consider the consequences of a jump to be equivalent for options of
different maturities. With a hedging perspective, the important factor after a jump arrival is the
amount of trading required over the underlying to replicate the option, making the impact of the
jump and the maturity of the option inhomogeneous.

To overcome the previous inconveniences, time inhomogeneous jump processes were proposed. The
probability characterization of these processes can be found in [6], while some of the initial applic-
ations in option pricing were developed in [7] and [8].
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More recently, a particular class of additive processes were defined and studied in [5], which the
authors called ATS. ATS processes show a significant improvement when calibrating volatility sur-
faces for equity derivatives. These type of processes have independent increments and stochastic
continuity but they do not have stationary increments. One of the main changes compared to LTS
processes is that ATS processes have deterministic and time-dependent parameters, and given a
fixed time t, a LTS process can be associated, allowing to preserve properties of these processes.

The objective of this thesis is to analyze the behavior of the parameters of the ATS processes over
different time periods when calibrating the volatility surface of a market index (EURO STOXX
50) using an option pricing model that incorporates these processes. Additionally, the calibration
performance using ATS models will be compared with its corresponding LTS process. It builds
upon the analysis done in [5], which looked at specific dates. This thesis aims to gain a better
understanding of how these parameters change under different economic conditions.

The analyzed option data consists of a data set containing observations of daily option prices of
European call options with the EURO STOXX 50 index as underlying. The first time period
corresponds from January 2017 to December 2017. The second time period corresponds from
November 2019 to November 2020 and the last time period contemplates information from March
31st to April 28th, 2023.

The experimental results show that the ATS processes significantly outperform their corresponding
LTS processes in every time period. Besides, when the market volatilities present a steep slope in
the short term maturities (a situation that is more likely in stress periods such as in March 2020)
the calibration of LTS processes failed while the calibration for ATS processes show a significant
increment in one of the parameters, and as a consequence of this increment the average volatility
of the surface decreases without reflecting the real market conditions.

The distribution of the thesis is as follows: in Chapter 2 the construction and properties of LTS
processes is explained using as main references [4] and [6]. The most relevant examples of LTS
processes, the NIG process and the VG, are discussed. Subsequently, the results that allow the
extension from LTS processes to ATS processes are presented and explained following [5].

Once the theoretical background is set, in Chapter 3 the model for option pricing that involves ATS
processes is described providing a comprehensive understanding of its key components. Section 2
explores the option valuation technique employed in the model, specifically highlighting the use
of the Fast Fourier Transform (FFT) for efficient calculations. The chapter finishes discussing the
calibration process and the optimization method that will be employed.

Finally, Chapter 4 will provide a detailed explanation of the market data used for the analysis, as
well as the calibration procedure and the main results will be presented. Chapter 5 concludes.

Remark: The code utilized in this thesis has been stored in a GitHub repository for convenient ac-
cess and reference. The repository can be found at the following link: https://github.com/Eduardo
Alca10/Master-ATS-work-code. Interested individuals can visit the repository to examine the code
in detail, facilitating a deeper understanding of the technical aspects discussed in this thesis.
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Chapter 2

Theoretical Background

This chapter aims to provide a solid understanding of the theoretical framework behind ATS pro-
cesses, which will be crucial for their successful application in the calibration of implied volatilities.
Since ATS processes are a generalization of LTS processes, Sections 1, 2 and 3 will be useful to
understand every element in the construction of LTS processes. In particular, it will be introduced
the concepts of Lévy processes, stable processes and tempered stable distributions, which are a
generalization of stable distributions that incorporate exponential damping.

In Section 4, LTS processes will be defined by explaining the Brownian subordination technique,
and the two main examples of these processes, the VG nd the NIG process, will be presented.
Finally, in Section 5, ATS processes will be defined as a particular subclass of additive processes.

1 Lévy Processes
The purpose of this section is to state the Lévy-Itô decomposition theorem following [4], and
explain in an intuitive way which elements fully characterizes a Lévy process. To do that, it will be
given the necessary definitions and intuitive ideas to understand the theorem since it is of relevance
importance for subsequent sections.

Definition 2.1: Lévy Process [4]: A cadlag stochastic process 1 (Xt)t≥0 on (Ω,F ,P) with values
in Rd such that X0 = 0 is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, ..., tn, the random variables
Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1

are independent.

2. Stationary increments: the law 2 of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ϵ > 0, limh→0 P (|Xt+h −Xt| ≥ ϵ) = 0.

The condition X0 = 0, with independent and stationary increments, is something that we observe
in the definition of the Brownian motion. However, a Lévy process is more general since the in-
crements do not need to be normally distributed, and the paths do not need to be continuous.
The interpretation of the third condition implies that the jumps that generate discontinuities are
indeed random, given that the probability to see a jump at time t is zero.

In general, the Lévy-Itô decomposition theorem says that each Lévy process is characterized by the
so called characteristic triplet (A, υ, γ). However, to understand each element in the triplet, and to
eventually state the Lévy-Itô decomposition theorem, it is necessary to give some definitions and
concepts that can be divided in three groups:

• First Group: Radon, Poisson and Lévy measures.
1This means that (Xt)t≥0 is right-continuous with left limits.
2We can understand the law of a random variable as its distribution.

3
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• Second Group: Jump measure of a compound Poisson process.

• Third Group: Lévy processes in terms of Brownian and jump processes.

First Group:

Definition 2.2: Radon Measure [4]: Let E ∈ Rd. A Radon measure on (E,B)3 is a measure
µ such that for every closed, bounded and measurable set B ∈ B, µ(B) < ∞.

Definition 2.3: Poisson random Measure [4]: Let (Ω,F ,P) be a probability space, E ⊂ Rd

and µ a given positive Radon measure µ on (E, E). A Poisson random measure on E with intensity
measure µ is an integer valued random measure:

M : Ω× E → N
(ω,A) ↣ M(ω,A),

such that,

1. For (almost all) ω ∈ Ω, M(ω, .) is an integer-valued Radon measure on E: for any bounded
measurable A ⊂ E,M(A) < ∞ is an integer valued random variable.

2. For each measurable set A ⊂ E,M(., A) = M(A) is a Poisson random variable with para-
meter µ(A):

∀k ∈ N, P(M(A) = k) = e−µ(A) (µ(A)k)

k!
.

3. For disjoint measurable sets A1, ..., An ∈ E, the variables M(A1), ...,M(An) are independent.

To every cadlag process and in particular to every compound Poisson process4 (Xt)t ≥ 0 on Rd

one can associate a random measure on Rd× [0,∞) describing the jumps of X: for any measurable
set B ⊂ Rd × [0,∞)

JX(B) = #(t,Xt −Xt−) ∈ B.

For every measurable set A ⊂ Rd, JX([t1, t2]×A) counts the number of jump times of X between
t1 and t2 such that their jump sizes are in A.

Definition 2.4: Lévy Measure [4]: Let (Xt)t≥0 a Lévy process on Rd. The measure υ on Rd

defined by
υ(A) = E[#{t ∈ [0, 1] : ∆Xt ̸= 0,∆Xt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of X: υ(A) is the expected number, per unit time, of jumps whose size
belongs to A.

Second Group:

Proposition 2.5: Jump measure of a compound Poisson process [4]: Let (Xt)t≥0 be a
compound Poisson process with intensity λ and jump size distribution f . Its jump measure JX is a
Poisson random measure on Rd × [0,∞) with intensity measure µ(dx× dt) = υ(dx)dt = λf(dx)dt.

This implies that every compound Poisson process can be represented in the following form:

Xt =
∑

s∈[0,t]

∆Xs =

∫
[0,t]×Rd

xJX(ds× dx). (2.1)

Third Group:

It is possible to consider a Brownian motion with drift γt + Wt, and a piece-wise constant Lévy
process X0

t represented by a compound Poisson process with intensity measure υ(dx)dt. The sum
3In this case, B is a σ-algebra of subsets of E.
4A compound Poisson process with intensity λ > 0 and jump size distribution f is a stochastic process Xt defined

as Xt =
∑Nt

i=1 Yi, where jumps sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process with intensity λ,
independent from (Yi)i ≥ 1.

4
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of these two processes define another Lévy process and it will contain three elements, a drift, a
Brownian motion and a jump component.

The Lévy-Itô Decomposition theorem states that, actually, for every Lévy process exists a vector
γ, a positive definite matrix A, and a positive measure υ that uniquely determine its distribution.
The triplet (A, υ, γ) is called characteristic triplet or Lévy triplet of the process Xt.

Theorem 2.6: Lévy-Itô Decomposition [4]: Let (Xt)t≥0 a Lévy process on Rd and υ its Lévy
measure

• υ is a Radon measure on Rd\{0} and verifies:∫
|x|≤1

|x|2 υ(dx) < ∞
∫
|x|≥1

υ(dx) < ∞.

• The jump measure of X, denoted by JX , is a Poisson random measure on [0,∞] × Rd with
intensity measure υ(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion (Bt)t≥0 with covariance matrix
A such that

Xt = γt+Bt +X l
t + lim

ϵ↓0
X̃ϵ

t , where

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx) and

X̃ϵ
t =

∫
ϵ≤|x|<1,s∈[0,t]

x {JX(ds× dx)− υ(dx)ds}

≡
∫
ϵ≤|x|<1,s∈[0,t]

x J̃X(ds× dx).

The terms in the previous equation are independent and the convergence in the last term is
almost sure and uniform in t on [0, T ].

In the third point we can observe how Xt is decomposed in four elements. The first two (γt+Bt)
represent a continuous Gaussian Lévy process that is uniquely represented by the drift γ and the
covariance matrix of Brownian motion, which is denoted by A; The third and fourth elements in
the sum represent discontinuous jump processes that are described by its associated Lévy measure,
υ.

We can observe how the third and fourth term in the sum are a decomposition of the sum/integral
presented in Equation (2.1). X l

t is a compound Poisson process and represents the elements in the
sum which absolutes value of the jumps are larger than 1. The convergence of the sum of these
elements is guaranteed by the second condition over the Lévy measure stated in the first point of
the theorem, because it ensures that the number of jumps with absolute value larger than 1 is a
finite number.

On the other hand, X̃ϵ
t is also a compound Poisson process and represents the sum of the terms

which absolute values of the jumps are between ϵ and 1. Two things can me said about this term;
Firstly, It is not taken ϵ = 0, rather than the limit, because υ can have a singularity. Secondly,
the sum can have infinitely numbers, so to guarantee convergence it is necessary to center the
distribution by subtracting its mean, (υ(dx)), an use the first condition over the Lévy measure
stated in the first point of the theorem.

Another form to uniquely define a Lévy process is by giving its characteristic function. The Lévy-
Khinchin representation provides the expression for the characteristic function of a Lévy process,
which is in terms of the associated characteristic triplet.

5
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Theorem 2.7: Lévy-Khinchin representation [4]: Let (Xt)t≥0 a Lévy process on Rd with
characteristic triplet (A, υ, γ). Then

E[eiz.Xt ] = etΨ(z), z ∈ Rd (2.2)

where
Ψ(z) = −1

2
z.Az + iγ.z +

∫
Rd

(eiz.x − 1− iz.x1|x|≤1) υ(dx). (2.3)

6
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2 Stable Distributions and Processes
While studying the returns or the volatility of a particular instrument, it is common to re-scale
these measures to express them in years. For instance, if we have a sample with daily observations,
the obtained volatility will be a daily volatility, and to annualize it we need to multiply it by

√
252.

This is true because the returns are typically modeled with stable distributions. The normal dis-
tribution is an example of such distributions and it is probably the main reference while doing
financial analysis; However, two of the main drawbacks of modeling using the normal distribution
is its symmetry (skewness) and its absence of heavy tails (kurtosis).

To avoid these inconveniences it is possible to use other stable distributions, in this section it will
be defined what is a stable distribution following [9] and later on it will be explained the link with
Lévy processes, which is the main goal.

2.1 Stable Distributions
Definition 2.8: Stable Distribution [9]: Let X a non-degenerate5 random variable on R. X
is stable if and only if for all n > 1, there exist constants cn > 0 and dn ∈ R such that

n∑
i=1

Xn
d
= cnX + dn, (2.4)

where Xi with i ∈ {1, ...n, } are independent, identical copies of X. X is strictly stable if and only
if dn = 0 for all n.

It can be proven that the only possible choice for the scaling constant is cn = n1/α for some
α ∈ (0, 2]. Nevertheless, since there are just few cases where an explicit formula of the density
can be given for a stable distribution. It is necessary to give a definition where the characteristic
function is stated. There are several parametrizations used in the literature. In this work, it will
be stated the second parametrization given in [9], which is the same used in [4].

Definition 2.9: Stable Random Variable [9]: Let X a non-degenerate random variable on R
and 0 < α ≤ 2,−1 ≤ β ≤ 1, γ ̸= 0, δ ∈ R. X is stable if

X
d
=

{
γZ + δ α ̸= 1
γZ + (δ + β 2

πγlog(γ)) α = 1,
(2.5)

where Z is a random variable with parameters (α, β). X has characteristic function

E(exp{iuX}) =
{

exp{−γα|u|α[1− iβtan(πα2 )sign(u)] + iδu} α ̸= 1
exp{−γ|u|[1 + iβ 2

π sign(u)log(|u|)] + iδu} α = 1,
(2.6)

where u ∈ R and

sign(u) =

 −1 u < 0
0 u = 0
1 u > 0.

(2.7)

As we can see, there are four parameters that characterizes a distribution: an index of stability or
characteristic exponent α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ ≥ 0, and a
location parameter δ ∈ R. α and β are considered the shape parameters because they determine the
form of the distribution, and the distribution will be symmetric around zero when β = 0 and δ = 0.

5X is a degenerate random variable if for some constant a ∈ R,P(x = a) = 1.

7



Eduardo Alberto Alcántara Martínez ATS

2.2 Stable Processes
Definition 2.8 is very similar to the selfsimilarity property for Lévy processes.

Proposition 2.10: Selfsimilarity of Lévy Processes [4]: Let (Xt)t≥0 a Lévy process on Rd

with characteristic function ΦXt
(z) = e−tΨ(z). Xt is called selfsimilar if

∀a > 0, ∃b(a) > 0 :

(
Xat

b(a)

)
t≥0

d
= (Xt)t≥0. (2.8)

or
∀a > 0, ∃b(a) > 0 : ΦXt(z)

a = ΦXt(zb(a)) ∀z. (2.9)

It can be shown that the function b(a) = a1/α, where α is the stability index. If a = n, Equation
(2.9) will be equal to cn given in Equation (2.4), meaning that every selfsimilar Lévy process
has a strictly stable distribution. When a Lévy process has stable distribution, we can observe a
translation similar to the one in the Brownian motion.

∀a > 0, ∃c ∈ Rd : (Xat)t≥0
d
= (a1/αXt + ct)t≥0. (2.10)

This property justifies the "scaling" property described in the previous subsection for the Brownian
motion. Another property of the Brownian motion that can be extended to Lévy processes is that
the distribution associated with the process can be "split" infinitely, these type of distributions
are called infinite divisible and they, for instance, give the possibility to simulate random paths to
value path-dependent derivative instruments.

Definition 2.11: Infinite Divisible Distribution [4]: A probability distribution F on Rd is
said to be infinitely divisible if for any integer n ≥ 2, there exists n i.i.d. random variables Y1, ...Yn

such that Y1 + ...+ Yn has distribution F .

In fact, the following proposition states that given a Lévy process, it will always have an associated
infinite divisible distribution and the opposite will also be true.

Proposition 2.12: Infinite divisibility and Lévy processes [4]: Let (Xt)t≥0 be a Lévy process.
Then for every t, Xt has an infinitely divisible distribution. Conversely, if F is an infinitely divisible
distribution then there exists a Lévy process (Xt) such that the distribution of X1 is given by F .

To finish this section, the next result gives the link between stable distributions and Lévy processes.

Proposition 2.13: Stable distribution and Lévy Processes [6]: A distribution on Rd is α-
stable with 0 < α < 2 if and only if it is infinitely divisible with characteristic triplet (0, υ, γ) and
there exists a finite measure λ on S, a unit sphere of Rd, such that

υ(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)
dr

r1+α
. (2.11)

8
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3 Subordinated and Tempered Stable Processes
Merton’s model described in [10], is one of the most known jump-diffusion models. The main
property of these models is that only a finite number of jumps occurs in any bounded interval. It
is possible to consider more general models with an infinite number of jumps in every interval and
give a better, or at least more realistic, description of the price process, and even in some cases it
is not necessary to introduce a Brownian component since the jumps are infinite in every interval.
However, in this Section it will be mainly described two models that include this component via a
technique called Brownian subordination.

Some advantages of the models with infinitely many jumps are given in [4], and are

• Do not necessarily contain a Brownian component.

• The process moves essentially by jumps.

• “Distribution of jump sizes” does not exist: jumps arrive infinitely often.

• Give a realistic description of the historical price process.

• Closed form densities available in some cases.

• In some cases can be represented via Brownian subordination, which gives additional tract-
ability

Subordination is one of the three different ways to define a parametric Lévy process, the other two
methods involve specifying the Lévy measure or the density of the increments. In this thesis it will
be described the subordination technique, more details about the other two methods can be found
in [4].

In simple terms, by subordination, a new Lévy process is obtained via a "composition" of two inde-
pendent Lévy processes. That implies that one process (a subordinator) will randomly transform
the time of another process giving as a result a new Lévy process which properties can be inferred
from the properties of the subordinator.

Next subsection defines subordinators and then it will be explained the subordination of a Lévy
Process.

3.1 Subordinators
A non-decreasing Lévy Processes is commonly referred as subordinators. Before specifying the
requirements that a subordinator must meet, the following definitions are needed.

Proposition 2.14: Finite variation Lévy processes [4]: A Lévy process is of finite variation
6 if and only if its characteristic triplet (A, υ, γ) satisfies:

A = 0 and
∫
|x|≤1

|x| υ(dx) < ∞. (2.12)

This proposition provides the possibility to give particular expressions for the Lévy-Itô decompos-
ition and the Lévy-Khinchin representation for Lévy processes with finite variation.

Proposition 2.15: Representation of finite variation Lévy processes [4]: Let (Xt)t≥0 a
Lévy process of finite variation with Lévy triplet given by (υ, 0, γ). Then X can be expressed as the
sum of jumps between 0 and t with a linear drift term:

Xt = bt+

∫
[0,t]×Rd

xJX(ds× dx) = bt+

∆Xs ̸=0∑
s∈[0,t]

∆Xs, (2.13)

6This means that for all the trajectories of the process, the total variation is finite with probability 1. Where the
total variation of a function f : [a, b] → Rd is defined by TV (f) = sup

∑n
i=1 |f(ti)− f(ti−1)|, and the supremum is

taken over all finite partitions in [a, b]

9
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and its characteristic function can be expressed as:

E[eiz.Xt ] = exp

{
t

[
ibz +

∫
Rd

(eizx − 1) υ(dx)

]}
, (2.14)

where
b = γ −

∫
|x|≤1

x υ(dx). (2.15)

The previous representation will be very important for the next section. Now it is possible to
introduce the conditions that characterize a subordinator.

Proposition 2.16: Increasing Lévy processes [4]: Let (Xt)t≥0 a Lévy process on R. The
following conditions are equivalent:

• Xt ≥ 0 a.s. for some t > 0.

• Xt ≥ 0 a.s. for every t > 0.

• Sample paths of (Xt) are almost surely non-decreasing: t ≥ s ⇒ Xt ≥ Xs a.s.

• The characteristic triplet of (Xt) satisfies A = 0, υ((−∞, 0]) = 0,
∫∞
0

(x ∧ 1) υ(dx) < ∞ and
b ≥ 0, that is, (Xt) has no diffusion component, only positive jumps of finite variation and
positive drift.

3.2 Subordination
For this technique, it is necessary to start with a subordinator, i.e. an increasing Lévy process
(St)t≥0. Since St is a positive random variable for all t, it is possible to describe it using the
Laplace transform.

The Laplace transform7 of a random variable S is defined as

L{u} = E[e−uSt ]. (2.16)

According to the last point in Definition 2.16, lets assume that St has the characteristic triplet
(0, ρ, b). Then the Laplace transform is given by

E[e−uSt ] = exp

{
t

[∫ ∞

0

(e−ux − 1) ρ(dx)− bu

]}
, ∀u ≥ 0. (2.17)

Note that it is a particular case of Equation (2.14). Therefore, the moment generating function of
St can be expressed as

E[e−uSt ] = el(u) ∀u ≥ 0, where l(u) = bu+

∫ ∞

0

(eux − 1) ρ(dx). (2.18)

l(u) is called the Laplace exponent of St. With this representation and having in mind the char-
acteristic function of a Lévy procees, it is possible to give the next result.

Theorem 2.17: Subordination of a Lévy process [4]: Fix a probability space (Ω,F ,P). Let
(Xt)t≥0 a Lévy process on Rd with characteristic exponent Ψ(u) and triplet (A, υ, γ) and let (St)t≥0

be a subordinator with Laplace exponent l(u) and triplet (0, ρ, b). Then the process (Yt)t≥0 defined
for each ω ∈ Ω by Y (t, ω) = X(S(t, ω), ω) is a Lévy process. Its characteristic function is

E[eiuYt ] = etl(Ψ(u)),

7The Laplace transform uniquely determine the distribution of a random variable but it does not always exist.
It exist for positive random variables that does not have heavy tails.

10
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i.e., the characteristic exponent of Y is obtained by composition of the Laplace exponent of S with
the characteristic exponent of X. The triplet (AY , υY , γY ) of Y is given by

AY = bA,

υY (B) = bυ(B) +

∫ ∞

0

pXs (B) ρ(ds) ∀B ∈ B(Rd),

γY = bγ +

∫ ∞

0

ρ(ds)

∫
|x|≤1

xpXs (B) (dx),

(2.19)

where pXs (B) is the probability distribution of Xt.

The transformation of the process (Xt)t≥0 to (Yt)t≥0 is called subordination by the process (St)t≥0

and (Yt)t≥0 is said to be subordinate to the process (Xt)t≥0.

When the process (Xt)t≥0 is a stable process, it produces a particular class of subordinators.

Proposition 2.18: Stable processes and subordinators [4]: Let (St)t>0 a stable process on
R with parameters (α, γ, β, δ). St is a subordinator if and only if 0 < α < 1, β = 1 and δ ≥ 0. The
process St is called a stable subordinator.

3.3 Brownian Subordination
As the name says, Brownian subordination will have two associated elements: a Brownian motion
with drift µ, that is (Bt)t≥0 = (µt+Wt)t≥0, and a subordinator, (St)t≥0, with Laplace exponent
l(u). Following the notation in Theorem 2.17, (Bt)t≥0 would be (Xt)t≥0, and the new process
(Yt)t≥0 will take the form

Yt = BSt
= µSt +WSt

. (2.20)

This sort of composition substitutes from the Brownian motion the deterministic time t with a
random variable St. Therefore, the Brownian motion will have a new (stochastic) time scale given
by St.

Next theorem will give some conditions that the Lévy measure needs to fulfill for the new process
obtained by Brownian subordination.

Theorem 2.19: Lévy measure and Brownian subordination [4]: Let υ be a Lévy measure
on R and µ ∈ R. There exists a process (Yt)t≥0 with Lévy measure υ such that Yt = µSt + WSt

for some subordinator (St)t≥0 and some Winner process (Wt)t≥0 independent from St if and only
if the following conditions are satisfied:

1. υ is absolutely continuous8 with density υ(x).

2. υ(x)e−µx = υ(−x)eµx.

3. υ(
√
u)e−µ

√
u is a completely monotonic function9 on (0,∞).

The first thing that can be observed is that the Lévy measure is multiplied by an exponential
function and it satisfies some properties. The multiplication of a Lévy measure by an exponential
function has a particular name given as follows

Proposition 2.20: Exponential titling of Lévy measures [4]: Let υ be a Lévy measure on
Rd. If there exist µ ∈ Rd such that

∫
|x|≥1

eµxυ(dx) < ∞ then the measure υ̃ defined by

υ̃(dx) := eµxυ(dx), (2.21)

is a Lévy measure.
8A function f : [a, b] → R is called absolutely continuous if for every ϵ > 0, there exist a δ > 0 so that if any

finite set of disjoint intervals {(ai, bi)}i=1,...n. of [a, b] satisfies
∑n

i=1(ai − bi) < δ, then
∑n

i=1 |f(ai)− f(bi)| < ϵ.
9A function f : [a, b] → R is called completely monotonic if all its derivatives exist and (−1)k

∂kf(u)

∂uk>0
for all k ≥ 1.
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Transforming the Lévy measure of any process, lets say (Xt)t≥0, with an exponential will not affect
the other two elements of its characteristic triplet, and the new Lévy process is called the Esscher
transform of X. By setting a Lévy measure, the jump structure of a process is being described.
Theorem 2.19 says that if the Lévy measure fulfill the three stated conditions, the process can be
represented as a Brownian motion with a stochastic time scale.

3.4 Tempered Stable Processes
A tempered stable process is created by taking a stable process on R and multiplying its Lévy
measure with a decreasing exponential function on each half of the real axis. With this transform-
ation, each tail will experiment an exponential softening given particular parameters. According
to Proposition 2.13, a tempered stable process is a Lévy process on R with no Gaussian component
and Lévy measure

υ(x) =
c−

|x|1+α
e−λ−|x|

1x<0 +
c+

x1+α
e−λ+x

1x>0, (2.22)

where the parameters satisfy c− > 0, c+ > 0, λ− > 0, λ+ > 0 and α < 2. c− and c+ are constants
that alters the intensity of all jumps, so they change the time scale of the process, λ− and λ+ will
set the decay rate of (mainly) big jumps, and α will determine the relative importance of small
jumps in the path of the process. It is possible to define tempered stable processes for α < 0, more
details and properties of these processes can be found in [9].

As a special case, a tampered stable subordinator will only consider the positive tail, so they will
have two parameters c, λ. These processes have also a scaling property which is stated in the next
proposition.

Proposition 2.21: Scaling property of tempered stable subordinators [4]: Let (St(α, λ, c))t≥0

be a tempered stable subordiator with parameters α, λ and c. Then for every r > 0, rSt(α, λ, c) has
the same law as Srαt(α, λ/r, c).

This property, in combination with the selfsimilarity of the Brownian motion, implies that for
subordinated models, it is sufficient to consider only tempered stable subordinators with E[St] = t,
which form a two-parameter family. Following the parametrization in [4], it is possible to define
tempered stable subordinators.

Proposition 2.22: Tampered stable subordinators [4]: Let (St)t≥0 a tempered stable subor-
dinator on R with parameters (α, κ) and characteristic triplet (0, ρ, b). The Lévy measure of S is
given by

ρ(x) =
1

Γ(1− α)

(
1− α

κ

)1−α
e−(1−α)x/κ

x1+α
, (2.23)

where α is the index of stability, α ∈ [0, 1) and κ is the variance of the subordinator at time 1.
And the Laplace transform of (St)t≥0 is

l(u) =

{
t
κ

1−α
α

{
1−

(
1 + uκ

1−α

)α}
0 < α < 1

− t
κ log(1 + uκ) α = 0.

(2.24)

In this case, κ will determine how random the time change will be, and when κ = 0, it corresponds
to a deterministic function.

The difficulty with stable processes is that the density does not always exist. In fact, it only exists
when α = 0 or α = 1/2, defining the Gamma and the Inverse Gaussian subordinators, respectively.

12
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4 Normal Tempered Stable Processes
A LTS process is obtained when the Brownian subordination is performed using a tempered stable
subordinator10. In this section, it will be discussed some general properties of LTS processes and
the two main examples of such processes, the Variance Gamma (VG) process and the Normal
Inverse Gaussian (NIG) process.

LTS processes are subject to four parameters:

• α: index of stability.

• µ: drift of the Brownian motion.

• σ: volatility of the Brownian motion.

• κ: variance of the subordinator.

The characteristic function is obtained by applying Theorem 2.17, where the characteristic expo-
nent of the Brownian process, which is iµ− σ2/2, is evaluated in the Laplace exponent of St given
in Equation (2.24). This give us the expression

E[eiuXt ] = Lt

(
iuµ− u2σ2

2
;κ;α

)
, (2.25)

where log(Lt(u;κ;α)) := l(u) and the conditions in Proposition 2.22 are fulfilled.

The Lévy measure of these processes will have the general form

υ(x) =
C(α, κ, σ, µ)

|x|α+1/2
eµx/σ

2

Kα+1/2

 |x|
√
µ2 + 2

κσ
2(1− α)

σ2

 , (2.26)

where

C(α, κ, σ, µ) =
2

Γ(1− α)σ
√
2π

(
1− α

κ

)1−α (
µ2 +

2

κ
σ2(1− α)

)α
2 + 1

4

(2.27)

and K is the the modified Bassel function of the second kind11.

The behavior of the Lévy measure in the tails and in the center of the distribution can be deduced
by using the asymptotic behavior of K

υ(x) ∼ 1

|x|2α+1
, when x → 0,

υ(x) ∼ 1

|x|α+1
e−λ+x, when x → ∞,

υ(x) ∼ 1

|x|α+1
e−λ−|x|, when x → −∞.

(2.28)

The previous implies that the Lévy measure has stable-like behavior near zero and exponential
decay with decay rates λ+ and λ− at the tails.

10In general, when a process is obtained via Brownian subordination, it is common to write the word "normal"
before the properties of the subordinator.

11This function is defined as the solution that is bounded when z → ∞ of the differential equation z2 ∂2w
∂z2

+z ∂w
∂z

−
(z2 + v2)w = 0 where z ≥ 0 and v ≥ 0.
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4.1 The Variance Gamma Process
The VG process is obtained via Brownian subordination where the subordinator is a Gamma
process. That means that the time of the Brownian motion will be given by a Gamma process.
The VG process was studied in [2] as a generalization of the symmetric VG process studied by the
same authors years earlier. To understand this process, first will be defined the Gamma process.

Definition 2.23: Gamma Process [2]: Let (St)t≥0 a process on R+. St is a Gamma process
with parameters a > 0 and b > 0, when the density function at time t is given by

fSt
(x) =

bat

Γ(at)
xat−1e−bx. (2.29)

With this parametrization, a is considered the shape parameter and b the rate parameter. To
avoid confusion, it would be helpful to use the same notation for the parameters as in the previous
subsection; However, Definition 2.23 contemplates two parameters while the only parameter con-
sidered for the subordinator was κ. That is because it can be assumed that the parameters take
the form: a = 1/κ and b = 1/κ. By defining the parameters in this way, it can be verified that the
mean of the subordinator is a/b = 1 and the variance is a/b2 = κ.

By changing the parameters in Equation (2.29) for the ones proposed above, the density function
of the Gamma process is now given by

fSt(x) =
κ− t

κ

Γ( t
κ )

x
t
κ−1e−

x
κ . (2.30)

Using Equation (2.23), and by knowing that for the Gamma process, α = 0, the Lévy measure of
this process is

ρ(x) =
1

κ

e−x/κ

x
. (2.31)

Coming back to the VG process, its Lévy measure can give an idea of how the skewness and kurtosis
of the distribution is controlled by the parameters µ and κ, respectively. The Lévy measure of the
VG process is

υ(x) =
e

µx

σ2

κ|x|
exp

−

√
2
κ + µ2

σ2

σ
|x|

 . (2.32)

If µ = 0, the Lévy measure is symmetric around zero, so positive and negative values will appear in
the same proportion. If µ < 0, negative values of the process will appear with a higher probability
and the distribution will present negative skewness and the opposite will happen if µ > 0. On the
other hand, large values of κ will make that the exponential decay rate (right exponential) will be
less violent over the tails, so large jumps will occur with higher probability and hence the kurtosis
will increase.

In [4] it is possible to find the density function of the VG process expressed in terms of the modified
Bassel function of the second kind, that is

fXt
(x) = C|x| t

k− 1
2 eAxK t

k− 1
2
(B|x|), (2.33)

where

A =
µ

σ2
, B =

√
µ2 + 2σ2/κ

σ2
, C =

√
σ2κ

2π

(µ2κ+ 2σ2)
1
4−

µ
2κ

Γ(t/κ)
.

Finally, the characteristic function and the first four central moments of the VG process at time t
are given by

ΦXt
(u) =

(
1

1− iµκu+ (σ2κ/2)u2
)

) t
κ

, (2.34)
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E[Xt] = µt,

E[(Xt − E[Xt])
2] = (µ2κ+ σ2)t,

E[(Xt − E[Xt])
3] = (2µ3κ2 + 3σ2µκ)t,

E[(Xt − E[Xt])
4] = (3σ4κ+ 6µ4κ3 + 12σ2µ2κ2)t.

The VG process has paths of finite variation and it is possible to obtain this process by a difference
of two independent Gamma processes. In [2] it is described how to price plain vanilla instruments by
following a probabilistic approach; However, a different technique will be used to price derivatives
under this model.

4.2 The Normal Inverse Gaussian Process
The NIG process is obtained via Brownian subordination where the subordinator is an Inverse
Gaussian (IG) process. This process and its applications in finance were studied in [3] and [11],
and it was shown that it captures realistic features that are observed in the market; For instance,
some of the properties of this process are: it can be asymmetric, it captures conditional heteros-
cedasticity, the normal density is obtained as a limit case and it has the scaling property that was
discussed in Proposition 2.21.

In general, Brownian subordination is not the only method12 to obtain the NIG process, and
depending on the approach that is used, it is common to have different parametrizations for the
IG process and the NIG process. In this thesis, [11] will be followed to define the IG process.

Definition 2.24: Inverse Gaussian Process [11]: Let (St)t≥0 a process on R+. St is an IG
process with parameters δ > 0 and γ > 0) when the density function at time t is given by

fSt
(x) =

δtetδγ√
2πx3

e
− 1

2

(
t2δ2

x +γ2x
)
. (2.35)

The two parameters δ, γ controls the shape and scale of the distribution, respectively. The IG
process can also be interpreted as the first passage time of a Brownian motion with drift γ > 0
and diffusion 1 for a fixed level δt > 0. The previous can be written as St = inf{s > 0|Bs = δt}.

If we consider a Brownian motion that starts at ξ, with drift β, independent from St, and if we set
α =

√
β2 + γ2, a new process Yt defined as

Yt = βSt +WSt + ξt (2.36)

will be distributed as the NIG process with parameters (α, β, ξ, δ) for t = 1, where the conditions
of the parameters are 0 < |β| ≤ α, ξ ∈ R and 0 < δ. To interpret the parameters, they can be
divided in two groups, the first corresponds to α and β and it controls the shape, while the second
group corresponds to ξ and δ and it controls the location and scale of the distribution. In this
sense, α refers to the flatness of the distribution that will be located around ξ, β will control the
skewness and δ will control how narrow or wider the distribution will be.

Until now, the NIG process has been represented with four parameters; However, in the following
it will be assumed that ξ = 0, so the NIG process will always be centered at 0.

To express the density in Equation (2.35) in terms of the the parameter κ, it is possible to set
δ = 1/

√
κ and γ = 1/

√
κ, this parametrization is the same given in [4] and has the next form

fSt
(x) =

te
t
κ

√
2πκx3

e
− 1

2κ

(
t2

x +x
)
. (2.37)

12The NIG process can also be obtained with a normal variance-mean mixture distribution, where the NIG at t = 1
corresponds to the conditional distribution X|Z, which is distributed N(µ+βz, z) where Z follows a IG(δ,

√
α2 + β2)

for |β| ≤ α.
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Having the density with this representation, it can be shown that the expectation of the subordin-
ator is 1, because E[St] = δ/γ = (1/

√
κ)/(1/

√
κ) = 1 and the variance is V ar(St]) = δ/γ3 = κ− 1

2 /

κ− 3
2 = κ. Furthermore, the Lévy density for the IG is a particular case of Equation (2.23), when

α = 1, and it is given by

ρ(x) =
1√
2πκ

− e
x
2κ

x3/2
. (2.38)

On the other hand, the probability density and the Lévy measure of the NIG process are given by

fXt(x) = CeAxK1(B
√
x2 + t2σ2/κ)√

x2 + t2σ2/κ
, (2.39)

υ(x) =

√
µ2 + σ2/κ

2|x|πσ
√
κ

eAxK1(B|x|), (2.40)

where

A =
µ

σ2
, B =

√
µ2 + σ2/κ

σ2
, C =

t

π
e

t
k

√
µ2

κσ2
+

1

κ2
.

Finally, the first four central moments at time t are expressed as follows

E[Xt] = µt,

E[(Xt − E[Xt])
2] = (µ2κ+ σ2)t,

E[(Xt − E[Xt])
3] = (2µ3κ2 + 3σ2µκ)t,

E[(Xt − E[Xt])
4] = (3σ4κ+ 15µ4κ3 + 18σ2µ2κ2).

The VG process and the NIG process are pure jumpe processes, i.e., in their characteristics triplets,
A = 0; However, their nature of jumps are different because the VG process has finite variation,
while the NIG process has infinite variation as the Brownian motion. Another similarity between
both processes is that when the variance of the time change tends to zero, both processes approx-
imate the Brownian motion process. Finally, both processes has the so called semi-heavy tails, this
means that the Lévy measure and the probability density have exponential tails with decay rates
λ+ = B −A and λ− = B +A, where B,A are defined in its corresponding subsection.
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5 Additive Normal Tempered Stable Processes
Time inhomogeneous jump processes are defined in a similar way as Lévy processes with the dif-
ference that their increments do not need to be stationary. This helps to model some properties
that are observed in the market and that were mentioned in the introduction; However, these
type of processes are rather general and have been studied for particular applications. This thesis
will focus in the subclass of time inhomogeneous processes that were studied in [5], and that the
authors called ATS processes.

The main property of ATS processes is that they will have deterministic and time-dependent para-
meters, and given a fixed time t, a Lévy process can be associated, allowing to preserve all the
properties that have been studied in previous sections.

The aim of this section is to define additive processes following [4], and establish the relationship
between ATS and LTS processes that was proven in [5].

5.1 Additive Processes
Definition 2.25: Additive Process [4]: A stochastic process (Xt)t≥0 on Rd is called an additive
process if it is cadlag, satisfies X0 = 0 and possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, ..., tn, the random variables
Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1

are independent.

2. Stochastic continuity: ∀ϵ > 0, limh→0 P (|Xt+h −Xt| ≥ ϵ) = 0.

One important property of these processes is that for each t, every additive process, Xt, has asso-
ciated an infinitely divisible distribution. In Section 1, it was explained that every Lévy process
can be fully represented with a characteristic triplet. In the case of additive processes, something
similar happens, every additive process has an associated characteristic triplet with the particu-
larity that the elements in the triplet are time-dependent.

Following the notation in [4], the triplet of an additive process Xt is given by (At, υt, γt), where
At is the covariance matrix of a Brownian motion at time t, υt is the Lévy measure at time t and
γt is the drift at time t. In this case (At, υt, γt) is called the characteristic triplet of X.

5.2 ATS Processes
In Section 4, it was mentioned that LTS are subject to four parameters, α, µ, σ and, κ. The authors
in [5] proposed a model with a particular expression for µ that allows to control the skew of the
volatility smile of a given maturity. The proposed model is

ft = −
(
1

2
+ η

)
σ2St + σWSt

+ ρt, ∀t ∈ [0, T ]. (2.41)

In this case, Xt is now called ft and µ = ( 12 + η)σ2. It is also included another parameter, ρ, but
in the next chapter it will be explained its financial interpretation and for now the value of this
parameter will be assumed fixed.

Using Equation (2.25), the characteristic function of the process ft will have the form

E[eiuft ] = Lt

(
iu

(
1

2
+ η

)
σ2 +

u2σ2

2
;κ;α

)
eiuρt, (2.42)

where α ∈ [0, 1) and

log(Lt(u;κ;α)) =

{
t
κ

1−α
α

{
1−

(
1 + uκ

1−α

)α}
0 < α < 1

− t
κ log(1 + uκ) α = 0.

(2.43)

17



Eduardo Alberto Alcántara Martínez ATS

Once this LTS is fully described, it was proved that there is associated an additive process with the
same characteristic function but with time-dependent parameters if some conditions are fulfilled.
The characteristic function will take the form

E[eiuft ] = Lt

(
iu

(
1

2
+ ηt

)
σ2
t +

u2σ2
t

2
;κt;α

)
eiuρtt, (2.44)

where α ∈ [0, 1), σt, κt are continuous on [0,∞) and ηt, ρt are continuous on [0,∞) with σt >
0, κ ≥ 0 and ρtt goes to zero as t goes to zero.

The conditions for existence of the associated additive process with characteristic function given
in Equation (2.44) are stated in Theorem 2.1 in [5], these conditions are

1. g1(t), g2(t) and g3(t) are non decreasing, where

g1(t) :=

(
1

2
+ ηt

)
−

√(
1

2
+ ηt

)2

+
2(1− α)

σ2
t κt

,

g2(t) := −
(
1

2
+ ηt

)
−

√(
1

2
+ ηt

)2

+
2(1− α)

σ2
t κt

,

g3(t) :=
t1/ασ2

t

κ
(1−α)/α
t

√(
1

2
+ ηt

)2

+
2(1− α)

σ2
t κt

.

2. Both tσ2
t ηt and tσ2α

t ηα
t

κ1−α
t

go to zero as t goes to zero.

Since the conditions are too general, these processes were studied for a particularly sub-case where
the parameters ηt and κt follows a power-law scalling property and σ is constant. The proof of
this result is given in Theorem 2.3 in [5] and it states that there exist as ATS with parameters

κt = κ̄tβ , ηt = η̄tδ, σt = σ̄,

where α ∈ [0, 1), σ̄, η̄, κ̄ ∈ R+ and β, δ ∈ R satisfy the following conditions

1. 0 ≤ β ≤ 1
1−α/2 ,

2. -min
(
β, 1−β(1−α

α

)
≤ δ ≤ 0,

where this condition reduces to −β < δ ≤ 0 for α = 0.

Considering the parameters in this way, and if β = 0 and α = 0, a LTS process is recovered loosing
the additive property.

Now that the ATS processes have been defined and the relationship with the LTS processes has
been stated, in the next chapter the model that will be used to price derivative instruments will
be described in detail.

18



Chapter 3

Model Implementation

1 Model Description
To describe the evolution of an asset price in the Black-Scholes model, two things are needed: the
asset price at time t = 0 and a geometric Brownian motion. In ATS processes, a similar idea is
followed with the difference that the underlying asset will be the corresponding forward price with
maturity at time T , expressed as Ft(T ), and instead of the geometric Brownian motion, it will be
taken the exponential of the ATS process expressed by ft given in Equation 2.41. Therefore, the
model is given by

Ft(T ) := F0(T )exp(ft), (3.1)

where
ft = −

(
1

2
+ ηt

)
σ2
tSt + σtWSt

+ ρtt, ∀t ∈ [0, T ]

and κt, ηt, σt follow the power-law scaling of ATS, that is, κt = κ̄tβ , ηt = η̄tδ, and σt = σ̄.

The domain and a short description of each parameter is given as follows

• η̄ ∈ R+, controls the skew of the smile.

• κ̄ ∈ R+, volatility of the subordinator (volatility of the volatility).

• σ̄ ∈ R+, average volatility.

• α ∈ [0, 1), index of stability.

• β ∈
[
0, 1

1−α/2

]
power-law scaling parameter of κ (affects the variance of jumps).

• δ ∈
[
−min

(
β, 1−β(1−α

α

)
, 0
]

power-law scaling parameter of η (affects the smile asymmetry).

• ρt ∈ R parameter that will make the model martingale.

Even though there are seven parameters that describe the model, during the calibration process
that will be explained in further sections, only the parameters η̄, κ̄ and σ̄ will be found. The index
of stability, α, will be fix and it will be considered the cases where α = 0 and α = 1/2, to analyze
the VG and NIG processes, respectively.

For the parameters β and δ, it will be assumed that β = 1 and δ = −0.5. The previous values
are justified by Theorem 5.1 in [12], which states that the implied volatility of ATS processes is
consistent in the short time with the equity market empirical characteristics if and only if β = 1
and δ = −0.5. Such empirical characteristics refers to the empirical studies that have shown that
the equity implied volatility has a negative skew which is proportional to the inverse of the square
root of the time-to-maturity.
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Finally, ρt, and in particular the product ρtt, will be chosen in a way that, for any time t, the process
Ft(T ) satisfies the martingale property, which means that E[Ft(T )|F0] = F0(T ). Proposition 2.2
in [5] states that the martingale property is fulfilled if and only if

ρtt = −log(Lt(σ
2
t ηt;κt;α)), (3.2)

where log(Lt(.)) is given in Equation (2.43).

Since the "fixed" values of the model’s parameters has been explained, it is possible to describe
how the other three parameters, η̄, κ̄ and σ̄, will affect the shape of the volatility smile for a given
maturity.

For the parameter η̄, Figure 3.1 shows how it controls the skew of the volatility smile, the bigger
the parameter η̄, the bigger the volatility skew. Additionally, it can be proved that when η̄ = 0,
the smile is symmetric [13].

Figure 3.1: Implied volatility of a call option for different values of η̄. The rest of the parameters
remains constant with values: κ̄ = 1, σ̄ = .2, α = 1/2, β = 1, δ = −0.5, S0 = 100, r = .04, T = 1.

In Figure 3.2, the parameter κ̄ shows how the volatility of the subordinator affects the volatility
smile. This parameter is considered as the volatility of the volatility.

Figure 3.2: Implied volatility of a call option for different values of κ̄. The rest of the parameters
remains constant with values: η̄ = 1, σ̄ = .2, α = 1/2, β = 1, δ = −0.5, S0 = 100, r = .04, T = 1.
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Finally, in Figure 3.3 it is possible to observe how the parameter σ̄ affects the average level of the
volatility smile.

Figure 3.3: Implied volatility of a call option for different values of σ̄. The rest of the parameters
remains constant with values: η̄ = 1, κ̄ = 1, α = 1/2, β = 1, δ = −0.5, S0 = 100, r = .04, T = 1.
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2 Option Valuation using the Fast Fourier Transform
To price European options considering ATS processes, the Fourier based approach is an excellent
alternative since the main requirement to use this method is the characteristic function of the
model, which was presented in Equation 2.42. In particular, the Lewis formula studied in [14] will
be used to price European call options since the analysis of the thesis will be carried out on this
type of options.

2.1 Fourier Transform
Before stating the Lewis formula, it is necessary to define the Fourier Transform (FT).

Definition 3.1: Fourier Transform [15]: The FT of f(x) is defined as

F [f ](x) = Φ(x) =
1

2π

∫
R
e−ixzf(z) dz, (3.3)

where each function f is integrable and defines a unique FT F [f ].

It is possible to invert the FT and retrieve the function f

F−1[F [f ]](z) = f(z) =
1

2π

∫
R
e−ixzF [f ](x) dx. (3.4)

In the financial context, f will be a probability density function of a random variable, and actually,
the FT is its characteristic function. The importance of the inverse of the FT is that given the
characteristic function of any random variable, it is possible to obtain its density. This can be
useful for random variables that do not have a close formula for the density; For instance, the LTS
processes at time t when α ̸= 0 or α ̸= 1/2.

In [14], Theorem 3.2, it was developed a general formula for option valuation using the FT and it
was also discussed the particular formula to price an European call option. The aforementioned
formula is presented in the next proposition, where it is written in terms of forward prices.

Proposition 3.2: Option Pricing Formula [14]: The formula to price an European Call
option with strike price K, time to maturity T and forward price F0(T ) is given by:

C(K,T ) = BTF0(T )

[
1− e−x/2

∫ ∞

−∞

dz

2π
e−izxϕc

(
−z − i

2

)
1

z2 + 1
4

]
, (3.5)

where BT is the discount factor, ϕc(u) is the characteristic function of fT and x = −log(K/F0(T ))
1

To use this formula, it is necessary to use numerical methods to calculate the integral, which can
be approximated by the next sum∫ ∞

−∞
e−izxg(z) dz ≈

N−1∑
j=0

e−izjxg(zj)dz, (3.6)

where g(z) = 1
2πϕ

c
(
−z − i

2

)
1

z2+ 1
4

and the points zj are chosen to be equidistant and with an
spacing small enough over a sufficiently large interval to obtain a good approximation. It is
important to note that this expression is useful for a particular point x, which value depends
particularly on the strike value K. There exist the possibility to calculate N sums, each one with
a different strike, at the same time and obtain N prices by using the FFT.

1Variable x is known as the moneyness of the option.
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2.2 Fast Fourier Transform
The FFT is a numerical algorithm, which is for example described in [15], that simultaneously
computes N sums of the form

FFT (f∗
k ) =

N∑
j=1

e−i 2π
N (j−1)(k−1)fj , ∀k = 1, ..., N (3.7)

During the calibration process, this valuation method is particularly useful because it allows to
valuate all the options for an specific maturity at the same time with a better computational per-
formance than when it is computed each option separately. The number of operations needed for
the FFT method is of order o(N log(N) while the order when pricing the options separately is o(N2).

To express Equation (3.6) in a way where it is possible to use the FFT, it is necessary to define
the two partitions over the moneyness (xj) and over the domain of the characteristic function (zk){

zj = z1 + (j − 1)dz j = 1, ..., N
xk = x1 + (k − 1)dx k = 1, ..., N,

(3.8)

where it needs to be fulfilled the condition dxdz = 2π
N . Substituting definitions of zk and xj into

Equation (3.6) leads to

N∑
j=1

e−izjxkg(zj)dz =

N∑
j=1

e−i(z1+(j−1)dz)(x1+(k−1)dx)g(zj)dz

=

N∑
j=1

e−i[z1x1+z1(k−1)dx+(j−1)dzx1+(j−1)dz(k−1)dx]g(zj)dz

=

N∑
j=1

e−i[z1(x1+(k−1)dx)+(j−1)dzx1+
2π
N (j−1)(k−1)]g(zj)dz

= dze−iz1xk

N∑
j=1

e−i 2π
N (j−1)(k−1)e−i(j−1)dzx1g(zj)

= dze−iz1xkFFT (f∗
k ),

where in this particular case fj = e−i(j−1)dzx1g(zj). The output will be a vector with N values,
where each value is the approximation of the integral for the corresponding moneyness xj . To
obtain the call price for the moneyness xj , it is just needed to substitute the value of the integral
in Equation (3.5).
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3 Model Calibration
Calibration is a mathematical procedure which involve adjusting the model parameters of a partic-
ular model to match observed market prices. Therefore, the theoretical model studied in Section
1 of this chapter will be calibrated on a set of call options traded in the market. The result of the
calibration for a given date, will be the parameters η̄, κ̄ and σ̄, which can be used to re-price the
market options, devise hedging strategies, or valuate exotic derivatives over the same underlying.

3.1 How to Calibrate
To calibrate any financial model, the aim is to find the parameters that better fit the market data.
Following [16], such parameters can be obtained by minimizing different objective functions. An
example of an objective function that considers market and model prices is

min
p

1

N

N∑
n=1

(C∗
n − Cmod

n (p))2, (3.9)

where C∗
n corresponds to the market price of the n call option and Cmod

n (p) is the call price using
the pricing model with the parameter vector p. It is possible to use another objective function
that takes into account the relative differences in prices

min
p

1

N

N∑
n=1

(
C∗

n − Cmod
n (p)

C∗
n

)2

. (3.10)

There are other objective functions that compare the implied volatility, such as

min
p

1

N

N∑
n=1

(σ∗
n − σmod

n (p))2, (3.11)

and

min
p

1

N

N∑
n=1

(
(σ∗

n − σmod
n (p))

∂CBSM
n

∂σ∗
n

)2

, (3.12)

where σ∗ is again the market implied volatility and σmod is the BSM implied volatility using the
price of the option obtained with the pricing model that is being calibrated.

It can be observed that all the previous functions involve the mean square of certain differences.
This is called the mean squared error (MSE). Therefore, the goal in the calibration process is to
find the parameters of the model, represented by the vector p, that give the minimum possible
MSE.

3.2 Optimization Method
To minimize the chosen objective function, the Nelder-Mead simplex method will be used, which is
a brute force algorithm to find parameters that retrieves the minimum error. This method is often
used to minimize functions which gradient is difficult or impossible to compute, which means that
the derivatives are not needed during the optimization process. However, one drawback of this
method is that the algorithm can be sensitive to the choice of parameters, such as the size of the
initial simplex and the termination criteria; Additionally, the algorithm can be slow to converge
for some types of functions depending in the tolerance that is set to accept one point as minima.
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Chapter 4

Analysis and Results

1 Data Description
The option data used in this thesis consists of a dataset containing observations of daily option
prices of European call options with one underlying: EURO STOXX 50 index in three different
time windows, details and motivation to analyze this information are given in the next subsections.

1.1 Time Spans
The dataset covers three different time periods:

• The first period is from January 2017 to December 2017.

• The second period is from November 2019 to November 2020.

• The third is from March 31st to April 28th, 2023.

With the study of these time windows, the idea is to analyze the levels and the development of
the calibrated parameters of the ATS model under different market conditions. The first time
window was characterized by different political events that had a significant repercussion in the
global economy, some of the main events during this year were:

• The uncertainty over political events that happened in the second semester of 2016 such
as Brexit, the election of President Donald Trump in the United States, and tensions on
the Korean peninsula continued to affect the global economy by increasing the volatility in
financial markets.

• The US Federal Reserve and other central banks began to tighten monetary policy, raising
interest rates and reducing their asset purchases.

• Trade tensions between the US and China began to escalate in 2017, with both countries
imposing tariffs on each other’s goods. This created uncertainty for businesses and consumers
and had implications for global trade and economic growth.

During the window of 2020, some of the main events that triggered a global recession and that
affected the global economy were

• The pandemic cause by the COVID-19, which began in late 2019 but spread rapidly in
2020, leading to lockdowns, travel restrictions, and disruptions to global supply chains. The
pandemic caused a sharp contraction in the global economy.

• Due to the pandemic, several governments and central banks responded with massive fiscal
and monetary stimulus measures, including direct cash payments to households, loans to
businesses, and asset purchases.
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• Because of the travel restrictions and lockdowns, it was observed sharp decline in oil prices,
which had significant implications for oil-exporting countries and the global energy industry.

• The trade tensions between the US and China continued in 2020 and in combination with
the pandemic, disruptions in global trade and supply chains were exacerbated.

The last small window of April 2023 seeks to portrait the calibration results over the most recent
option prices by the time this thesis is written. According to the world economic outlook realized
by the International Monetary Fund, the main drivers of the global economy for April, 2023 [17],
are

• The observed high level of inflation combined with the monetary and fiscal policies followed
by the central banks.

• The ongoing effects of the conflict between Russia and Ukraine.

1.2 Underlying Asset
The EURO STOXX 50 index (SX5E) was chosen because it is one of the main indexes of the Euro-
zone which represent the overall performance of the equity market in this region. The previous
implies that the option over this index are one of the most liquid in the equity market worldwide,
which makes this index suitable for benchmark purposes.

The SX5E index is constructed with 50 of the largest and most liquid companies in the Eurozone
including companies from various sectors, such as financial services, energy, and consumer goods.
The index is weighted by market capitalization, meaning that larger companies have a greater
impact on the index’s overall performance; However, it contains a cap of 10% to prevent that a
company will dominate the index.

Figure 4.1: EURO STOXX 50 index during different time spans.
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2 Data Processing
There were two sources for the European call option datasets that were used for the calibration.
The datasets corresponding to the first two time spans, i.e., information from years 2017 and 2020,
were obtained from the data product IvyDB Europe provided by OptionMetrics [18]. On the other
hand, the information of the third time span was obtained directly from the EUREX webpage [19].

The information from IvyDB Europe consist of daily implied volatility surfaces considering call
options traded in Eurex. It is important to mention that the volatility surfaces are already pro-
cessed and interpolated by the provider and the call option prices were retrieved from the implied
volatilities. The next bullets summarize the main aspects in the information and methodology
followed by IvyDB Europe

• During the two time spans, there are a total of 529 days/volatility surfaces.

• In each day, there are considered 10 maturities ranging from 30 to 730 calendar days, and
for each maturity there were calculated 13 implied strike prices.

• The interest rate that were used during the calculations corresponds to the zero-coupon
rate that has a maturity equal to the option’s expiration, and that is obtained by linearly
interpolating between the two closest zero-coupon rates on the zero curve. Such curves were
also provided by IvyDB Europe.

• The dividend yield for the index is calculated based on linearized put-call parity. Where the
present value of the dividend payments is:

PV (div) = Put− Call + (S0 −K) +K(erT − 1), (4.1)

where PV refers to the present value, r is the interest rate to the option expiration and T is
time to maturity in years. Then, the implied dividend yield is: q = PV (div)

S0×T .

• The price of each option was retrieved from the implied volatility and by using the appropriate
interest and dividend rate.

For the time span corresponding to April, 2023, call and put option prices were obtained from [19]
by using web scrapping techniques. The data considered for the calibration is explained as follows

• For each day, the options which maturity was over the next nine months (May 23-January 24)
were considered for the analysis. It is a standard that the options expires in the third Friday
of the corresponding month, so the maturity days were calculated accordingly. Additionally,
the data set is composed by the settlement price, and no smoothing or interpolation was
done.

• For each maturity, a total of 13 option prices were used. The way these options were chosen
is explained as follows: First, the closest strike to the ATM option was identified, then the
six strikes over and under this ATM value were taken. The previous gave us a total of six
options OTM, six option ITM and one option ATM, which is a total of 13 options.

• To calculate the Forward price, the put-call parity was used over the ATM option and the
zero-coupon EURIBOR rate. The Forward price was calculated by

F0(T ) = (CallATM − PutATM )erT +K, (4.2)

where CallATM and PutATM are the corresponding call and put at the money prices, r is
the zero-coupon EURIBOR rate and K is the strike.
It is important to highlight that by obtaining the forward price in this way, the implicit
dividend yield is included in the price, so no projections or additional calculations needs to
be performed.

• The volatility surfaces of the period were calculated by inferring the implied volatility from
the Black-Scholes formula for each of the option prices. Since there is no close formula to
obtain the implied volatility, the Newton-Raphson method was used.
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3 Calibration Procedure
In [5], the calibration was performed by minimizing the Euclidean distance between model and
market prices, which means that the squared root of Equation 3.9 was used. A rough description of
the process to calibrate the volatility surface in [5] is as follows: For each maturity that was traded
in the market, it was calibrated a LTS process, so the total number of parameters retrieved was
three multiplied by the number of maturities. Subsequently, an analysis of the parameters ηt and
κt was conducted where it was shown that they follow the power-law scaling properties discussed
in Section 5.2 and the values of β and δ were found to have a value of 1 and 1/2, respectively. The
consistency of the value of these two parameters with empirical equity market characteristics was
later proven in [12].

For this thesis, Equation (3.9) will be considered, but instead of calibrating each maturity separ-
ately, the parameters β and δ will be fixed to 1 and 1/2, respectively, following [12]. Finally, the
minimization of the chosen objective function will be performed using all the available maturities
and the parameters η̄, κ̄ and σ̄, as well as the MSE, will be retrieved.

As mentioned in the introduction, the idea is to compare the level of the parameters and the MSE
between the LTS and ATS processes when they consider two different subordinators: the VG and
the NIG process. In total, for each analyzed day, the next four processes will be compared:

1. ATS process with the VG process as subordinator (ATS-VG)

2. LTS process with the VG process as subordinator (LTS-VG)

3. ATS process with the NIG process as subordinator (ATS-NIG)

4. LTS process with the NIG process as subordinator (LTS-NIG)
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4 Results
This section will show the experimental results of the calibration process and will mention the
main insights after analyzing each of the time periods.

4.1 First Period: December 2016 - December 2020
After the presidential elections held in the United States in November 2016, the economic envir-
onment experienced an increment in the volatility levels that remained throughout 2017. Figure
4.2 shows the volatility surfaces for three arbitrary dates during December 2016, May 2020 and
November 2020. It is possible to observe that the volatilities presented a steep slope in the short
term maturities, this situation is of relevant importance in the calibration process since the para-
meter that is mainly affected is η̄, which also affects the average volatility σ̄, this situation will be
shown during this and the subsequent subsections.

Figure 4.2: Market volatility surface as of dates: December 14th, 2016, May 24th, 2017 and
November 22nd, 2017.

Table 4.1 contains the results of the calibration for December 14th, 2016. It is possible to observe
that for all the models the average volatility is located around the 19%. Both, the ATS and the LTS
processes present a better approximation to the market implied volatility when the subordinator
is the NIG process than when the subordinator is the VG process; However, it is noticeable the
improvement in the calibration between the ATS and LTS models when comparing the MSE.

Model η̄ κ̄ σ̄ MSE
ATS-VG 4.663 0.809 0.194 4.517
LTS-VG 3.997 0.719 0.195 53.956

ATS-NIG 5.506 1.081 0.188 0.958
LTS-NIG 4.494 0.968 0.190 23.787

Table 4.1: Calibrated parameters of the ATS and LTS processes. Date: December, 14th, 2016.
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During 2020, the average volatility in the market slightly decreased, so the parameters presented
a similar behavior as the one observed in December, 2016. Table 4.2 shows the calibration results
for May 24th, 2017, where again the subordinator that better fits the volatility surfaces is the NIG
process in the ATS and LTS processes.

Model η̄ κ̄ σ̄ MSE
ATS-VG 6.032 0.803 0.161 5.271
LTS-VG 2.405 1.301 0.188 56.388

ATS-NIG 7.342 1.114 0.156 1.456
LTS-NIG 2.251 2.545 0.193 20.393

Table 4.2: Calibrated parameters of the ATS and LTS processes. Date: May, 24th, 2017.

To observe how these models fit the volatility smiles, Figure 4.3 compares the market implied
volatility with the smiles generated by the ATS and the LTS models, respectively. The fit of the
ATS model is clear for all the maturities, and for the LTS model is notorious the difference for the
smile with time of 20 days.

Figure 4.3: Comparison of implied volatilities between ATS, LTS processes with the NIG as sub-
ordinator and the market for multiple maturities. Data as of date: May, 24th, 2017.

Finally, as the year continued, the volatility smiles showed a downward trend. In Table 4.3 are
shown the calibrated parameters for November 22nd, 2017. It is possible to see that the parameters
of the ATS and LTS processes continued in similar levels as the previous dates but the MSE
improved in both cases. It was consistent that the volatility smiles better fitted the market data
when the NIG process was used as subordinator.

Model η̄ κ̄ σ̄ MSE
ATS-VG 6.579 0.646 0.142 0.744
LTS-VG 2.949 1.120 0.165 29.517

ATS-NIG 8.961 0.633 0.132 0.063
LTS-NIG 2.980 1.880 0.166 11.967

Table 4.3: Calibrated parameters of the ATS and LTS processes. Date: November, 22nd, 2017.

4.2 Second Period: November 2019 - November 2020
As mentioned in the previous section, during 2020 was observed a significant increase in the volat-
ility levels observed in the market due to the pandemic caused by the COVID-19. In Figure 4.4
are shown three volatility surfaces: the first one in November, 2019, the second one in March, 2020
and the last one in November, 2020. The volatility at the end of 2019 was around 14% for all the
option maturities, while in March, 2020, the volatility levels raised to 60% in options that were
deep in the money. At the end of 2020, the volatility decreased to levels near the 30%.
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Figure 4.4: Market volatility surface as of dates: November 15th, 2019, March 10th, 2020 and
November 2nd, 2020.

The calibration for November 15th, achieved relatively good results for both, the ATS and LTS
models. In Table 4.4 are shown the parameters obtained from the calibration for the ATS and the
LTS model using the processes VG and NIG as subordinators. It is possible to observe the good
calibration results in the ATS cases.

Model η̄ κ̄ σ̄ MSE
ATS-VG 1.049 0.745 0.131 1.396
LTS-VG 3.602 1.087 0.149 26.081

ATS-NIG 0.848 0.888 0.135 0.159
LTS-NIG 3.812 1.707 0.148 7.249

Table 4.4: Calibrated parameters of the ATS and LTS processes. Date: November, 15th, 2019.

During March, 2020, it was observed that the parameter η̄ in the both model reacted drastically
when the volatility smile got more and more steep. In March 2020, was reached an extreme case
where the volatility smiles were concave in the short term. Table 4.5 show the calibrated result for
March 24th, were it was shown that with the implied volatility having this shape, the calibration
failed in the LTS case. On the other hand, the important increase in the parameter η̄ affected
significantly the value of σ̄, and it stopped reflecting the average volatility of the market due to
the shape of the volatility surface.

Model η̄ κ̄ σ̄ MSE
ATS-VG 8.996 0.868 0.251 1.06536
LTS-VG 376.878 0.0916 0.049 2457.61

ATS-NIG 64.5911 1.978 0.143 1.15689
LTS-NIG 1082.46 0.042 0.036 2481.24

Table 4.5: Calibrated parameters of the ATS and LTS processes. Date: March, 10th, 2020.
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As for the third date, November 2nd, the parameters showed a similar behaviour as in March 10th.
The parameter η̄ continued being high particularly in the LTS model and the calibration failed.
Table 4.6 show the results of the calibration for each of the analyzed models.

Model η̄ κ̄ σ̄ MSE
ATS-VG 3.847 1.050 0.243 0.00507
LTS-VG 277.497 0.150 0.047 806.364

ATS-NIG 6.25922 2.783 0.200 0.4753
LTS-NIG 549.062 0.0795 0.0395 812.159

Table 4.6: Calibrated parameters of the ATS and LTS processes. Date: November, 2nd, 2020.

It is very important to remember that as explained in Section 2, the information from years 2017
and 2020 corresponds to market data that was already processed and interpolated, this situation
may have affected the results for the calibration of each model studied in the present work since
processed data may not entirely reflect the market conditions for the options analyzed in this thesis.
To test and calibrate the models using raw market data, the next time period was proposed to
bring this analysis.

4.3 Third Period: April 2023
In Figure 4.5 it is shown the log-MSE of the calibration process during April, 2023, for the VG
and the NIG process for both, the LTS and ATS processes. It is possible to observe how it is
significantly better the calibration for the ATS processes over the LTS processes and, in in this
period, the ATS process using the NIG process as subordinator outperforms the corresponding
ATS process using the VG process.

Figure 4.5: Log-MSE of the calibration of ATS and LTS models with the VG (left) and NIG (right)
processes.

In Figures 4.6, 4.7 and 4.8 it is possible to observe the development of the parameters η̄, κ̄ and
σ̄, respectively, for the ATS and LTS processes using the two different subordinators. During the
first days of the month it is remarkable the difference in the parameter η̄ between the ATS and
LTS processes, during the second half of the month the value of this parameter was around 9 for
the LTS processes while for the ATS processes remains in a level of 1 for the full month.
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Figure 4.6: Development of the parameter η in the ATS and LTS models with the VG (left) and
NIG (right) processes.

In case of the parameter κ̄, it presented an stable behaviour for the four models for the whole
month, with an exception in the last day in the LTS process with the VG process as subordinator.

Figure 4.7: Development of the parameter κ in the ATS and LTS models with the VG (left) and
NIG (right) processes.

Finally, the average volatility is shown in Figure 4.8 with the development of the parameter σ̄. The
first day of the month the volatility is low for both of the LTS processes, this is due to the high
values of η̄ that were observed during the same period. For the rest of the month, it is possible to
observe that the average volatility is quite similar in all the cases, in general the average volatility
in ATS process using the VG process is slightly higher that the ATS process using the NIG process.

Figure 4.8: Development of the parameter σ in the ATS and LTS models with the VG (left) and
NIG (right) processes.

To show the calibration results for an arbitrary date, it was chosen April 18th, 2023. Since it
was observed a great similarity in the results obtained with the VG and NIG processes, it will be
shown the comparison between the ATS and LTS processes using the NIG process as subordinator.
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The parameters obtained are presented in Table 4.7, where it is important to highlight the low
mean squared error achieved by the ATS process.

Model η̄ κ̄ σ̄ MSE
ATS-NIG 1.049 1.992 0.145 0.00507
LTS-NIG 8.796 0.484 0.146 5.14581

Table 4.7: Calibrated parameters of the ATS and LTS processes with the NIG process as subor-
dinator. Date: April, 18th, 2023.

To illustrate how the models fit the implied volatility smile and the European call option prices,
in Figure 4.9 are shown the results for three maturities: May 2023, September 2023 and January
2024. In general, the LTS model presented a good calibration compared to other models that can
be observed in the market and that contain a higher number of parameters; However, it is clear
the excellent results achieved by using the ATS processes, in this case with the NIG process as
subordinator.

Figure 4.9: Comparison of implied volatilities and European Call prices between ATS, LTS pro-
cesses with the NIG as subordinator and the market. Data as of date: April, 18th, 2023.
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Chapter 5

Conclusion

In this master thesis, the application of ATS processes in the calibration of the volatility surface
of the EURO STOXX 50 over different time periods was investigated; In particular, the behavior
of the parameters was studied and the calibration fitting to market data of the ATS processes
was compared (using the MSE) with their corresponding LTS processes when using two different
subordinators: the VG and the NIG process.

The experimental results showed that the ATS processes outperform the LTS processes, independ-
ent of the associated subordinator, in every of the three analyzed time spans. During the years
2017 and 2020, it was observed that when the volatilities present a steep slope in the short term
maturities, the parameter that is mainly affected is η̄, which may generate a reduction in the aver-
age volatility σ̄. For April, 2023, the analysis was made over raw market data and the calibrated
model reproduced the market volatility surface almost exactly.

Future work and discussion

Firstly, it would be beneficial to explore additional time spans and economic events to gain a more
comprehensive understanding of the parameter stability in LTS processes. Additionally, invest-
igating the impact of different calibration techniques and optimization methods on the model’s
performance and parameter stability could provide valuable insights. Furthermore, extending the
analysis to other market indices or individual stocks would allow for a broader assessment of the
model’s applicability.

35



Bibliography

[1] D. B. Madan and E. Seneta, ‘The variance gamma (VG) model for share market returns,’
Journal of Business, vol. 63, no. 4, pp. 511–524, 1990.

[2] D. B. Madan et al., ‘The variance gamma process and option pricing,’ Review of Finance,
vol. 2, no. 1, pp. 79–105, 1998.

[3] Barndorff-Nielsen, ‘Normal inverse gaussian distributions and stochastic volatility modelling,’
Scandinavian journal of statistics, vol. 24, no. 1, pp. 1–13, 1997.

[4] R. Cont and P. Tankov, Financial Modelling with Jump Processes. Chapman and Hall/CRC,
2003.

[5] M. Azzone and R. Baviera, ‘Additive normal tempered stable processes for equity derivatives
and power law scaling,’ Quantitative Finance, Published Online, 2021.

[6] K. I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge Uni-
versity Press, 1999.

[7] F. Benth and C. Sgarra, ‘The risk premium and the esscher transform in power markets,’
Stochastic Analysis and Applications, vol. 30, no. 1, pp. 20–43, 2012.

[8] P. Carr et al., ‘Self-decomposability and option pricing,’ Mathematical Finance, vol. 17, no. 1,
pp. 31–57, 2007.

[9] J. P. Nolan, Univariate Stable Distributions: Models for Heavy Tailed Data. Springer Cham,
2020.

[10] R. C. Merton, ‘Option pricing when underlying stock returns are discontinuous,’ Journal of
Financial Economics, vol. 3, no. 1-2, pp. 125–144, 1976. [Online]. Available: https://doi.
org/10.1016/0304-405X(76)90022-2.

[11] Barndorff-Nielsen, ‘Processes of normal inverse gaussian type,’ Finance and Stochastics,
vol. 2, no. 1, pp. 41–68, 1998.

[12] M. Azzone and R. Baviera, ‘Short-time implied volatility of additive normal tempered stable
processes,’ Quantitative Finance, Published Online, 2021.

[13] R. Baviera, ‘Gigi model: A simple stochastic volatility approach for multifactor interest rates,’
2007. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
977479.

[14] A. L. Lewis, ‘A simple option formula for general jump-diffusion and other exponential lévy
processes,’ 2001.

[15] K. Chourdakis, Financial Engineering, A brief introduction using the Matlab systems. 2008.
[16] Y. Hilpisch, Derivatives Analytics with Python: Data Analysis, Models, Simulation, Calibra-

tion and Hedging. (Wiley finance series). 2015.
[17] IMF, World economic outlook, april, Accessed: 2023-04-27, 2023. [Online]. Available: https:

//www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-
april-2023.

[18] O. LLC, Data products option metrics description. Accessed: 2023-04-27. [Online]. Available:
https://optionmetrics.com/data-products/.

[19] EUREX, Accessed: 2023-04-27. [Online]. Available: https://www.eurex.com/ex-en/.

36

https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.1016/0304-405X(76)90022-2
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=977479
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=977479
https://www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-april-2023
https://www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-april-2023
https://www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-april-2023
https://optionmetrics.com/data-products/
https://www.eurex.com/ex-en/

